
Regularized Locality Preserving Indexing via Spectral
Regression∗

Deng Cai†, Xiaofei He‡, Wei Vivian Zhang‡, Jiawei Han†

†University of Illinois at Urbana-Champaign
‡Yahoo!

{dengcai2, hanj}@cs.uiuc.edu, {hex, zhangv}@yahoo-inc.com

ABSTRACT
We consider the problem of document indexing and representa-
tion. Recently, Locality Preserving Indexing (LPI) was proposed
for learning a compact document subspace. Different from Latent
Semantic Indexing (LSI) which is optimal in the sense of global
Euclidean structure, LPI is optimal in the sense of local manifold
structure. However, LPI is not efficient in time and memory which
makes it difficult to be applied to very large data set. Specifi-
cally, the computation of LPI involves eigen-decompositions of two
dense matrices which is expensive. In this paper, we propose a new
algorithm calledRegularized Locality Preserving Indexing(RLPI).
Benefit from recent progresses on spectral graph analysis, we cast
the original LPI algorithm into a regression framework which en-
able us to avoid eigen-decomposition of dense matrices. Also, with
the regression based framework, different kinds of regularizers can
be naturally incorporated into our algorithm which makes it more
flexible. Extensive experimental results show that RLPI obtains
similar or better results comparing to LPI and it is significantly
faster, which makes it an efficient and effective data preprocessing
method for large scale text clustering, classification and retrieval.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Indexing methods; I.5.2 [Pattern Recognition]: De-
sign Methodology —Feature evaluation and selection

General Terms
Algorithms, Performance, Theory

Keywords
Regularized Locality Preserving Indexing, Document Representa-
tion and Indexing, Dimensionality Reduction

∗The work was supported in part by the U.S. National Science
Foundation NSF IIS-05-13678, NSF BDI-05-15813 and MIAS (a
DHS Institute of Discrete Science Center for Multimodal Informa-
tion Access and Synthesis). Any opinions, findings, and conclu-
sions or recommendations expressed here are those of the authors
and do not necessarily reflect the views of the funding agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

1. INTRODUCTION
Document representation and indexing have been a key problem

for document analysis and processing, such as clustering, classifi-
cation and retrieval [8],[12],[23]. If we denote bydocument space
the set of all the documents, different indexing algorithms see dif-
ferent structures of the document space. The Vector Space Model
(VSM) might be one of the most popular model for document rep-
resentation. Each document is represented as abag of words. Cor-
respondingly, the document space is associated with a Euclidean
structure and the inner product (or, cosine similarity) is used as the
standard similarity measure for documents. Unfortunately, VSM
suffers from some problems such assynonymyandpolysemy.

To deal with these problems, Latent Semantic Indexing (LSI)
was proposed [8]. Given a term-document matrixX, LSI applies
Singular Value Decomposition (SVD) to project the document vec-
tors into a subspace so that cosine similarity can accurately repre-
sent semantic similarity. LSI aims to find the best subspace approx-
imation to the original document space in the sense of minimizing
the global reconstruction error. The basis functions obtained by
LSI are the eigenvectors of the matrixXXT . It would be impor-
tant to note that LSI is different from Principal Component Analy-
sis (PCA) in thatXXT is generally not the data covariance matrix.
In fact, this occurs only when the documents has a zero mean. LSI
received a lot of attentions during these years and many variants of
LSI have been proposed [1], [13].

LSI is optimal in the sense of preserving the global geometric
structure of the document space (inner product). However, it might
not be optimal in the sense of discrimination. Specifically, LSI
might not be optimal in separating documents with different top-
ics. Recently, Locality Preserving Indexing (LPI) is proposed to
discover the discriminant structure of the document space. It has
shown that it can have more discriminative power than LSI. A rea-
sonable assumption behind LPI is that, close inputs should have
similar topics. The detailed discriminant analysis of LPI can be
found in [12], [3]. Previous experiments on document clustering
have demonstrated the effectiveness of LPI [4]. However, the com-
putational complexity of LPI is very expensive because it involves
eigen-decompositions of two dense matrices. It is almost infeasible
to apply LPI on very large data set.

In this paper, we propose a new algorithm calledRegularized
Locality Preserving Indexing (RLPI). RLPI is fundamentally based
on LPI. It shares the same locality preserving character as LPI, but
can be efficiently computed. Specifically, RLPI decomposes the
LPI problem as a graph embedding problem plus a regularized least
squares problem. Such modification avoids eigen-decomposition
of dense matrices and can significantly reduce both time and mem-
ory cost in computation. Moreover, with a specifically designed
graph in supervised situation, the graph embedding problem in RLPI

becomes trivial and RLPI only needs to solve the regularized least
squares problem which is a further saving of time and memory.
Such properties make RLPI an efficient data processing method for
large scale text clustering, classification, retrieval,etc.

The rest of the paper is organized as follows: in Section 2, we
give a brief review of LSI and LPI. Section 3 introduces our algo-
rithm and give a theoretical analysis of the algorithm. Extensive
experimental results on document clustering and categorization are
presented in Section 4. Finally, we provide some concluding re-
marks and suggestions for future work in Section 5.

