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Abstract

Linear Discriminant Analysis (LDA) has been a popu-
lar method for extracting features which preserve class sep-
arability. The projection vectors are commonly obtained
by maximizing the between class covariance and simulta-
neously minimizing the within class covariance. In prac-
tice, when there is no sufficient training samples, the covari-
ance matrix of each class may not be accurately estimated.
In this paper, we propose a novel method, called Semi-
supervised Discriminant Analysis (SDA), which makes use
of both labeled and unlabeled samples. The labeled data
points are used to maximize the separability between differ-
ent classes and the unlabeled data points are used to esti-
mate the intrinsic geometric structure of the data. Specifi-
cally, we aim to learn a discriminant function which is as
smooth as possible on the data manifold. Experimental
results on single training image face recognition and rel-
evance feedback image retrieval demonstrate the effective-
ness of our algorithm.

1. Introduction

In many visual analysis applications, such as image re-
trieval, face recognition, etc., one is often confronted with
high-dimensional data. However, there might be reason to
suspect that the naturally generated high-dimensional data
probably resides on a lower dimensional manifold. This
leads one to consider methods of dimensionality reduction
that allow one to represent the data in a lower dimensional
space. Two of the most popular techniques for this purpose
are Principal Component Analysis (PCA) [16] and Linear
Discriminant Analysis (LDA) [9].

PCA is an unsupervised method. It performs dimen-
sionality reduction by projecting the original n-dimensional
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data onto the d(� n)-dimensional linear subspace spanned
by the leading eigenvectors of the data’s covariance matrix.
Its goal is to find a set of mutually orthogonal basis func-
tions that capture the directions of maximum variance in
the data so that the pairwise Euclidean distances can be
best preserved. If the data is embedded in a linear sub-
space, PCA is guaranteed to discover the dimensionality of
the subspace and produces a compact representation.

LDA is a supervised method. It searches for the project
axes on which the data points of different classes are far
from each other while requiring data points of the same
class to be close to each other. When label information
available, e.g., for classification task, LDA can achieve sig-
nificant better performance than PCA [1]. However, when
there is no sufficient training samples relative to the num-
ber of dimensions, the covariance matrix of each class may
not be accurately estimated. In this case, the generaliza-
tion capability on testing samples can not be guaranteed. A
possible solution to deal with insufficient training (labeled)
samples could be learning on both labeled and unlabeled
data (semi-supervised and transductive learning). It is natu-
ral and reasonable since in reality we usually have only part
of input data labeled, along with a large number of unla-
beled data.

In the last decades, semi-supervised learning (or trans-
ductive learning) has attracted an increasing amount of at-
tention. Two well known algorithms are Transductive SVM
(TSVM) [23] and Co-Training . Recently, there are consid-
erable interest and succuss on graph based semi-supervised
learning algorithms [3, 20, 26, 27], which consider the
graph over all the samples as a prior to guide the decision
making. All these algorithms considered the problem of
classification, either transductive or inductive.

In this paper, we aim at dimensionality reduction in the
semi-supervised case. We proposed a semi-supervised di-
mensionality reduction algorithm, called Semi-supervised
Discriminant Analysis (SDA). SDA aims to find a projec-
tion which respects the discriminant structure inferred from
the labeled data points, as well as the intrinsic geometri-
cal structure inferred from both labeled and unlabeled data
points. Specifically, the labeled data points, combined with



the unlabeled data points, are used to build a graph incorpo-
rating neighborhood information of the data set. The graph
provides a discrete approximation to the local geometry of
the data manifold. Using the notion of graph Laplacian, a
smoothness penalty on the graph can be incorporated into
the objective function. In this way, our SDA algorithm can
optimally preserves the manifold structure.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a brief review of LDA. We introduce our
Semi-supervised Discriminant Analysis (SDA) algorithm
for dimensionality reduction in Section 3. The experimental
results are presented in Section 4. Finally, we conclude the
paper and provide suggestions for future work in Section 5.

