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Abstract

Subspace learning based face recognition methods have
attracted considerable interests in recently years, includ-
ing Principal Component Analysis (PCA), Linear Discrimi-
nant Analysis (LDA), Locality Preserving Projection (LPP),
Neighborhood Preserving Embedding (NPE), Marginal
Fisher Analysis (MFA) and Local Discriminant Embedding
(LDE). These methods consider an n1 ×n2 image as a vec-
tor in R

n1×n2 and the pixels of each image are considered
as independent. While an image represented in the plane
is intrinsically a matrix. The pixels spatially close to each
other may be correlated. Even though we have n1 × n2

pixels per image, this spatial correlation suggests the real
number of freedom is far less. In this paper, we introduce
a regularized subspace learning model using a Laplacian
penalty to constrain the coefficients to be spatially smooth.
All these existing subspace learning algorithms can fit into
this model and produce a spatially smooth subspace which
is better for image representation than their original ver-
sion. Recognition, clustering and retrieval can be then per-
formed in the image subspace. Experimental results on face
recognition demonstrate the effectiveness of our method.

1. Introduction

Many face recognition techniques have been devel-
oped over the past few decades. One of the most suc-
cessful and well-studied techniques to face recognition
is the appearance-based method [20, 24]. When using
appearance-based methods, we usually represent an image
of size n1×n2 pixels by a vector in an n1×n2-dimensional
space. In practice, however, this n1×n2-dimensional space
is too large to allow robust and fast face recognition. Pre-
vious works have demonstrated that the face recognition
performance can be improved significantly in lower dimen-
sional linear subspaces [1, 6, 16, 24]. Two of the most pop-
ular appearance-based face recognition methods are Eigen-

face [24] and Fisherface [1]. Eigenface is based on Princi-
pal Component Analysis (PCA) [9]. PCA projects the face
images along the directions of maximal variances and aims
to preserve the Euclidean distances between face images.
Fisherface is based on Linear Discriminant Analysis (LDA)
[9]. Unlike PCA which is unsupervised, LDA is supervised.
When the class information is available, LDA can be used to
find a linear subspace which is optimal for discrimination.

Recently there are considerable interest in geometri-
cally motivated approaches to visual analysis. Various re-
searchers (see [2], [22], [23]) have considered the case when
the data lives on or close to a low dimensional submanifold
of the high dimensional ambient space. One hopes then
to estimate geometrical and topological properties of the
submanifold from random points (“scattered data”) lying
on this unknown submanifold. Along this direction, many
subspace learning algorithms have been proposed for face
recognition. Some popular ones include Locality Preserv-
ing Projection (LPP) [15], Neighborhood Preserving Em-
bedding (NPE) [14], Marginal Fisher Analysis (MFA) [26]
and Local Discriminant Embedding (LDE) [7].

All the above methods consider a face image as a high
dimensional vector. They do not take advantage of the spa-
tial correlation of pixels in the image, and the pixels are
considered as independent pieces of information. However,
a n1×n2 face image represented in the plane is intrinsically
a matrix, or 2-order tensor. Even though we have n1 × n2

pixels per image, this spatial correlation suggests the real
number of freedom is far less. Recently there have been a
lot of interest in tensor based approaches to data analysis in
high dimensional spaces. Vasilescu and Terzopoulos have
proposed a novel face representation algorithm called Ten-
sorface [25]. Tensorface represents the set of face images
by a higher-order tensor and extends Singular Value De-
composition (SVD) to higher-order tensor data. Some other
researchers have also shown how to extend PCA, LDA, LPP,
MFA and LDE to higher order tensor data [5, 7, 13, 26, 27].
Some experimental results have showed the superiority of
these tensor approaches over their corresponding vector ap-



proaches. However, our analysis later will show that these
tensor approaches only consider the relationship between
pixels in the same row (column) and fail to fully explorer
the spatial information of images. The embedding functions
of tensor approaches will still be spatially rough.