2. A BRIEF REVIEW OF LSI AND LPI
In this Section, we provide a brief review of Latent Semantic

Indexing (LSI) [8] and Locality Preserving Indexing (LPI) [12],
followed by a computational complexity analysis of these two al-
gorithms.

2.1 Latent Semantic Indexing
LSI is one of the most popular algorithms for document indexing

[8]. It is fundamentally based on Singular Value Decomposition
(SVD) and try to extract the most representative features (minimize
the reconstruction error). Given a set of documents{xi}

m
i=1 ⊂

R
n, which can be represented as a term-document matrixX =

[x1, x2, · · · , xm]. Suppose the rank ofX is r, LSI decompose the
X by using SVD as follows:

X = UΣV
T
, (1)

whereΣ = diag(σ1, · · · , σr) andσ1 ≥ σ2 ≥ · · · ≥ σr are the
singular values ofX, U = [u1, · · · , ur] andui’s are called left sin-
gular vectors,V = [v1, · · · , vr] andvi’s are called right singular
vectors. We haveUT U = V T V = I. LSI uses the firstd vectors in
U as the transformation matrix to embed the original document into
ad-dimensional subspace. It can be easily checked that the column
vectors ofU are the eigenvectors ofXXT . It would be important
to note thatXXT becomes the data covariance matrix if the data
points have a zero mean, i.e.Xe = 0 wheree = [1, · · · , 1]T . In
such a case, LSI is identical to Principal Component Analysis [9].
More details on theoretical interpretations of LSI using SVD can
refer to [2], [19].

2.2 Locality Preserving Indexing
Different from LSI which aims to extract the most representa-

tive features, LPI aims to extract the most discriminative features.
Given a similarity matrixW , LPI can be obtained by solving the
following minimization problem:

a∗ = arg min
aT XDXT a=1

m∑

i=1

m∑

j=1

(
aT xi − aT xj

)2

Wij

= arg min
aT XDXT a=1

aT
XLX

T a
(2)

whereD is a diagonal matrix whose entries are column sums ofW

(Dii =
∑

j
Wji) andL = D−W is thegraph Laplacian[7]. LPI

constructs the similarity matrixW as:

Wij =

{
xT
i xj

‖xi‖‖xj‖
, if xi ∈ Np(xj) or xj ∈ Np(xi)

0, otherwise.
(3)

whereNp(xi) is the set ofp nearest neighbors ofxi. Thus, the ob-
jective function in LPI incurs a heavy penalty if neighboring points
xi andxj are mapped far apart. Therefore, minimizing it is an at-
tempt to ensure that ifxi andxj are “close” thenyi (= aT xi) andyj

(= aT xj) are close as well [12]. Finally, the basis functions of LPI

are the eigenvectors associated with the smallest eigenvalues of the
following generalized eigen-problem:

XLX
T a = λXDX

T a.

Since we haveL = D − W , it is easy to check that theminimiza-
tion problem in Eqn. (2) is equivalent to the followingmaximiza-
tion problem:

a∗ = arg max
aT XDXT a=1

aT
XWX

T a (4)

and the optimala’s are also themaximum eigenvectors of eigen-
problem:

XWX
T a = λXDX

T a, (5)

which in some cases can provide a more numerically stable solution
[10]. In the following of our paper, we will discuss LPI based on
this formulation.

To get a stable solution of the above eigen-problem, the matrix
XDXT is required to be non-singular [10]. However, in many
text analysis tasks, the number of features (terms) is usually larger
than the number of documents which indicates the singularity of
XDXT . In such a case, SVD can be used to solve this problem
[4].

Suppose we have the SVD decomposition ofX shown in Eqn.
(1). LetX̃ = UT X = ΣV T andb = UT a, we have

aT
XDX

T a = aT
UΣV

T
DV ΣU

T a = bT
X̃DX̃

T b

and

aT
XLX

T a = aT
UΣV

T
LV ΣU

T a = bT
X̃LX̃

T b.

Now, the objective function of LPI in (4) can be rewritten as:

b∗ = arg max
bT X̃DX̃T b=1

bT
X̃WX̃

T b.

and the optimalb’s are the maximum eigenvectors of eigen-problem:

X̃WX̃
T b = λX̃DX̃

T b. (6)

It is easy to check that̃XDX̃T is nonsingular and the above eigen-
problem can be stably solved. After we getb∗, thea∗ can be ob-
tained by solving a set of linear equations systemsUT a = b∗. By
noticing that givenU , b∗, there will be infinitely many solutions of
a which satisfy this equations system1. Among all these solutions,

a∗ = Ub∗ (7)

is obviously one of them. This approach has been used in ordinary
LPI algorithm [12], [4] to solve the singularity problem.

2.3 Computational Complexity Analysis
Now let us analyze the computational complexity of LSI and

LPI. We consider the case that the number of features (n) is larger
than the number of documents (m), which is usually the case for
text processing tasks. The termflam [21], a compound operation
consisting of one addition and one multiplication, is used to present
operation counts.