2. Graph Perspective of LDA

Linear Discriminant Analysis (LDA) seeks directions on
which the data points of different classes are far from each
other while requiring data points of the same class to be
close to each other [9]. Suppose we have a set of l samples
x1, x2, · · · , xl ∈ R

n, belonging to c classes. The objective
function of LDA is as follows:

aopt = arg max
a

aT Sba
aT Swa

, (1)

Sb =
c∑

k=1

lk(µµµ(k) −µµµ)(µµµ(k) −µµµ)T , (2)

Sw =
c∑

k=1

(
lk∑

i=1

(x(k)
i −µµµ(k))(x(k)

i −µµµ(k))T

)
, (3)

where µµµ is the total sample mean vector, lk is the number of
samples in the k-th class, µµµ(k) is the average vector of the k-
th class, and x(k)

i is the i-th sample in the k-th class. We call
Sw the within-class scatter matrix and Sb the between-class
scatter matrix.

Define the total scatter matrix St =
∑l

i=1(xi −µµµ)(xi −
µµµ)T , we have St = Sb + Sw [9]. The objective function of
LDA in Eqn. (1) is equivalent to

aopt = arg max
a

aT Sba
aT Sta

. (4)

The optimal a’s are the eigenvectors corresponding to the
non-zero eigenvalue of eigen-problem:

Sba = λSta. (5)

Since the rank of Sb is bounded by c − 1, there are at most
c − 1 eigenvectors corresponding to non-zero eigenvalues
[9].

Without loss of generality, we assume µµµ = 01. We have

Sb =
c∑

k=1

lk(µµµ(k))(µµµ(k))T

=
c∑

k=1

lk

(
1
lk

lk∑
i=1

x(k)
i

)(
1
lk

lk∑
i=1

x(k)
i

)T

=
c∑

k=1

X(k)W (k)(X(k))T

where W (k) is a lk × lk matrix with all the elements equal
to 1/lk and X(k) = [x(k)

1 , · · · , x(k)
lk

] denote the data matrix
of k-th class.

Let the data matrix X = [X(1), · · · ,X(c)] and define a
l × l matrix Wl×l as:

Wl×l =


W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)

 (6)

We have

Sb =
c∑

k=1

X(k)W (k)(X(k))T = XWl×lX
T . (7)

Thus, the objective function of LDA in Eqn. (4) can be
rewritten as

aopt = arg max
a

aT Sba
aT Sta

= arg max
a

aT XWl×lX
T a

aT XXT a
. (8)

This formulation of LDA objective function will be very
helpful in developing our algorithm. It is first introduced in
[14].

3. Semi-supervised Discriminant Analysis

LDA considers seeking the optimal projections purely on
the training (labeled) set. In reality, it is possible to acquire
a large set of unlabeled data. In this section, we are trying
to extend LDA model to incorporate the manifold structure
illustrated by unlabeled data.

3.1. The Objective Function

LDA aims to find a projection vector a such that the ratio
between aT Sba and aT Sta is maximized. When there is
no sufficient training sample, overfitting may happen. A
typical way to prevent overfitting is to impose a regularizer

1This can be achieved by centering the data, i.e., subtract the mean
vector from all the sample vectors.



[11]. The optimization problem of the regularized version
of LDA can be written as follows:

max
a

aT Sba
aT Sta + αJ(a)

(9)

where J(a) controls the learning complexity of the hypoth-
esis family, and the coefficient α controls balance between
the model complexity and the empirical loss. One of the
most popular regularizers is the Tikhonov regularizer [21]:

J(a) = ‖a‖2.

LDA model with Tikhonov regularizer is usually referred as
Regularized Discriminant Analysis (RDA) [8].

The regularizer term J(a) provides us the flexibility to
incorporate our prior knowledge on some particular appli-
cations. When a set of unlabeled examples available, we
aim to construct a J(a) incorporating the manifold struc-
ture. The key to semi-supervised learning algorithm is the
prior assumption of consistency. For classification, it means
nearby points are likely to have the same label [26]. For
dimensionality reduction, it can be interpreted as nearby
points will have similar embeddings (low-dimensional rep-
resentations). Given a set of examples {xi}m

i=1, we can use
a p-nearest neighbor graph G to model the relationship be-
tween nearby data points. Specifically, we put an edge be-
tween nodes i and j if xi and xj are “close”, i.e., xi and xj

are among p nearest neighbors of each other. Let the corre-
sponding weight matrix be S, defined by

Sij =
{

1, if xi ∈ Np(xj) or xj ∈ Np(xi)
0, otherwise.