In this paper, we introduce a Spatially Smooth Subspace
Learning (SSSL) model using a Laplacian penalty to con-
strain the coefficients to be spatially smooth. Instead of
considering the basis function as a n1 × n2-dimensional
vector, we consider it as a matrix, or a discrete function
defined on a n1 × n2 lattice. Thus, the discretized Lapla-
cian can be applied to the basis functions to measure their
smoothness along horizontal and vertical directions. The
discretized Laplacian operator is a finite difference approx-
imation to the second derivative operator, summed over all
directions. The choice of Laplacian penalty allows us to in-
corporate the prior information that neighboring pixels are
correlated. Once we obtain compact representations of the
images, classification and clustering can be performed in
the lower dimensional subspace.

The points below highlight several aspects of the paper:

1. When the number-of-dimensions to sample-size ratio
is too high, it is difficult for those subspace learning
algorithms (LDA, LPP, NPE, etc.) to discover the in-
trinsic discriminant or geometrical structure. Since the
image data generally has a large number of dimensions
(pixels), the methods of regularization are needed.

2. Even if the sample size were sufficient to estimate the
intrinsic geometrical structure, coefficients of spatially
smooth features (pixels) tend to be spatially rough.
Since we hope to interpret these coefficients, we would
prefer smoother versions, especially if they do not
compromise the fit.

The remainder of the paper is organized as follows. In
Section 2, we provide a brief review of the various subspace
learning algorithms and their tensor extensions. Section 3
introduces our proposed Spatially Smooth Subspace Learn-
ing (SSSL) model. The extensive experimental results are
presented in Section 4. Finally, we provide some conclud-
ing remarks and suggestions for future work in Section 5.

2. LDA, LPP, NPE, MFA, LDE and Their Ten-
sor Extensions

Suppose we have m n1×n2 face images. Let {xi}m
i=1 ⊂

R
n (n = n1 × n2) denote their vector representations and

X = [x1, · · · , xm]. In the past decades, many dimension-
ality reduction algorithms have been proposed to find a low
dimensional representation of xi. Despite the different mo-
tivations of these algorithms, they can be nicely interpreted
in a general graph embedding framework [3, 16, 26].

Given a graph G with m vertices, each vertex represents
a data point. Let W be a symmetric m × m matrix with
Wij having the weight of the edge joining vertices i and j.
The G and W can be defined to characterize certain statis-
tical or geometric properties of the data set. The purpose
of graph embedding is to represent each vertex of the graph
as a low dimensional vector that preserves similarities be-
tween the vertex pairs, where similarity is measured by the
edge weight.

Let y = [y1, y2, · · · , ym]T be the map from the graph to
the real line. The optimal y is given by minimizing∑

i,j

(yi − yj)2Wij

under appropriate constraint. This objective function incurs
a heavy penalty if neighboring vertices i and j are mapped
far apart. Therefore, minimizing it is an attempt to ensure
that if vertices i and j are “close” then yi and yj are close
as well [10]. With some simple algebraic formulations, we
have ∑

i,j

(yi − yj)2Wij = 2yT Ly,

where L = D − W is the graph Laplacian [8] and D is
a diagonal matrix whose entries are column (or row, since
W is symmetric) sums of W , Dii =

∑
j Wji. Finally, the

minimization problem reduces to find

y∗ = arg min
yT Dy=1

yT Ly = arg min
yT Ly
yT Dy

.

The constraint yT Dy = 1 removes an arbitrary scaling fac-
tor in the embedding. Notice that L = D − W , it is easy to
see that the above optimization problem has the following
equivalent variation:

y∗ = arg max
yT Dy=1

yT Wy = arg max
yT Wy
yT Dy

. (1)

The optimal y’s can be obtained by solving the maximum
eigenvalue eigen-problem:

Wy = λDy. (2)

Many recently proposed manifold learning algorithms, like
ISOAMP [23], Laplacian Eigenmap [2], Locally Linear
Embedding [22], can be interpreted in this framework
with different choice of W . The two matrices W and
D play the essential role in this graph embedding ap-
proach. The choices of these two graph matrices can be
very flexible. In later discussion, we use GE(W,D) to de-
note the graph embedding with maximization problem of
max(yT Wy)/(yT Dy).