Since the term-document matrixX is usually sparse, we can use
the Lanczos algorithm to efficiently compute the firstd singular
vectors ofX. Let s denote the average number of non-zero fea-
tures per document, the Lanczos algorithm requires2q1dm(s + 8)
flam, whereq1 is the number of iterations in Lanczos [22]. Thus,
1Unlessn < m and rank(X) = n. In this case,U will be
an orthogonal matrix and there is an unique solution of equation
UT a = b∗ which is exactlyUb∗.

computing the firstd projective functions in LSI has linear-time
complexity with respect tom.

The major computations in LPI include three steps:

1. p-nearest neighbor graph construction as in Eqn. (3). This
step requires around1

2
m2s+2ms+m2 log m flam. 1

2
m2s+

2ms is used to calculate the pairwise cosine similarity and
m2 log m is used forp-nearest neighbor finding for all them
documents. We also needmp memory to store thep-nearest
neighbor graph matrix.

2. A complete SVD decomposition of term document matrix as
in Eqn. (1), which requires3

2
m2s + 9

2
m3 flam [22]. Al-

though the term-document matrix is usually sparse, both the
left and right singular vector matrices are dense which re-
quiresmn + m2 memory.

3. Computing the matrix̃XWX̃T (, X̃DX̃T) and computing
the fistd eigenvectors of the generalized eigen-problem in
Eqn. (6). IfX is of full rank,X̃ will be am×m dense matrix
and computingX̃WX̃T (, X̃DX̃T) requires at least2m3

flam. We can also use the Lanczos algorithm to compute the
first d eigenvectors withq1dm2 + 1

6
m3 flam [22]. This step

at least requires additionalnd memory to store the projective
functions.

Thus, the overall time complexity of LPI measured by flam is at
least

2m
2
s + m

2 log m + q1dm
2 +

20

3
m

3

which is cubic-time complexity with respect tom. Besides storing
the term-document matrix, the additional memory requirement of
LPI is

mp + m
2 + mn + nd

Such a high computational cost (both on time and memory) makes
it infeasible to apply LPI on document sets with large size.

3. REGULARIZED LOCALITY
PRESERVING INDEXING

Although LPI can learn a compact document representation which
is beneficial for many text analysis tasks such as clustering [4] and
categorization, the high computational cost restricts it to be applied
to large scale data sets. In this section, we describe our approach
which can overcome this difficulty.

3.1 The Algorithm
In order to solve the eigen-problem in Eqn. (5) efficiently, we

use the following theorem:

THEOREM 1. Let y be the eigenvector of eigen-problem

W y = λDy (8)

with eigenvalueλ. If XT a = y, thena is the eigenvector of eigen-
problem in Eqn. (5) with the same eigenvalueλ.

PROOF. We haveWy = λDy. At the left side of Eqn. (5),
replaceXT a by y, we have

XWX
T a = XWy = XλDy = λXDy = λXDX

T a

Thus,a is the eigenvector of eigen-problem Eqn. (5) with the same
eigenvalueλ.

Theorem 1 shows that instead of solving the eigen-problem in Eqn.
(5), the LPI basis functions can be acquired through two steps:

1. Solve the eigen-problem in Eqn. (8) to gety.

2. Find a which satisfiesXT a = y. In reality, sucha might
not exist. A possible way is to finda which can best fit the
equation in the least squares sense:

a = arg min
a

m∑

i=1

(aT xi − yi)
2 (9)

whereyi is thei-th element ofy.

The advantages of this two-step approach are as follows:

1. The matrixD is guaranteed to be positive definite and there-
for the eigen-problem in Eqn. (8) can be stably solved. More-
over, bothW andD are sparse matrices. The topd eigen-
vectors of eigen-problem in Eqn. (8) can be efficiently cal-
culated.

2. There exist many efficient iterative algorithms (e.g., LSQR
[18]) that can handle very large scale least squares problems.

In text processing tasks, the number of documents is often smaller
than the number of features (words). Thus, the minimization prob-
lem (9) is ill posed. We may have infinite many solutions for the
linear equations systemXT a = y (the system is underdetermined).
The most popular way to solve this problem is to impose a penalty
on the norm ofa:

a = arg min
a

(
m∑

i=1

(
aT xi − yi

)2
+ α‖a‖2

)
(10)

This is so called regularization and is well studied in statistics [11].
Theα ≥ 0 is a parameter to control the amounts of shrinkage. Now
we can see the third advantage of the two-step approach:

3. Since the regression is used as a building block, the regu-
larization techniques can be easily incorporated and produce
more stable and meaningful solutions, especially when there
exist a large number of features [11].

The above two-step approach essentially performs regression af-
ter the spectral analysis of the graph. Therefor, it can be named as
Spectral Regression(SR) [5]. And we named our new algorithm
asRegularized Locality Preserving Indexing(RLPI). Given a set of
documents{xi}

m
i=1 ⊂ R

n, the algorithmic procedure of RLPI is
stated below:

1. Adjacency graph construction: Let G denote a graph with
m vertices, each vertex represents a document. LetW be a
symmetricm×m matrix withWij having the weight of the
edge joining verticesi andj.