(10)

where Np(xi) denotes the set of p nearest neighbors of xi.
In general, the mapping function should be as smooth as
possible on the graph. Specifically, if two data points are
linked by an edge, they are likely to be in the same class.
Moreover, the data points lying on a densely linked sub-
graph are likely to have the same label. Thus, a natural
regularizer can be defined as follows:

J(a) =
∑
ij

(
aT xi − aT xj

)2
Sij (11)

This formulation is motivated from spectral dimensional-
ity reduction [2, 13], which also plays a key role in spec-
tral clustering [17] and various kinds of graph based semi-
supervised learning algorithms [3, 6, 20].

Let X = [x1, x2, · · · , xm]. We have

J(a) =
∑
ij

(aT xi − aT xj)2Sij

= 2
∑

i

aT xiDiixT
i a − 2

∑
ij

aT xiSijxT
j a

= 2aT X(D − S)XT a

= 2aT XLXT a

where D is a diagonal matrix; its entries are column (or row,
since S is symmetric) sum of S, Dii = ΣjSij . L = D − S
is the Laplacian matrix [7].

With this data dependent regularizer, we get the objective
function of our semi-supervised discriminant analysis:

max
a

aT Sba
aT
(
St + αXLXT

)
a
. (12)

The projective vector a that maximizes the objective func-
tion is given by the maximum eigenvalue solution to the
generalized eigenvalue problem:

Sba = λ(St + αXLXT )a (13)

3.2. The Algorithm

Given a labeled set {(xi, yi)}l
i=1 belonging to c classes

and an unlabeled set {xi}m
i=l+1. The k-th class have lk sam-

ples,
∑c

k=1 lk = l. Without loss of generality, we assume
that the data points in {x1, · · · , xl} are ordered according to
their labels. The algorithmic procedure of semi-supervised
discriminant analysis is stated below:

1. Construct the adjacency graph: Construct the p-
nearest neighbors graph matrix S as in Eqn. (10) and
calculate the graph Laplacian L = D − S.

2. Construct the labeled graph: Construct the weight
matrix W ∈ R

m×m for labeled graph as

W =
[

Wl×l 0
0 0

]
where Wl×l ∈ R

l×l is defined in Eqn. (6). Define

Ĩ =
[

I 0
0 0

]
where I is an identity matrix of size l × l.

3. Eigen-problem: Compute the eigenvectors with re-
spect to the non-zero eigenvalues for the generalized
eigenvector problem:

XWXT a = λX(Ĩ + αL)XT a, (14)

where X = [x1, · · · , xl, xl+1, · · · , xm]. It is easy to
check that W is of rank c and we will have c eigenvec-
tors with respect to non-zero eigenvalues 2 [10]. We
denote them as a1, · · · , ac.

4. SDA Embedding: Let A = [a1, a2, · · · , ac], A is a
n × c transformation matrix. The samples can be em-
bedded into c dimensional subspace by

x → z = AT x
2We consider the case that the number of features n > c.



Let Xl = [x1, · · · , xl] be the labeled data matrix. It is
easy to check that

XWXT = XlWl×lX
T
l = Sb

and
XĨXT = XlX

T
l = St.

Thus, the eigen-problem in Eqn. (14) is same as the eigen-
problem in Eqn. (13).

To get a stable solution of the eigen-problem in Eqn.
(14), the matrix X(Ĩ + αL)XT is required to be non-
singular [10] which is not true when the number of features
is larger than the number of samples. In this case, we can
apply the Tikhonov regularization idea as the way in reg-
ularized discriminant analysis [8]. Thus, our generalized
eigen-problem becomes:

XWXT a = λ
(
X(Ĩ + αL)XT + βI

)
a (15)

For β > 0, the matrix X(Ĩ +αL)XT +βI is certainly non-
singular. We can also use the spectral regression technique
to solve this singularity problem, please see [5] for details.

3.3. Kernel SDA

The algorithm described above is a linear method. It
may fail to discover the intrinsic geometry when the data
manifold is highly nonlinear. In this subsection, we dis-
cuss how to perform SDA in Reproducing Kernel Hilbert
Space (RKHS), which gives rise to kernel SDA. The ap-
proach used here is essentially similar to [13].