The graph embedding approach described above only
provides the mappings for the graph vertices in the train-
ing set. For classification purpose (e.g., face recognition),



a mapping for all samples, including new test samples, is
required. If we choose a linear function, i.e., yi = f(xi) =
aT xi, we have y = XT a. Eq. (1) can be rewritten as:

a∗ = arg max
yT Wy
yT Dy

= arg max
aT XWXT a
aT XDXT a

. (3)

The optimal a’s are the eigenvectors corresponding to the
maximum eigenvalue of eigen-problem:

XWXT a = λXDXT a. (4)

This approach is called Linear extension of Graph Embed-
ding (LGE). With different choices of W and D, the LGE
framework will lead to many popular linear dimensional-
ity reduction algorithms, e.g., LDA, LPP, NPE, MFA and
LDE. We will briefly list the choices of W and D for these
algorithms as follows.

LDA:
Suppose we have c classes and the t-th class have mt

samples, m1 + · · · + mc = m. Define

WLDA
ij =

⎧⎨
⎩

1/mt, if xi and xj both belong to
the t-th class;

0, otherwise.

With this WLDA, it is easy to check that DLDA = I . Please
see [16] for the detailed derivation. LDA is the linear exten-
sion of graph embedding problem GE(WLDA, I).

LPP:
Let Nk(xi) denote the set of k nearest neighbors of xi.

WLPP
ij =

{
e
− ‖xi−xj‖2

2σ2 , if xi ∈ Nk(xj) or xj ∈ Nk(xi)
0, otherwise.

For supervised case, one can also integrate the label infor-
mation into WLPP by searching the k nearest neighbors of
xi among the points sharing the same label with xi. Please
see [16] for the details. LPP is the linear extension of graph
embedding problem GE(WLPP , DLPP ).

NPE:
Let M be a m×m local reconstruction coefficient matrix

which is defined as follows:

For i-th row of M , Mij = 0 if xj /∈ Nk(xi). The other
Mij can be computed by minimizing the following objec-
tive function,

min ‖xi −
∑

j∈Nk(xi)

Mijxj‖2,
∑

j∈Nk(xi)

Mij = 1.

Define
WNPE = M + MT − MT M.

It is easy to check that DNPE = I . Please see [14, 26] the
for detailed derivation. NPE is the linear extension of graph
embedding problem GE(WNPE , I).

MFA and LDE:
Local Discriminant Embedding (LDE, [7]) and Marginal

Fisher Analysis (MFA, [26]) are essentially the same. Both
of them uses two graphs to model the geometric and dis-
criminant structure in the data.

Let N+
k (xi) denote the set of k nearest neighbors of xi

which share the same label with xi. And let N−
k (xi) denote

the set of k nearest neighbors of xi among the data points
whose labels are different to that of xi. Define

W MFA
ij =

{
1, if xi ∈ N+

k1
(xj) or xj ∈ N+

k1
(xi)

0, otherwise.
(5)

W−
ij =

{
1, if xi ∈ N−

k2
(xj) or xj ∈ N−

k2
(xi)

0, otherwise.
(6)

Let D− be the diagonal matrix whose entries are column
sums of W− and L− = D− −W−. The objective function
of MFA (LDE) is

a∗ = arg min
aT XLMFAXT a

aT XL−XT a
= arg max

aT XL−XT a

aT XLMFAXT a

It is clear that MFA (LDE) is the linear extension of graph
embedding problem GE(L−, LMFA).

2.1. Tensor Extensions

A face image represented in the plane is intrinsically a
matrix, or the second order tensor. The relationship between
nearby pixels of the image might be important for finding
a projection. Recently there have been a lot of interest in
extending the ordinary vector-based subspace learning ap-
proaches to tensor space [5, 7, 13, 26, 27].

The tensor-based approaches directly operate on the ma-
trix representation of image data and are believed can cap-
ture the spatial relationship between the pixels. To exam-
ine what kind of spatial relationship has been captured in
these tensor-based approaches, we need to examine the ba-
sis function.