Wij =

{
xT
i xj

‖xi‖‖xj‖
, if xi ∈ Np(xj) or xj ∈ Np(xi)

0, otherwise.
(11)

whereNp(xi) is the set ofp nearest neighbors ofxi.

2. Eigen decomposition: Solve the eigen-problem

Wy = λDy, (12)

whereD is a diagonal matrix whose entries are column (or
row, sinceW is symmetric) sums ofW , Dii =

∑
j
Wji.

Let {y0, y1, · · · , yd} be thed + 1 eigenvectors with respect
to thed + 1 maximum eigenvaluesλ0 ≥ λ1 ≥ · · · ≥ λd. It
is easy to check thatλ0 = 1 andy0 is a vector of all 1 [7].

3. Regularized least squares: Find d vectorsa1, · · · , ad ∈
R

n, whereaj (j = 1, · · · , c − 1) is the solution of regular-
ized least squares problem:

aj = arg min
a

(
m∑

i=1

(aT xi − y
j
i)

2 + α‖a‖2

)
(13)

wherey
j
i is thei-th element ofyj .

4. RLPI Embedding: Let A = [a1, · · · , ad], the embedding is
as follows:

x → z = A
T x

wherez is ad-dimensional representation of the documentx
andA is the transformation matrix.

3.2 Theoretical Analysis
The regularized least squares in Eqn. (10) can be rewritten in the

matrix form as:

a = arg min
a

(
(XT a − y)T (XT a − y) + αaT a

)
. (14)

Requiring the derivative of right side with respect toa vanish, we
get

(XX
T + αI)a = Xy

⇒ a = (XX
T + αI)−1

Xy
(15)

Whenα > 0, this regularized solution will not satisfy the linear
equations systemXT a = y anda will not be the eigenvector of
eigen-problem in Eqn. (5). It is interesting and important to see
when (15) gives the exact solutions of eigen-problem (5). Specifi-
cally, we have the following theorem:

THEOREM 2. Supposey is the eigenvector of eigen-problem in
Eqn. (5), if y is in the space spanned by row vectors ofX, the
corresponding projective functiona calculated in Eqn. (15) will be
the eigenvector of eigen-problem in Eqn. (5) asα deceases to zero.

PROOF. See Appendix A.

In text processing tasks, the number of documents is often smaller
than the number of features (words) and the document vectors are
usually linearly independent,i.e., rank(X) = m. In this case, we
will have a stronger conclusion which is shown in the following
Corollary.

COROLLARY 3. If the document vectors are linearly indepen-
dent, i.e., rank(X) = m, all the projective functions calculated
by Eqn. (15) are the eigenvectors of eigen-problem in Eqn. (5) as
α deceases to zero. Thus, the solutions of RLPI are identical to the
solutions of LPI.

PROOF. See Appendix B.

3.3 RLPI in Supervised Situation
In supervised learning tasks,e.g., text categorization, the label

information can be used to build the graphW . In this subsection,
we will examine how to build the graphW with label information
to further reduce the computational cost of RLPI.

Suppose them documents{xi}
m
i=1 belong toc classes. Letmj

be the number of documents in thej-th class,
∑c

j=1 mj = m.
With label information available, a natural way to defineW can
be:

Wij =

{
1, if xi andxj share the same label;
0, otherwise.

(16)

To simplify our exposition, we assume that the documents{xi}
m
i=1

are ordered according to their labels. It is easy to check that the
matrixW defined in Eqn. (16) has a block-diagonal structure

W =

W (1) 0 · · · 0

0 W (2) · · · 0
...

...
. . .

...
0 0 · · · W (c)

 (17)

whereW (j) is amj × mj matrix with all the elements equal to1.
We also have theD as the diagonal matrix. Thus, the eigenvalues
and eigenvectors ofWy = λDy are the union of the eigenvalues
and eigenvectors of its blocks (the latter padded appropriately with
zeros) [10]:

W
(j)y(j) = λD

(j)y(j)
.

It is straightforward to show that the above eigen-problem has the
eigenvectore(j) ∈ R

mj associated with the eigenvalue 1, where
e(j) = [1, 1, · · · , 1]T [7]. Also Rank(W (j)) = 1, there is only
one non-zero eigenvalue ofW (j). Thus there are exactlyc eigen-
vectors of eigen-problemWy = λDy. They are

yj = [0, · · · , 0︸ ︷︷ ︸
∑j−1

i=1
mi

, 1, · · · , 1︸ ︷︷ ︸
mj

, 0, · · · , 0︸ ︷︷ ︸
∑

c
i=j+1

mi

]T . (18)

These eigenvectors correspond to the same eigenvalue 1. Since 1
is a repeated eigenvalue, we could just pick any otherc orthogonal
vectors in the space spanned by{yj} in Eqn. (18), and define them
to be ourc eigenvectors [10]. The vector of all ones is naturally in
the spanned space. This vector is useless since the corresponding
projective function will embed all the documents to the same point.
In reality, we can pick the vector of all ones as our first eigenvector
and use Gram-Schmidt process to get the remainingc − 1 orthog-
onal eigenvectors. The vector of all ones can then be removed.