We consider the problem in a feature space F induced
by some nonlinear mapping

φ : R
n → F

For a proper chosen φ, an inner product 〈, 〉 can be de-
fined on F which makes for a so-called reproducing kernel
Hilbert space (RKHS). More specifically,

〈φ(x), φ(y)〉 = K(x, y)

holds where K(., .) is a positive semi-definite kernel func-
tion. Several popular kernel functions are: Gaussian ker-
nel K(x, y) = exp(−‖x − y‖2/σ2); polynomial ker-
nel K(x, y) = (1 + 〈x, y〉)d; Sigmoid kernel K(x, y) =
tanh(〈x, y〉 + α).

Given a set of vectors {vi ∈ F|i = 1, 2, · · · , d} which
are orthonormal (〈vi, vj〉 = δi,j), the projection of φ(xi) ∈
F to these v1, · · · , vd leads to a mapping from R

n to Eu-
clidean space R

d through

yi =
(〈v1, φ(xi)〉, 〈v2, φ(xi)〉, · · · , 〈vd, φ(xi)〉

)T
We look for such {vi ∈ F|i = 1, 2, · · · , d} that helps
{yi|i = 1, · · · ,m} preserve local geometrical and discrim-
inant structure of the data manifold.

Let Φ denote the data matrix in RKHS:

Φ = [φ(x1), φ(x2), · · · , φ(xm)]

Now, the eigenvector problem of Eqn. (14) in RKHS can be
written as follows:

ΦWΦT v = λΦ
(
Ĩ + αL

)
ΦT v (16)

Because the eigenvector of (16) are linear combinations of
φ(x1), φ(x2), · · · , φ(xm), there exist coefficients αi, i =
1, 2, · · · ,m such that

v =
m∑

i=1

αiφ(xi) = Φααα

where ααα = (α1, α2, · · · , αm)T ∈ R
m.

Following some algebraic formulations, we get:

ΦWΦT v = λΦ
(
Ĩ + αL

)
ΦT v

⇒ ΦWΦT Φααα = λΦ
(
Ĩ + αL

)
ΦT Φααα

⇒ ΦT ΦWΦT Φααα = λΦT Φ
(
Ĩ + αL

)
ΦT Φααα

⇒ KWKααα = λK
(
Ĩ + αL

)
Kααα (17)

where K is the kernel matrix, Kij = K(xi, xj). Let the
column vectors ααα1,ααα2, · · · ,αααc be the eigenvectors with re-
spect to the non-zero eigenvalues of eigen-problem in Eqn.
(17) and the m×c transformation matrix Θ = [ααα1, · · · ,αααc].
A data point can be embedded into c dimensional subspace
by

x → z = ΘT K(:, x) (18)

where K(:, x) .= [K(x1, x), · · · ,K(xm, x)]T

4. Experimental Results

In this section, several experiments are performed to test
our algorithm. We choose two scenarios in which semi-
supervised learning is natural and necessary. They are sin-
gle training image face recognition [4] and relevance feed-
back image retrieval [18].

Many of proposed graph based semi-supervised learn-
ing algorithms [26, 27] can only work on transductive set-
ting. That is, both the training and test set (without label
information) are available during the learning process. In
reality (e.g., face recognition), a more natural setting for
semi-supervised learning is as follows. The available train-
ing set contains both labeled and unlabeled examples, and
the testing set is not available during the training phrase,
which we refer here as semi-supervised setting. To this
end, manifold regularization [3, 20] is one of the most suc-
cessful approaches that address both two settings. Manifold
regularization extends many of the existing inductive algo-
rithms (e.g., SVM, Regression) to semi-supervised learning
by adding a geometrically based regularization term.



Figure 1. Sample face images from the CMU PIE face database. For each subject, there are 43 face images under different illumination
with fixed pose and expression.

The SDA algorithm essentially shares the similar idea
while focuses on dimensionality reduction. In the SDA sub-
space, any ordinary classifier can then be used. In our ex-
periments, we simply choose the nearest centroid method.