Let {uk}n1
k=1 be an orthonormal basis of Rn1 and

{vl}n2
l=1 be an orthonormal basis of Rn2 . It can be shown

that {ui ⊗ vj} forms a basis of the tensor space Rn1 ⊗Rn2

[19]. Specifically, the projection of T ∈ Rn1 ⊗Rn2 on the
basis ui ⊗ vj can be computed as their inner product:

< T, ui ⊗ vj >=< T, uivT
j >= uT

i Tvj

The ordinary vector-based approaches are linear, i.e., yi =
aT xi where xi ∈ R

n is the vector representation of the i-th
image, a is the projection vector (basis vector) and yi is the
one-dimensional embedding on this basis. The n values in
basis function a are independently estimated. The tensor-
based approaches are multilinear, i.e., yi = uT Tiv, where



a1 a2 a3 a4 a5 a6 a7 a8 a9

(a) Basis vector aT (a ∈ R
9)

⇒
a1 a4 a7

a2

a3

a5 a8

a6 a9

(b) Matrix form of a

u1

u2

u3

⊗
v1

v2

v3

(c) Basis vector u, v ∈ R
3

⇒
u1v1 u1v2 u1v3

u2v1

u3v1

u2v2 u2v3

u3v2 u3v3

(d) u ⊗ v = uvT , Basis of
tensor space R3 ⊗R3

Figure 1. Take face images of size 3×3. The ordinary vector-based
subspace learning algorithms (e.g. PCA and LDA) first convert the
face images to 9-dimensional vectors and compute the basis vec-
tors (projection functions). The basis vector is also 9-dimensional,
as shown in (a). (b) The basis vector can be converted to the ma-
trix form and shown as an image, which was referred as Eigenface
(PCA) and Fisherface (LDA). The 9 numbers in the basis vector
are independent estimated and there is no spatial relation between
them. (c) The tensor-based subspace learning approaches directly
take 3×3 face images as input and compute a set of 3-dimensional
basis vectors u’s and v’s. (d) Each u and v form a basis u ⊗ v in
tensor space which can also be shown as an image. The 9 numbers
in the tensor basis only have 6 degrees of freedom and the values
in the same row (column) have a common divisor. However, there
is no guarantee of the spatial smoothness of the basis function.

Ti ∈ Rn1 ⊗ Rn2 is the matrix representation of the i-th
image and n = n1 × n2. The n values in a tensor basis
uvT only have n1 + n2 degrees of freedom. In fact, the
tensor-based approaches can be thought of as special cases
of vector-based approaches with the following constraint:

ai+n1(j−1) = uivj (7)

where ai, ui and vi are the i-th elements in a, u and v re-
spectively.

Figure (1) gives a intuitive example. It is easy to see that
there is a common divisor of the values belong to the same
row (or column) in a tensor basis, which exactly the spa-
tial relation captured by the tensor-based approaches. In-
tuitively, the spatial correlation of pixels in a face image
would suggest the spatial smoothness of the basis function,
i.e., the element values in basis function would be similar if
the elements are spatially near. However, the tensor-based
approaches have no guarantee on this and the basis function
could still be spatially rough.

A more natural measurement of spatial smoothness of
basis function could be the sum of the squared differences
between nearby elements. In the next section, we will show
how to achieve this by incorporating a 2-D discretized lapla-
cian smoothing term in ordinary vector-based approaches.

3. Spatially Smooth Subspace Learning

In this section, we describe how to apply Laplacian pe-
nalized functional to measure the smoothness of the basis
vectors of the face space, which plays the key role in our
Spatially Smooth Subspace Learning (SSSL) approach . We
begin with a general description of Laplacian smoothing.

3.1. Laplacian Smoothing

Let f be a function defined on a region of interest, Ω ⊂
R

d. The Laplacian operator L is defined as follows [18]:

Lf(t) =
d∑

j=1

∂2f

∂t2j
(8)

The Laplacian penalty functional, denoted by J , is defined
by:

J (f) =
∫

Ω

[Lf
]2

dt (9)

Intuitively, J (f) measures the smoothness of the function
f over the region Ω. In this paper, our primary interest is in
image. An image is intrinsically a two-dimensional signal.
Therefore, we take d to be 2 in the following.

3.2. Discretized Laplacian Smoothing

As we described previously, n1 × n2 face images can
be represented as vectors in R

n, n = n1 × n2. Let ai ∈
R

n be the basis vectors (projection functions) obtained by
LPP. Without loss of generality, ai can also be considered
as functions defined on a n1 × n2 lattice.

