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Abstract

Linear Discriminant Analysis (LDA) has been a popu-
lar method for extracting features which preserve class sep-
arability. The projection vectors are commonly obtained
by maximizing the between class covariance and simulta-
neously minimizing the within class covariance. LDA can
be performed either in the original input space or in the
reproducing kernel Hilbert space (RKHS) into which data
points are mapped, which leads to Kernel Discriminant
Analysis (KDA). When the data are highly nonlinear dis-
tributed, KDA can achieve better performance than LDA.
However, computing the projective functions in KDA in-
volves eigen-decomposition of kernel matrix, which is very
expensive when a large number of training samples exist.
In this paper, we present a new algorithm for kernel dis-
criminant analysis, called Spectral Regression Kernel Dis-
criminant Analysis (SRKDA). By using spectral graph anal-
ysis, SRKDA casts discriminant analysis into a regression
[framework which facilitates both efficient computation and
the use of regularization techniques. Specifically, SRKDA
only needs to solve a set of regularized regression problems
and there is no eigenvector computation involved, which is a
huge save of computational cost. Our computational anal-
ysis shows that SRKDA is 27 times faster than the ordinary
KDA. Moreover, the new formulation makes it very easy
to develop incremental version of the algorithm which can
fully utilize the computational results of the existing train-
ing samples. Experiments on face recognition demonstrate
the effectiveness and efficiency of the proposed algorithm.

1. Introduction

Linear discriminant analysis (LDA) is a traditional sta-
tistical method that has proved successful on classification
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problems [5]. The projection vectors are commonly ob-
tained by maximizing the between class covariance and si-
multaneously minimizing the within class covariance. The
classical LDA is a linear method and fails for nonlinear
problems.

To deal with this limitation, nonlinear extensions of LDA
through “kernel trick” have been proposed. The main idea
of kernel-based methods is to map the input data to a fea-
ture space through a nonlinear mapping, where the inner
products in the feature space can be computed by a kernel
function without knowing the nonlinear mapping explicitly
[10]. Kernel Fisher Discriminant Analysis (KFD) in [8] and
Generalized Discriminant Analysis (GDA) in [1] are two
independently developed approaches for kernel-based non-
linear extensions of LDA. They are essentially equivalent.
To avoid confusion, we will refer this approach as Kernel
Discrimiant Analysis (KDA) hereafter.

When solving the optimization problem of KDA, we
need to handle the possible singularity problem of total scat-
ter matrix. There are many approaches try to address this
issue either by using regularization techniques [8] or by ap-
plying singular value decomposition [1]. Both these two
approaches involve the eigen-decomposition of the kernel
matrix which is computationally expensive. Moreover, due
to the difficulty of designing an incremental solution for the
eigen-decomposition of the kernel matrix, there has been lit-
tle work on designing incremental KDA algorithms that can
efficiently incorporate new data examples as they become
available.

In [9], S. Mika et al. made a first attempt to speed up
KDA through a greedy approximation technique. However,
their algorithm was developed to handle the binary classi-
fication problem. For a multi-class problem, the authors
suggested the one against the rest scheme by considering
all two-class problems. Recently, Xiong et al. [14] pro-
posed a new algorithm called KDR/QR, a KDA variation
in which QR decomposition is applied rather than eigen-
decomposition. However, there is no theoretical relation
between the optimization problem solved by KDA/QR and
that of KDA. It is not clear under what situation KDA/QR
can achieve similar performance as KDA.



In this paper, we propose a new algorithm for kernel dis-
criminant analysis, called Spectral Regression Kernel Dis-
criminant Analysis (SRKDA). By using spectral graph anal-
ysis, SRKDA casts discriminant analysis into a regression
framework which facilitates both efficient computation and
the use of regularization techniques. Specifically, SRKDA
only needs to solve a set of regularized regression problems
and there is no eigenvector computation involved, which is
a huge save of computational cost. Moreover, the new for-
mulation makes it very easy to develop incremental version
of the algorithm which can fully utilize the previous com-
putational results on the existing training samples.

The points below highlight the contributions of this pa-
per:

e For binary classification problem, KDA has been
shown to be equivalent to the regularized kernel re-
gression [10]. We extend this relation to multi-class
case.

e We provide a new formulation of the KDA optimiza-
tion problem. With this new formulation, the KDA op-
timization problem can be efficiently solved by avoid-
ing the eigen-decomposition of the kernel matrix.

e Moreover, LSKDA can be naturally implemented in
the incremental fashion which has only quadratic-time
complexity. It is a huge improvement comparing to
the cubic-time complexity of the ordinary KDA ap-
proaches.

e Since LSKDA uses regression as a building block,
various kinds of regularization techniques can be eas-
ily incorporated (e.g., L1-norm regularizer to produce
sparse projections).