The above analysis shows that with theW defined as in Eqn.
(16) in supervised case, the first two steps of RLPI become trivial.
We can directly get they’s which is a significant saving of both
time and memory for RLPI computation. It makes RLPI applicable
for very large scale supervised learning tasks.

It is important to note that the values of thei-th andj-th entries of
any vectory in the space spanned by{yt} in Eqn. (18) are the same
as long asxi andxj belong to the same class. Thus thei-th andj-th
rows ofY are the same, whereY = [y1, · · · , yc−1]. Corollary (3)
shows that when the sample vectors are linearly independent, the
c−1 projective functions of LPI are exactly the solutions of thec−1
linear equations systemsXT aj = yj . Let A = [a1, · · · , ac−1] be
the transformation matrix which embeds the data points into the
LPI subspace as:

A
T
X = Y

T
.

The columns of matrixY T are the embedding results of samples
in the LPP subspace. Thus, the documents with the same label
are corresponding to the same point in the LPI subspace when the
document vectors are linearly independent. This property will be
very useful for designing efficient classifiers: We simply need to
compare the distances of a test point to the centroids of each class
in the subspace.

3.4 Computational Complexity Analysis
Now let us analyze the computational cost of RLPI. Lets denote

the average number of non-zero features per document and we need
calculated projective functions in RLPI. The RLPI computation
involves three steps:

Table 1: Computational cost of LPI and RLPI
operation counts (flam[21]) memory (besides the term-document matrix)

Unsupervised
LPI m2(2s + log m + t1d) + 20

3
m3 m(p + m + n) + nd

RLPI m2(1
2
s + log m) + md(pt1 + 8t1 + 2t2s) + 5ndt2 m(p + d + 1) + n(d + 2)

Supervised
LPI m2(3

2
s + t1c) + 20

3
m3 m(m + n) + nc

RLPI mc(2t2s + c) + 5nct2 m(c + 1) + n(c + 2)

m: the number of documents. p: the number of nearest neighbors.
n: the number of features. We consider the case thatn > m. c: the number of classes.
s: the average number of non-zero features per document. t1: the number of iterations in Lanczos.
d: the number of projective functions. t2: the number of iterations in LSQR.

1. p-nearest neighbor graph construction in Eqn. (11) which re-
quires around1

2
m2s+2ms+m2 log m flam andmp mem-

ory.

2. Computing the fistd eigenvectors of the generalized eigen-
problem in Eqn. (12). TheW is sparse and has aroundmp

non-zero entries. The firstd eigenvectors can be calculated
by the Lanczos algorithm withindq1m(p+8) flam, whereq1

is the number of iterations in Lanczos [22]. This step needs
dm memory to stored eigenvectors.

3. Solvingd regularized least squares problems in Eqn. (13).
The iterative algorithm LSQR [18] can be used to efficiently
solve these regularized least squares problems. In each iter-
ation, LSQR needs to compute two matrix-vector products
in the form ofXp andXT q. The remaining work load of
LSQR in each iteration is3m + 5n flam [17]. Thus, the
time cost of LSQR in each iteration is2ms + 3m + 5n. If
LSQR stops aftert iterations2, the time cost ist(2ms+3m+
5n). Finally, the total time cost ford projective functions is
dt(2ms + 3m + 5n). Besides term-document matrixX,
LSQR needsm + 2n additional memory [17]. Finally, the
additional memory cost in this step ism+2n+ dn, with dn

to store the projective functions.

In supervised case, the first two steps are not necessary. We can
directly get the responses through a Gram-Schmidt process onyj

in Eqn. (18) which requires(mc2 − 1
3
c3) flam [21].

We summarize our complexity analysis of RLPI in Table 1, to-
gether with LPI. The main conclusions include:

• LPI has cubic-time complexity with respect tom. While
RLPI has quadratic-time complexity in unsupervised case
and linear-time complexity in supervised case.

• The term-document matrix is usually sparse. However, LPI
need thecomplete SVD decomposition, which can not get
any benefit from the sparseness of the term-document ma-
trix. Moreover, the left and right singular matrices are both
dense which requirem(m+n) memory space to hold. They
can not be fit into the memory whenm is large. On the other
hand, RLPI can fully explore the sparseness of the term-
document matrix and gain significant computational saving
on both time and memory. RLPI can successfully applied
as long as the term-document matrixX can be fit into the
memory.

2LSRQ converges very fast [17]. In our experiments, 15 iterations
are enough.

• Even the term-document matrixX is too large to be fit into
the memory, RLPI can still be applied with some reasonable
disk I/O. This is because in each iteration of LSQR, we only
need to calculate two matrix-vector products in the form of
Xp andXT q, which can be easily implemented withX and
XT stored on the disk.