For a face image, the region of interest Ω is a two-
dimensional rectangle, which for notational convenience we
take to be [0, 1]2. A lattice is defined on Ω as follows. Let
h = (h1, h2) where h1 = 1/n1 and h2 = 1/n2. Ωh con-
sists of the set of two-dimensional vectors ti = (ti1 , ti2)
with tij

= (ij − 0.5) · hj for 1 ≤ ij ≤ nj and 1 ≤ j ≤ 2.
There are a total of n = n1 × n2 grid points in this lattice.
Let Dj be an nj × nj matrix that yields a discrete approx-
imation to ∂2/∂t2j . Thus if u = (u(t1), · · · , u(tnj

)) is an
nj-dimensional vector which is a discretized version of a
function u(t), then Dj has the property that:

[Dju]i ≈ ∂2u(ti)
∂t2

for i = 1, · · · , nj . There are many possible choices of Dj

[4]. In this work, we apply the modified Neuman discretiza-
tion [21]:

Dj =
1
h2

j

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0
1 −2 1

1 −2 1
· · ·

1 −2 1
1 −2 1

0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠



Give Dj , a discrete approximation for two-dimensional
Laplacian L is the n × n matrix:

Δ = D1 ⊗ I2 + I1 ⊗ D2 (10)

where Ij is nj × nj identity matrix for j = 1, 2. ⊗ is the
kronecker product [17].

For a n1 × n2 dimensional vector a, it is easy to check
that ‖Δ · a‖2 is proportional to the the sum of the squared
differences between nearby grid points of a with its matrix
form. It provides a measure of smoothness of a on the n1 ×
n2 lattice.

3.3. The Algorithm

Given a pre-defined graph structure with weight matrix
W , the SSSL approach is defined as the maximizer of

aT XWXT a
(1 − α)aT XDXT a + αJ (a)

, (11)

where J is the discretized Laplacian regularization func-
tional:

J (a) = ‖Δ · a‖2 = aT ΔT Δa. (12)

The parameter 0 ≤ α ≤ 1 controls the smoothness of the
estimator.

The vectors ai (i = 1, · · · , l) that maximize the objec-
tive function (11) are given by the maximum eigenvalue so-
lutions to the following generalized eigenvalue problem.

XWXT a = λ
(
(1 − α)XDXT + αΔT Δ

)
a. (13)

With the choices of different W as described in Section 2,
our approach gives the spatially smooth version of LDA,
LPP and NPE.

There is a slight difference for spatially smooth MFA
(LDE). Based on the objective function of MFA (LDE) in
Eq. (2), the objective function of spatially smooth MFA
(LDE) is:

arg max
aT XL−XT a

(1 − α)aT XLXT a + αJ (a)
, (14)

which leads to the maximum eigenvalue problem

XL−XT a = λ
(
(1 − α)XLXT + αΔT Δ

)
a. (15)

It would be important to note that the 2-D discretized
laplacian smoothing term presented here has been used
in Penalized Discriminant Analysis for handwritten digit
recognition [11].

3.4. Model Selection

The α ∈ [0, 1] is an essential parameter in SSSL model
which controls the smoothness of the estimator. When

Table 1. Compared algorithms

Objective Ordinary Tensor Smooth
function version extension version

PCA Eigenface [24] TensorPCA [5] –
LDA Fisherface [1] 2DLDA [27] S-LDA
LPP Laplacianface [16] TSA [13] S-LPP
NPE NPE [14] TNPE S-NPE

MFA (LDE) MFA [26] TMFA [26] S-MFA

α = 0, the SSSL model will reduce to the ordinary subspace
learning approach which totally ignores the spatial relation-
ship between pixels of an image. When α → ∞, the SSSL
model will choose a spatially smoothest basis vector a and
totally ignore the manifold structure of the face data. SSSL
with a suitable α is a trade-off between these two extreme
cases. Thus, a natural question would be how to choose the
parameter α, or how to select the model.

Model selection is an essential task in most of the learn-
ing algorithms [12]. Among various kinds of methods,
cross validation is probably the simplest and most widely
used one. In this paper, we also use cross validation for
model selection.