We begin our discussion with a brief review of KDA.

2. A Brief Review of KDA

Suppose we have a set of m samples X1,X2, -+ ,X;, €
R™, belonging to ¢ classes. We consider the problem in
a feature space F induced by some nonlinear mapping
¢ : R" — F. For a proper chosen ¢, an inner product
(,) can be defined on F which makes for a so-called re-
producing kernel Hilbert space (RKHS). More specifically,
(o(x;), 0(x;)) = K(x;,X;) holds where K(., .) is a positive
semi-definite kernel function.

Let S{f , S% and Sf) denote the between-class, within-
class and total scatter matrices in the feature space respec-
tively. We have

Sy = ka(ﬂf) - ll'¢)(l‘<(;5k) — )",
k=1

TS (mz (60<) — ) (6) ) T) ,

k=1 \i=1

S =57 + 50 = i (0050 o) (60x) s

where uff) and p are the centroid of the k-th class and the

global centroid, respectively in the feature space. my, is the
number of samples in the k-th class.

KDA seeks the optimal projective function v in the fea-
ture space by solving the following optimization problem

uTSl?u I/TSZ?I/

= arg max
vTSoy uTSflf

Vopt = arg max (1)
By representer theorem, we know that the solution to the
above optimization problem is a linear combination of ¢(x;)
[1][10]. Thus, there exist coefficients c; such that v, =
S aid(x). Let @ = [aq, -+, )T, it can be proved
[1] that Egn. (1) is equivalent to:

o'KWKa
o’KKa '
and the optimal a’s are given by the eigenvectors with re-

spect to the maximum eigenvalues of the following eigen-
problem:

2

Q,p; = arg max

KWKa =) KKa. 3)

where K is the kernel matrix (K;; = KC(x;,Xx;)) and W is
defined as:

1/my, if x4 and x; both belong to the k-th class;
Wij = .
0, otherwise.
“)
Each eigenvector a gives a projective function v in the fea-
ture space. For a data example x, we have

v o(x) =D aild(x;),6(x)) = Y aik(x:,x) = a" K (:,x)
i=1 i=1
where K (:,x) = [K(x1,x), -+ , K(Xm,x)]T.

The eigen-problem in Eqn. (3) can be solved as follows
[1]. Suppose the rank of K is r(r < m) and the eigen-
decomposition of K is K = UXUT. Without loss of gen-
erality, let X be a diagonal matrix of nonzero eigenvalues
and U is the matrix of normalized eigenvectors associated
with . Thus X! exists and UTU = I, where I is the
identity matrix.

Let 8 = XUTa and substituting K in Eqn. (2), we get

(SUTa) UTWU(SUTa)  BTUTWUR
(SUTa) UTU(S,UTa) BB
Thus, the optimal 3’s are the leading eigenvectors of matrix

UTWU. Once B’s are calculated, a can be computed as
a=UX"18.



In the following ,we use the term flam [11], a compound
operation consisting of one addition and one multiplica-
tion, to measure the operation counts. All the kernel meth-
ods need to compute the kernel matrix K which requires
O(m?n) flam, where n is the number of features. The
eigen-decomposition of K requires %m3 flam [12]; With
the block-diagonal structure of W, the leading ¢ — 1 eigen-
vectors of UTWU can be computed within ¢ + 3mc?
flam; Computing a’s from 3’s requires m?c flam. Consid-
ering m > ¢, we conclude the time complexity of KDA
measured by flam is

9

§m3 +m?c+ O(m?n). 5
For a large scale problem, we have m > n. Thus, the time
complexity of KDA is determined by %m?’, which is the cost
of eigen-decomposition of size m x m kernel matrix K.

3. Efficient KDA via Spectral Regression

In order to solve the KDA eigen-problem in Eqn. (3)
efficiently, we use the following theorem:

Theorem 1 Lety be the eigenvector of eigen-problem
Wy = \y (6)

with eigenvalue \. If Ko =y, then « is the eigenvector of
eigen-problem in Eqn. (3) with the same eigenvalue \.