4.1. Single Training Image Face Recognition

One of the most successful and well-studied techniques
to face recognition is the appearance-based method [22].
Previous works have demonstrated that the face recognition
performance can be improved significantly in lower dimen-
sional linear subspaces [1, 14, 22]. Two of the most popular
appearance-based methods include Eigenface [22] (based
on PCA) and Fisherface [1] (based on LDA). In general,
face appearance does not depend solely on identity. It is
also influenced by illumination and viewpoint. Changes in
pose and illumination will cause large changes in the ap-
pearance of a face. Thus, appearance-based methods need a
number of training images for each subject, in order to cope
with pose and illumination variabilities.

One of the classical challenges in face recognition is
recognition from a single training image [4]. In this setting,
the ordinary appearance-based methods (e.g., Eigenface and
Fisherface) tend to fail. Actually, with a single training sam-
ple per class, it is easy to check that the between-class scat-
ter matrix will be same as the total scatter matrix. Thus,
LDA can not be applied. Recent studies show that the face
images are sampled from a nonlinear low-dimensional man-
ifold which is embedded in the high-dimensional ambient
space [14]. If we have a large set of unlabeled face images
(which is possible due to the fast growth of digital photog-
raphy industry), the intrinsic image manifold can still be
estimated even with a single labeled face image per subject.
In this experiment, we test our SDA algorithm in this single
training image face recognition setting.

The CMU PIE face database [19] is used in this experi-
ment. It contains 68 subjects with 41,368 face images as a
whole. The face images were captured under varying pose,
illumination and expression. In this experiment, we choose
the frontal pose (C27) with varying lighting and illumina-
tion which leaves us 43 images per subject. The size of
each cropped face image is 32 × 32 pixels, with 256 grey
levels per pixel. Figure 1 shows some sample images for a
certain subject. For each subject, 30 images are randomly
selected as the training set. Among these 30 images, 1 im-

Table 1. Recognition error rates on PIE (mean±std-dev%)
Unlabeled error Test error

Baseline 74.7±1.7 74.4±1.6
Eigenface (PCA) [22] 74.7±1.7 74.4±1.6

Laplacianface (LPP) [14] 43.9±2.3 43.6±2.4
Consistency [26] 48.0±1.8 −

LapSVM [3] 43.5±1.6 43.1±2.6
LapRLS [3] 42.5±1.6 42.1±2.6

SDA 41.0±2.0 40.5±2.7

age is randomly selected and labeled which leaves other 29
images unlabeled. We average the results over 20 random
split.

Table 1 shows the performance comparison of different
algorithms. The Baseline approach is simply the nearest
neighbor classification on the original image space. For
other approaches, all the training images (labeled and un-
labeled) are used to learn either a subspace or a classi-
fier. The nearest neighbor classifier is then performed in
the subspace3. The Baseline and Eigenface approaches do
not consider the manifold structure and get a very poor per-
formance due to the illumination change. All the other
semi-supervised learning approaches make use of the man-
ifold structure and achieved significant improvements. Par-
ticularly, our SDA method achieved the best performance
among all the compared algorithms.

4.2. Relevance Feedback Image Retrieval

Relevance feedback is a well established and effective
framework for narrowing down the gap between low-level
visual features and high-level semantic concepts in Content-
Based Image Retrieval (CBIR) [18]. Due to the limitation
of the user’s feedbacks and the high dimensionality of the
feature space, one hopes to find a subspace with certain
dimensionality reduction algorithms. The semantic rela-
tionship between images can be better revealed in this sub-
space. The relevance feedback setting is certainly a semi-
supervised setting, with a large number of unlabeled data
(images in the database) and a small number of labeled data
(feedbacks provided by the user).

Recently, there are considerable interests on develop-
ing semi-supervised dimensionality reduction algorithms
for CBIR. Some popular ones include incremental Local-

3Since we have only one labeled sample per class, nearest neighbor
classifier and the nearest centroid method are the same.
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(b) Feedback Iteration 2
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Figure 2. Compare the retrieval performance of different algorithms. (a)-(c) Via illustrating with the precision-scope curves, we plot the
results in the 1st, 2nd, and 4th feedback iteration, respectively. Our SDA algorithm performs the best on the entire scope for all the three
feedback iterations. (d)−(f) Sample images from category 24, 25, and 30, respectively.

ity Preserving Projection (LPP) [12], Augmented Relation
Embedding (ARE) [15] and Semantic Subspace Projection
(SSP) [25]. In this experiment, we compare our SDA with
these three algorithms for relevance feedback image re-
trieval.