4. Experimental Results

In this section, we investigate the performance of our
proposed Spatially Smooth Subspace Learning approach for
face recognition. The face recognition task is handled as
a multi-class classification problem − we map each test
image to a low-dimensional subspace via the embedding
learned from training data, and then classify the test data
by the nearest neighbor criterion.

4.1. Datasets and Compared Algorithms

The Yale and AT&T face databases are used in our ex-
periments. The Yale face database1 contains 165 gray scale
images of 15 individuals, each individual has 11 images.
The images demonstrate variations in lighting condition, fa-
cial expression (normal, happy, sad, sleepy, surprised, and
wink).

The AT&T face database2 consists of a total of 400 face
images, of a total of 40 people (10 samples per person). The
images were captured at different times and have different
variations including expressions (open or closed eyes, smil-
ing or non-smiling) and facial details (glasses or no glasses).
The images were taken with a tolerance for some tilting and
rotation of the face up to 20 degrees.

All the face images are manually aligned and cropped.
The size of each cropped image is 32 × 32 pixels, with 256
gray levels per pixel. The features (pixel values) are then

1http://cvc.yale.edu/projects/yalefaces/yalefaces.html
2http://www.cl.cam.ac.uk/Research/DTG/attarchive/facesataglance.html



Table 2. Recognition accuracy on Yale (mean±std-dev%)

Method G2/P9 G3/P8 G4/P7 G5/P6

Eigenface 46.0±3.4 50.0±3.5 55.7±3.5 57.7±3.8
TensorPCA 49.4±3.5 54.0±3.0 57.8±3.3 59.8±3.9

Fisherface 45.7±4.2 62.3±4.5 73.0±5.4 76.9±3.2
2DLDA 43.4±6.2 56.3±4.7 63.5±5.6 66.1±4.8
S-LDA 57.6±4.1 72.3±4.4 77.8±3.0 81.7±3.2

Laplacianface 54.5±5.2 67.2±4.1 72.7±4.2 75.8±4.6
TSA 44.3±6.5 55.8±4.5 63.2±6.0 65.7±4.6

S-LPP 57.9±4.5 72.0±4.0 76.0±3.4 81.4±2.9

NPE 52.6±4.0 66.0±4.6 73.2±5.0 76.4±4.4
TNPE 43.4±6.2 56.8±3.9 61.8±3.5 63.0±3.4
S-NPE 57.5±4.7 71.9±3.9 77.0±3.4 80.9±3.5

MFA 45.7±4.2 62.3±4.5 73.0±5.4 76.9±3.2
TMFA 43.4±6.2 56.3±4.7 63.5±5.6 66.1±4.8
S-MFA 57.2±4.3 71.2±4.0 76.9±3.1 81.1±3.1

scaled to [0,1] (divided by 256). For the vector-based ap-
proaches, the image is represented as a 1024-dimensional
vector, while for the tensor-based approaches the image is
represented as a (32 × 32)-dimensional matrix, or the sec-
ond order tensor.

The image set is then partitioned into the gallery and
probe set with different numbers. For ease of representa-
tion, Gm/Pn means m images per person are randomly se-
lected for training and the remaining n images are for test-
ing.

Table 1 summarizes the 14 algorithms compared in our
experiments. These algorithms belong to five families, i.e.,
PCA family, LDA family, LPP family, NPE family and
MFA (LDE) family. For each family, we take the ordinary
vector-based approaches and their tensor extensions (or 2D
extensions). Finally, we implement their spatially smooth
versions by using 2-D Laplacian smoothing regularization
technique.

4.2. Face recognition results

The recognition accuracy of different algorithms on Yale
and AT&T databases are reported on the Table (2) and (3)
respectively. For each Gp/Pq, we average the results over
20 random splits and report the mean as well as the stan-
dard deviation. The cross validation in the training set was
used to select the parameter α in those SSSL approaches
(S-LDA, S-LPP, S-NPE and S-MFA).