Proof We have Wy = MAy. At the left side of Eqn. (3),
replace Ka by y, we have

KWKa=KWy=K\y=AKy=\KKa

Thus, « is the eigenvector of eigen-problem Eqn. (3) with
the same eigenvalue . ||

Theorem 1 shows that instead of solving the eigen-
problem Eqn. (3), the KDA projective functions can be ob-
tained through two steps:

1. Solve the eigen-problem in Eqn. (6) to gety.

2. Find a which satisfies Ka = y. The kernel matrix
K is positive semi-definite. When K is non-singular
(positive definite), for any given y, we have a unique
o = K 'y which satisfies the above linear equations
system. When K is singular, the system may have
no solution or have infinite many solutions (the linear
equations system is underdetermined) [6]. A possible
way is to approximate a by solving the following lin-
ear equations:

(K+dHa=y (7

where [ is the identity matrix and 6 > 0 is the regular-
ization parameter.

The advantages of this two-step approach are as follows:

1. We will show later how the eigen-problem in Eqn. (6)
is trivial and we can directly get those eigenvectors y.

2. The eigen-decomposition of K is avoided. Since the
matrix K + 61 is positive definite, the Cholesky de-
composition can be used to efficiently solve the linear
equations in Eqn. (7) [6], [11]. The computational
complexity analysis will be provided in the later sec-
tion.

The linear equations system in Eqn. (7) has close con-
nection with regularized regression [13]. We denote the pro-
jective function in the feature space as:

fx) =, ¢(x) = ZO”’K(X’ X;)

It can be easily verified that the solution a* = (K +61) 1y
given by equations in Eqn. (7) is the optimal solution of the
following regularized regression problem [13]:
L 2
min - (f(x:) = )" +3llf % ®)
i=1

where y; is the i-th element of y, F is the RKHS associated
with Mercer kernel KC and || || is the corresponding norm.

Now let us analyze the eigenvectors of W which is de-
fined in Eqn. (4). The W is block-diagonal, thus, its eigen-
values and eigenvectors are the union of the eigenvalues and
eigenvectors of its blocks (the latter padded appropriately
with zeros). It is straightforward to show that there are ex-
actly c eigenvectors of W with the same eigenvalue 1 [2].
These eigenvectors are

Yk:[ov"'7071,"',1, 0,---,0 }T k=1,---,¢ (9
———— N N —
Sitme me R

Since 1 is a repeated eigenvalue of W, we could just pick
any other c¢ orthogonal vectors in the space spanned by
{y.}. and define them to be our ¢ eigenvectors. The vector
of all ones e is naturally in the spanned space. This vector is
useless since the corresponding projective function will em-
bed all the samples to the same point. Therefor, we pick e as
our first eigenvector of W and use Gram-Schmidt process to
orthogonalize the remaining eigenvectors. The vector e can
then be removed, which leaves us exactly ¢ — 1 eigenvectors
of W. We denote them as:

Wiz Tke=0, iy, =0,i#j)  (10)

The above two-step approach essentially combines the
spectral analysis of the matrix W and regression techniques.
Therefor, we named this new approach as Spectral Regres-
sion Kernel Discriminant Analysis (SRKDA). It is impor-

tant to note that the similar technique can also be applied on
Linear Discriminant Analysis [3].



3.1. Theoretical Analysis

SRKDA calculates the projective functions through the
linear equations system in Eqn. (7). When the kernel matrix
K is positive definite and the § = 0, Theorem 1 shows that
the c—1 solutions a;, = K~ 'y, are exactly the eigenvectors
of the KDA eign-problem in Eqn. (3) with respect to the
eigenvalue 1. In this case, SRKDA is equivalent to ordinary
KDA.

One of the most popular kernels is the Gaussian RBF
kernel, K(x;,x;) = exp(—||x; — x;]|?/20?). Regarding the
Gaussian kernel, we have the following theorem:

Theorem 2 [If all the sample vectors are different and the
Gaussian RBF kernel is used, all c — 1 projective functions
in SRKDA are eigenvectors of eigen-problem in Eqn. (3)
with respect to eigenvalue 1 when 6 = 0. In other words,
the SRKDA and ordinary KDA are equivalent.

Proof When all the sample vectors are different, the kernel
matrix K of the Gaussian RBF kernel has full rank [7][10].
By theorem 1, the ¢ — 1 solutions a, = K 'y, are exactly
the eigenvectors of the KDA eign-problem in Eqn. (3) with
respect to the eigenvalue 1. ||

3.2. Computational Analysis

The computation of SRKDA involves two steps: re-
sponses (y,, in Eqn. 10) generation and regularized regres-
sion. The cost of the first step is mainly the cost of Gram-
Schmidt method, which requires (mc* — %¢*) flam [11].