4. EXPERIMENTAL RESULTS
In this section, several experiments on TDT2 and 20Newsgroups

data sets were performed to show the effectiveness of our proposed
algorithm. All of our experiments have been performed on an Intel
Pentium D 3.20GHz Linux machine with 2GB memory. For the
purpose of reproducibility, we provide our algorithms and data sets
used in these experiments at:

http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html

4.1 Text Clustering on TDT2
Clustering is one of most crucial techniques to organize the doc-

uments in an unsupervised manner. The ordinary clustering algo-
rithms (e.g. K-means) can be performed in the original document
space or in the reduced document space (by using the dimension-
ality reduction algorithms,e.g., LSI, LPI). In this experiment, we
investigate the use of dimensionality reduction algorithms for text
clustering. The following six methods are compared in the experi-
ment:

• K-means on original term-document matrix, which is treated
as our baseline (denoted asBaseline)

• K-means after LSI (denoted asLSI)

• K-means after LPI (denoted asLPI)

• K-means after RLPI (denoted asRLPI)

• Clustering using Probabilistic Latent Semantic Indexing (de-
noted asPLSI). PLSI model is a probabilistic variant of LSI
which was proposed in [13]. It provides a probabilistic ap-
proach for the discovery of latent variables which is more
flexible and has a more solid statistical foundation than the
standard LSI. Assuming that there exist a set of hidden fac-
tors underlying the co-occurences among two sets of objects,
PLSI uses Expectation-Maximization (EM) algorithm to es-
timate the probability values which measure the relationships
between the hidden factors and the two sets of objects. For
clustering tasks, the clusters can be treated as the hidden fac-
tors.

• Nonnegative Matrix Factorization-based clustering (denoted
as NMF-NCW [23]). The weighted NMF-based cluster-

Table 2: Clustering performance on TDT2

c
Accuracy (mean±std-dev%)

Baseline LSI PLSI LPI RLPI NMF-NCW
2 97.7±7.3 93.4±14.2 91.7±13.0 99.8±0.3 99.9±0.2 99.2±4.7
3 88.4±18.0 86.1±20.0 82.8±18.3 99.6±0.4 99.6±0.4 95.7±11.0
4 85.7±18.9 79.2±21.2 75.4±19.3 99.3±0.8 99.4±0.8 92.4±11.9
5 82.4±17.8 76.8±22.3 72.5±18.0 98.7±1.8 98.8±1.8 92.2±10.5
6 79.0±17.5 72.0±19.4 68.2±16.8 98.6±1.5 98.8±1.3 88.0±12.6
7 74.5±16.5 65.9±18.1 64.0±14.1 97.8±2.4 98.2±2.1 83.1±14.6
8 70.1±17.9 61.3±18.0 61.1±15.2 96.8±4.2 97.3±4.2 79.7±13.1
9 72.3±15.6 64.5±18.0 62.2±11.5 95.5±6.0 97.5±2.4 84.8±13.1
10 69.2±17.0 63.4±18.0 61.1±13.2 94.0±6.3 96.0±4.5 81.5±10.1
30 58.5 54.2 59.6 −∗ 86.7 61.0

c
Mutual Information (mean±std-dev%)

Baseline LSI PLSI LPI RLPI NMF-NCW
2 91.3±23.1 82.4±34.4 72.5±36.7 97.6±3.4 97.9±2.8 96.6±12.9
3 81.5±27.1 77.4±30.3 67.1±29.3 96.6±3.0 97.0±2.9 90.7±18.3
4 82.0±22.8 73.9±25.9 64.8±24.6 96.1±4.5 96.4±4.5 87.7±17.3
5 79.0±19.9 71.9±24.1 64.6±21.4 94.6±5.3 95.1±5.2 86.6±13.3
6 78.1±17.0 70.2±19.6 64.1±18.0 94.7±3.9 95.3±3.8 84.2±11.9
7 74.5±16.5 65.7±17.8 60.7±15.7 93.3±4.5 94.1±4.4 79.9±13.7
8 71.5±16.9 61.9±17.3 59.7±16.1 92.1±4.7 93.1±3.4 76.2±13.4
9 75.1±13.7 67.2±16.4 63.4±12.3 91.7±6.9 93.4±4.6 81.8±12.3
10 73.1±15.0 66.1±16.1 63.4±13.6 89.6±7.5 91.4±5.5 78.3±11.1
30 70.5 65.1 67.1 −∗ 86.3 67.0
∗LPI can not be applied due to the memory limit

Figure 1: Performance comparisons on
clustering

2 3 4 5 6 7 8 9 10 30

40

50

60

70

80

90

100

Number of classes

A
cc

ur
ac

y
(%

)

Baseline
LSI
PLSI
LPI
RLPI
NMF−NCW

2 3 4 5 6 7 8 9 10 30

40

50

60

70

80

90

100

Number of classes

M
ut

ua
l I

nf
or

m
at

io
n

(%
)