A crucial problems for most of the subspace learning
based face recognition methods is dimensionality estima-
tion. The performance usually varies with the number of
dimensions. We show the best results obtained by those or-
dinary subspace learning algorithms and their tensor exten-
sions. Since the cross validation is needed to estimate the
parameter α for those SSSL approaches, we simply set the
dimensionality as c− 1 for those SSSL approaches where c

Table 3. Recognition accuracy on AT&T (mean±std-dev%)

Method G2/P8 G3/P7 G4/P6 G5/P5

Eigenface 70.7±2.7 78.9±2.3 84.2±2.1 87.9±2.5
TensorPCA 71.3±2.6 79.9±2.2 84.8±1.9 88.1±2.5

Fisherface 75.5±3.3 86.1±1.9 91.6±1.9 94.3±1.4
2DLDA 80.4±3.0 89.8±2.1 93.5±1.7 95.8±1.2
S-LDA 85.2±2.2 92.3±1.7 95.8±1.3 97.2±1.3

Laplacianface 77.6±2.5 86.0±2.0 90.3±1.7 93.0±1.9
TSA 80.4±3.2 89.8±2.1 93.4±1.6 95.7±1.3

S-LPP 85.2±2.2 92.3±1.7 95.8±1.3 97.2±1.3

NPE 77.6±2.7 85.7±1.8 90.5±1.8 93.4±1.8
TNPE 80.4±3.0 87.6±2.2 91.5±1.7 93.7±2.3
S-NPE 84.8±2.3 92.3±1.7 95.4±1.2 96.9±0.9

MFA 75.4±3.1 86.1±1.9 91.6±1.9 94.3±1.4
TMFA 80.4±3.0 89.8±2.1 93.7±1.7 95.8±1.2
S-MFA 84.9±2.3 92.4±1.3 95.8±1.5 97.4±1.2

is the number of individuals.
The main observations from the performance compar-

isons include:

• SSSL approach significantly outperforms the corre-
sponding ordinary subspace learning algorithm and
the tensor extension with different numbers of train-
ing samples per individual in both the two databases.
The reason lies SSSL explicitly takes into account the
spatial relationship between the pixels in an image.
The use of spatial information significantly reduces the
number of degrees of freedom. Therefore, SSSL can
have good performance even when there is only a small
number of training samples available.

• The tensor-based algorithms show their advantages on
AT&T database while failed gain improvement on Yale
database. This suggests that the spatial relationship of
face images considered in tensor-based approach (rela-
tion between the pixels in the same row or column) has
its limitation. Compare to the tensor approaches, our
SSSL approach is a more natural extension of incor-
porating spatial information in vector-based algorithm,
which is supported by the experimental results.

4.3. Model selection for SSSL

The α ≥ 0 is an essential parameter in our SSSL ap-
proaches which controls the smoothness of the estimator.
We use cross validation on the training set to select this pa-
rameter in the previous experiments. In this subsection, we
take S-LDA as an example to study the impact of parameter
α on the recognition performance.

Figure (2) shows the performance of S-LDA as a func-
tion of the parameter α on AT&T database. Each figure has
three lines. The curve shows the accuracy of S-LDA with
respect to α. The solid line shows the accuracy of 2DLDA
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Figure 2. Model selection for S-LDA on AT&T database.

and the dashed line shows the performance of Fisherface.
It is easy to see that S-LDA can achieve significantly better
performance than both 2DLDA and Fisherface over a large
range of α. Thus, the model selection is not a very crucial
problem in S-LDA algorithm.

5. Conclusions

In this paper, we propose a new family of linear dimen-
sionality reduction methods called Spatially Smooth Sub-
space Learning (SSSL). SSSL explicitly considers the spa-
tial relationship between the pixels in images. By introduc-
ing a Laplacian penalized functional, the projection vectors
obtained by SSSL can be smoother than those obtained by
the ordinary subspace learning algorithm. This prior in-
formation significantly reduces the number of degrees of
freedom, and hence SSSL can perform better than the cor-
responding ordinary subspace learning version. We devel-
oped S-LDA, S-LPP, S-NPE and S-MFA based on the SSSL
model and applied to face recognition on Yale and AT&T
databases. Experimental results show that our method con-
sistently outperforms the ordinary subspace learning algo-
rithms and their tensor extensions.
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