To solve the ¢ — 1 linear equations systems in Eqn. (7),
we can use the Cholesky decomposition, which uniquely
factorizes the positive definite matrix K + 07 in the form
K + 61 = RTR, where R is upper triangular with pos-
itive diagonal elements. The Cholesky decomposition re-
quires ém?’ flam [11]. With this Cholesky decomposition,
the ¢ — 1 linear equations can be solved within m?c flam
[11]. Besides solving the SRKDA optimization problem,
we also need to compute the kernel matrix K which requires
O(mzn) flam, where n is the number of features. Thus, the
computational cost of SRKDA is

1 1
gmg +m2e+ O(m?n) + me? — gcg,

which can be simplified as

1

6m3 +m?c+ O(m?n).
Comparing to the computational cost of ordinary KDA in
Eqn. (5), SRKDA reduces the dominant part, which is %m3
of ordinary KDA, to %m3; achieves a 27 times speedup.

4. Incremental KDA via Spectral Regression

Due to the difficulty of designing an incremental solution
for the eigen-decomposition on the kernel matrix in KDA,
there has been little work on designing incremental KDA
algorithms that can efficiently incorporate new data exam-
ples as they become available. The SRKDA algorithm uses
regression instead of eigen-decomposition to solve the opti-
mization problem, which enables us to develop incremental
version of SRKDA.

The major cost in SRKDA computation is the step of
Cholesky decomposition which requires %m3 flam. For-
tunately, the Cholesky decomposition can be easily imple-
mented in the incremental manner [11]. Actually, Sher-
man’s march, one of the most popular Cholesky decomposi-
tion algorithms, is implemented in the incremental manner
[11]. We show how to proceed from (m — 1) x (m — 1)
matrix to a m x m matrix. We have

o Km—l klm

_ R%— 1 0 Rm— 1 Tim
A\, T 0 T )

which leads to
K 1 =RY R,
Kipm =RT v,
kmm :T,Qnm

When the Cholesky decomposition of the (m—1) x (m—1)
submatrix K,,_; is known, it is easy to get the Cholesky
decomposition of the m x m K,,. For detailed derivation,
please see [11].

Now, let us consider the additional computational cost
of incremental SRKDA when Am new data samples are in-
jected to the system which already has m samples. Compare
to the batch mode of SRKDA, we can get computational
saving on two steps:

1. We only need to calculate the additional part of kernel
matrix which requires O(nmAm + nAm?) flam;

2. The incremental Cholesky decomposition requires
FHm+ Am)3? — tm? flam [11].

Thus, the computation cost of incremental SRKDA mea-
sured by flam is

1 1 1
§m2Am + §mAm2 + EAm?’ + (m + Am)3c

1
+ O(nmAm +nAm?) + (m 4+ Am)c* — 303.

When Am < m and ¢ < m, the above cost can be simpli-

fied as A
(Tm +e)m? + O(nmAm).



Table 1. Computational complexity of KDA and SRKDA

Algorithm operation counts (flam [11])
9,3 2 2
Batch mode KDA sm° + cm?® + O(nm?)
SRKDA im3 + em? + O(nm?)

Incremental | KDA Im3 + em? + O(nmAm)

mode SRKDA (AT’” +c)m? + O(nmAm)
m: the number of data samples
n: the number of features

c: the number of classes
Am: the number of new data samples

We summarize our complexity analysis results in Table
1. The main conclusions include:

e The ordinary KDA needs to perform eigen-
decomposition on the kernel matrix, which is
very computationally expensive. = Moreover, it is
difficult to develop incremental algorithm based on
the ordinary KDA formulation. In both batch and
incremental modes, ordinary KDA has the dominant
part of the cost as Im?.

e SRKDA performs regression instead of eigen-
decomposition. In the batch mode, it only has the
dominant part of the cost as %m3, which is a 27 times
speedup of ordinary KDA. Moreover, it is easy to de-
velop incremental version of SRKDA which only has
quadratic-time complexity with respect to m. This
computational advantage makes SRKDA much more
practical in real world applications.

5. Experimental Results

In this section, we investigate the performance of our
proposed SRKDA algorithm. All of our experiments have
been performed on a P4 3.20GHz Windows XP machine
with 2GB memory.

Due to the space limitation, we only report the experi-
mental result on the face recognition task. Please see our
technical report [2] for more experimental results. The
CMU PIE face database' is used in our experiment. It con-
tains 68 subjects with 41,368 face images as a whole. The
face images were captured under varying pose, illumina-
tion and expression. In our experiment, the five near frontal
poses (C05, C07, C09, C27, C29) under different illumina-
tions and expressions are used which leaves us 11,554 face
images. All the images are manually aligned and cropped.
The cropped images are 32 x 32 pixels, with 256 gray lev-
els per pixel>. Among the 11,554 images, 8,000 images are

Uhttp://www.ri.cmu.edu/projects/project_418.html
Zhttp://ews.uiuc.edu/~dengcai2/Data/data.html

used as the training set and the remaining 3,554 images are
used for testing. We also run several cases by training all
the algorithms on the first 2000, 3000, - - -, 8000 images in
the training set.