Baseline
LSI
PLSI
LPI
RLPI
NMF−NCW

Table 3: Processing time on TDT2

c
Time on Dimension Reduction (s) Time on Clustering (s) Overall Time (s)
LSI PLSI LPI RLPI Baseline LSI LPI/RLPI NMF-NCW Baseline LSI PLSI LPI RLPI NMF-NCW

2 0.36 3.22 11.45 1.02 6.25 0.08 0.06 6.0 6.25 0.43 3.22 11.50 1.08 6.0
3 0.51 7.49 26.68 1.82 18.23 0.16 0.13 23.1 18.23 0.67 7.49 26.81 1.95 23.1
4 0.66 11.23 33.34 2.40 29.74 0.30 0.22 63.3 29.74 0.96 11.23 33.56 2.62 63.3
5 0.90 18.67 75.98 4.11 61.82 0.61 0.39 113.7 61.82 1.50 18.67 76.37 4.50 113.7
6 0.94 20.70 64.80 3.86 66.51 0.84 0.50 238.4 66.51 1.78 20.70 65.30 4.37 238.4
7 1.32 31.57 143.05 6.84 117.63 1.65 0.81 389.5 117.63 2.97 31.57 143.86 7.65 389.5
8 1.63 40.06 177.73 7.97 171.76 2.57 1.30 766.6 171.76 4.20 40.06 179.03 9.27 766.6
9 1.82 45.57 226.18 8.99 193.85 3.19 1.94 869.7 193.85 5.00 45.57 228.12 10.93 869.7
10 2.38 56.79 264.12 10.67 261.05 4.10 2.42 1348.3 261.05 6.48 56.79 266.53 13.09 1348.3
30 18.77 511.53 −

∗ 154.61 2720.21 113.35 70.10 15101 2720.21 132.12 511.53 −
∗ 224.71 15101.0

∗LPI can not be applied due to the memory limit

2 3 4 5 6 7 8 9 10 30
10

−1

10
0

10
1

10
2

10
3

Number of classes

T
im

e
on

 D
im

en
si

on
 R

ed
uc

tio
n(

s) LSI
PLSI
LPI
RLPI

2 3 4 5 6 7 8 9 10 30

10
−1

10
0

10
1

10
2

10
3

10
4

Number of classes

T
im

e
on

 C
lu

st
er

in
g(

s)

Baseline
LSI
LPI/RLPI
NMF−NCW

2 3 4 5 6 7 8 9 10 30

10
0

10
1

10
2

10
3

10
4

Number of classes

O
ve

ra
ll

T
im

e(
s)

Baseline
LSI
PLSI
LPI
RLPI
NMF−NCW

Figure 2: Processing time on TDT2

ing method is a recently proposed algorithm which has been
shown to be very effective in document clustering [23].

Note that, the two methods LPI and RLPI need to construct a graph
on the documents. In this experiment, we use the same graph for
these two methods and the parameterp (number of nearest neigh-
bors) was set to 7. The parameterα in RLPI was set to 0.1.

All these algorithms are tested on the TDT2 corpus. The TDT2
corpus3 consists of data collected during the first half of 1998 and
taken from 6 sources, including 2 newswires (APW, NYT), 2 radio
programs (VOA, PRI) and 2 television programs (CNN, ABC). It
consists of 11201 on-topic documents which are classified into 96
semantic categories. In this experiment, those documents appear-
ing in two or more categories were removed, and only the largest
30 categories were kept, thus leaving us with 9,394 documents in
total.

4.1.1 Evaluation Metric
The clustering result is evaluated by comparing the obtained la-

bel of each document with that provided by the document corpus.
Two metrics, the accuracy (AC) and the normalized mutual in-
formation metric (MI) are used to measure the clustering perfor-
mance [4], [23]. Given a documentxi, let ri andsi be the obtained
cluster label and the label provided by the corpus, respectively. The
AC is defined as follows:

AC =

∑n

i=1 δ(si, map(ri))

n

wheren is the total number of documents andδ(x, y) is the delta
function that equals one ifx = y and equals zero otherwise, and
map(ri) is the permutation mapping function that maps each clus-
ter labelri to the equivalent label from the data corpus. The best
mapping can be found by using the Kuhn-Munkres algorithm [16].

Let C denote the set of clusters obtained from the ground truth
and C′ obtained from our algorithm. Their mutual information
metricMI(C, C′) is defined as follows:

MI(C, C
′) =

∑

ci∈C,c′
j
∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

wherep(ci) andp(c′j) are the probabilities that a document arbi-
trarily selected from the corpus belongs to the clustersci andc′j ,
respectively, andp(ci, c

′
j) is the joint probability that the arbitrar-

ily selected document belongs to the clustersci as well asc′j at
the same time. In our experiments, we use the normalized mutual
informationMI as follows:

MI(C, C
′) =

MI(C, C′)

max(H(C), H(C′))

whereH(C) andH(C′) are the entropies ofC andC′, respec-
tively. It is easy to check thatMI(C, C′) ranges from 0 to 1.
MI = 1 if the two sets of clusters are identical, andMI = 0
if the two sets are independent.