4.2.1 Image Database and Low Level Features

The COREL data set is widely used in many CBIR sys-
tems, such as [12, 15, 25]. For the sake of evaluations, we
also choose this data set for testing. 79 categories of color
images were selected, where each consists of 100 images.
Some sample images are shown in Figure 2.

We combine 64-dimensional color histogram and 64-
dimensional Color Texture Moment (CTM, [24]) to repre-
sent the images. The color histogram is calculated using
4 × 4 × 4 bins in HSV space. The Color Texture Mo-
ment is proposed by Yu et al. [24], which integrates the
color and texture characteristics of the image in a compact
form. CTM adopts local Fourier transform as a texture rep-
resentation scheme and derives eight characteristic maps for
describing different aspects of co-occurrence relations of
image pixels in each channel of the (SVcosH, SVsinH, V)
color space. Then CTM calculates the first and second mo-
ment of these maps as a representation of the natural color
image pixel distribution. Please see [24] for details.

4.2.2 Evaluation Settings

To exhibit the advantages of using our approach, we need a
reliable way of evaluating the retrieval performance and the

comparisons with other systems. Different aspects of the
experimental design are described below.

Evaluation Metrics: We use precision-scope curve [15] to
evaluate the effectiveness of the image retrieval algorithms.
The scope is specified by the number (N ) of top-ranked im-
ages presented to the user. The precision is the ratio of the
number of relevant images presented to the user to the scope
N . The precision-scope curve describes the precision with
various scopes and thus gives an overall performance eval-
uation of the algorithms.

In a real image retrieval system, a query image is usually
not in the image database. To simulate such environment,
we use five-fold cross validation to evaluate the algorithms
which is also adopted in the paper [15]. More precisely,
we divide the whole image database into five subsets with
equal size. Thus, there are 20 images per category in each
subset. At each run of cross validation, one subset is se-
lected as the query set, and the other four subsets are used
as the database for retrieval. The precision-scope curve and
precision rate are computed by averaging the results from
the five-fold cross validation.

Automatic Relevance Feedback Scheme: We designed an
automatic feedback scheme to model the retrieval process.
For each submitted query, our system retrieves and ranks
the images in the database. The top 10 ranked images were
selected as the feedback images, and their label information
(relevant or irrelevant) is used for re-ranking. Note that, the
images which have been selected at previous iterations are
excluded from later selections. For each query, the auto-
matic relevance feedback mechanism is performed for four
iterations. The similar scheme was used in [12], [15], [25].



4.2.3 Image Retrieval Results

In real world, it is not practical to require the user to pro-
vide many rounds of feedbacks. The retrieval performance
after the first several rounds of feedbacks is the most impor-
tant. Figure 2 shows the average precision-scope curves of
the different algorithms for the 1st, 2nd and 4th feedback
iterations. The baseline curve describes the initial retrieval
result without feedback information. Specifically, at the be-
ginning of retrieval, the Euclidean distances in the original
128-dimensional space are used to rank the images in the
database. After the user provides relevance feedbacks, the
LPP, ARE, SSP, and SDA algorithms are then applied to re-
rank the images in the database. Our SDA algorithm signif-
icantly outperforms the other three algorithms on the entire
scope. ARE performs better than the other two, especially
with a small scope. All these four algorithms are signifi-
cantly better than the baseline, which indicates that the user
provided relevance feedbacks are very helpful for improv-
ing the retrieval performance.

5. Conclusion

In this paper, we propose a new linear dimensionality
reduction algorithm called Semi-supervised Discriminant
Analysis. It can make efficient use of both labeled and unla-
beled data points. The labeled data points are used to max-
imize the discriminating power, while the unlabeled data
points are used to maximize the locality preserving power.
Experimental results on single training image face recogni-
tion and relevance feedback image retrieval demonstrate the
effectiveness of our algorithm.
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