5.1. Compared algorithms

Five algorithms which are compared in our experiments
are listed below:

1. Linear Discriminant Analysis (LDA) [5], which pro-
vides us a baseline performance of linear algorithms.

2. Kernel Discriminant Analysis (KDA) as discussed in
Section 2. We test the regularized version and choose
the regularization parameter § by five fold cross-
validation on the training set.

3. Spectral Regression Kernel Discriminant Analysis
(SRKDA), our approach proposed in this paper. The
regularization parameter 0 is also chosen by five fold
cross-validation on the training set.

4. KDA/QR [14], a KDA variation in which QR decom-
position is applied rather than eigen-decomposition.

5. Support Vector Machine (SVM) [13], which is be-
lieved as one of the state-of-the-art classification al-
gorithms. Specifically, we use the LibSVM system [4]
which implemented the multi-class classification with
one versus one strategy.

We use the Gaussian RBF kernel for all the kernel-based
methods. We tune the kernel width parameter o and large
margin parameter C' in SVM to achieve best testing perfor-
mance for SVM. Then, the same kernel width parameter o
is used in all the other kernel-based algorithms.

5.2. Results

The classification error rate as well as the training time
(second) for each method on the three data sets are reported
on the Table (2).

The main observations from the performance compar-
isons include:

e The Kernel Discriminant Analysis model is very effec-
tive in classification. SRKDA has the best performance
for almost all the cases (even better than SVM).

e Since the eigen-decomposition of the kernel matrix is
involved, the ordinary KDA is computationally expen-
sive in training. SRKDA uses regression instead of
eigen-decomposition to solve the optimization prob-
lem, and thus achieve significant speedup comparing
to ordinary KDA. The empirical results are consistent
with the theoretical estimation of the efficiency.



Table 2. Performance comparisons on PIE dataset

Error (%) Time (s) Speed

Training Size|| LDA|KDA|SRKDA |[KDA/QR|SVM | LDA | KDA [SRKDA |KDA/QR|SVM | >PeeetP
2000 529(5.18 | 481 | 15.62 | 630 || 8.77 3651 | 247 | 1.66 [24.13| 148
3000 461(425| 394 | 982 [470 | 9.06|1169| 539 | 3.66 [43.99 | 21.7
4000 4.14]553| 324 | 793 (374 | 9.42|256.6| 1035 | 639 (6843 | 248
5000 385(323| 290 | 594 [3.29 || 9.73 (5023 | 1740 | 10.00 [96.26 | 28.9
6000 357(291| 253 | 568 |2.84 || 10.06]830.7 | 2721 | 1420 [1256 | 305
7000 340(2.65| 2.19 | 408 |2.64 || 10.39]1340.9| 38.65 | 19.12 |155.6 | 347
8000 335(241| 217 | 400 [234 || 10.79]1908.1| 53.75 | 2496 [186.7 | 355

*Column labeled “Speedup” shows how many times faster the SRKDA is (comparing to ordinary KDA).

e The KDA/QR is very efficient because they only need
to perform QR decomposition on matrices with size
m X c [14]. However, there is no theoretical relation
between the optimization problem solved in KDA/QR
and that of the KDA. In all the cases, the performances
of KDA/QR is the worst.

6. Conclusions

In this paper, we propose a novel algorithm for ker-
nel discriminant analysis, called Spectral Regression Ker-
nel Discriminant Analysis (SRKDA). Our algorithm is de-
veloped from a graph embedding viewpoint of KDA prob-
lem. It combines the spectral graph analysis and regres-
sion to provide an efficient approach for kernel discriminant
analysis. Specifically, SRKDA only needs to solve a set of
regularized regression problems and there is no eigenvector
computation involved, which is a huge save of computa-
tional cost. The theoretical analysis shows that SRKDA can
achieve 27 times speedup over the ordinary KDA. More-
over, the new formulation makes it very easy to develop
incremental version of the algorithm which can fully utilize
the computational results of the existing training samples.
With incremental implementation, the computational cost
of SRKDA reduces to quadratic-time complexity. Exten-
sive experimental results show that our method consistently
outperforms the other state-of-the-art KDA extensions con-
sidering both effectiveness and efficiency.
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