4.1.2 Results
Besides clustering the whole data set into 30 clusters, the evalu-

ations were also conducted with different number of clusters, rang-
ing from 2 to 10. For each given cluster numberc, 50 tests were
conducted on different randomly chosen categories, and the aver-
age performance was computed over these 50 tests (except the 30
cluster case). For each test, K-means algorithm was applied 10

3Nist Topic Detection and Tracking corpus at
http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

times with different start points and the best result in terms of the
objective function of K-means was recorded. After LSI, LPI, or
RLPI, how to determine the dimensions of the subspace is still an
open problem. In this experiment, we keepc dimensions for all the
three algorithms as suggested by previous study [4].

Table 2 and Figure 1 show the average accuracy and average
mutual information of the six algorithms. LSI seems not promis-
ing in dimension reduction for clustering because the K-means on
the LSI subspace is even worse than K-means on the original doc-
ument space. One may iterate all the possible dimensions for bet-
ter performance of LSI as suggested in [4]. However, it may not
possible to do so in a real case. Clustering using PLSI is even
worse. NMF-NCW method achieves better performance than Base-
line which is consistent with previous study [23], [4]. Both LPI and
RLPI achieve significant improvements over other four algorithms.
The reason is that LPI and RLPI try to reveal the local geometric
structure of document space. More detailed analysis and experi-
ments of document clustering using LPI are provided in [4].

Table 3 and Figure 2 show the processing time of the six algo-
rithms. The processing time of LSI, LPI and RLPI include two
parts: dimensionality reduction time and time of K-means on the
reduced subspace. The processing time of Baseline and NMF-
NCW methods are simply the time of clustering approaches (K-
means and nonnegative matrix factorization). PLSI estimate the
probability of each document belongs to each cluster, which can
be directly used to infer the clustering result. Thus, the processing
time of PLSI is only the dimensionality reduction (model estima-
tion) time. After dimensionality reduction of LSI (LPI and RLPI),
K-means is performed in a very low dimensional subspace thus is
much more efficient then K-means in the original document space.
The results here further show the advantage of dimensionality re-
duction for clustering. Clustering based on LSI is the most efficient
approach. However, the low clustering accuracy makes LSI ap-
proach less attractable. Although the NMF-NCW method achieves
better performance than Baseline method, the high computational
cost (NMF-NCW spent more than 4 hours for clustering 9,394 doc-
uments into 30 classes!) makes it not applicable on large document
set. The same shortcoming exists for LPI approach. It can not be
applied with 9,394 documents due to the memory limit. Consider
both accuracy and efficiency, RLPI is obviously the best among the
six compared algorithms for document clustering.

4.2 Text Categorization on 20Newsgroups
Text categorization is an active research area in machine learn-

ing and information retrieval. Many statistical classification meth-
ods have been applied to this problem, including Naive Bayes,k

Nearest Neighbor (kNN) and Support Vector Machine (SVM) [14],
[24]. In this experiment, we investigate the use of dimensionality
reduction algorithms for text categorization. The following three
classifiers are used in the experiment:

• k Nearest Neighbor (kNN) [24]. kNN does not need to train
a model, but it has to spent significant time on testing phase.
The only parameter in kNN is the number of nearest neigh-
borsk.

• Support Vector Machine (SVM) [14]. We used the LibSVM
system [6] and tested it with the linear model, since previous
researches [24] show that linear SVM is effective enough for
text categorization. There is a parameterC to control the
trade-off between large margin and the training error. The
testing phase of linear SVM is very efficient. However, SVM
needs a lot of time to train the model.

Table 4: Categorization performance on 20Newsgroup
Nearest Centroid (NC)

Accuracy (mean±std-dev%) Time on Training & Testing (s)
Baseline LSI PLSI LPI RLPI Baseline LSI/PLSI/LPI/RLPI

5% 64.2±1.2 38.4±1.3 41.6±1.6 72.0±0.6 72.8±0.5 0.301 , 1.224 0 , 0.099
10% 67.4±0.6 40.5±1.0 47.4±1.2 77.3±0.7 78.8±0.4 0.579 , 1.108 0.001 , 0.095
20% 69.8±0.7 42.5±1.2 52.4±1.9 −∗ 84.3±0.2 1.218 , 0.923 0.004 , 0.085
30% 70.3±0.6 42.7±0.8 55.7±2.6 −∗ 86.7±0.2 1.896 , 0.749 0.005 , 0.072
40% 70.3±0.5 42.7±0.4 57.0±1.7 −∗ 88.0±0.2 2.599 , 0.590 0.006 , 0.061
50% 70.5±0.4 43.1±0.5 57.4±1.9 −∗ 89.0±0.2 3.329 , 0.464 0.007 , 0.048

60% (Orig Split) 64.6 40.1 56.1 −∗ 81.7 4.130 , 0.350 0.010 , 0.040

k Nearest Neighbor (kNN)
Accuracy (mean±std-dev%) Time on Training & Test (s)

Baseline LSI PLSI LPI RLPI Baseline LSI/PLSI/LPI/RLPI
5% 58.7±1.0 35.0±1.1 36.2±1.8 72.0±0.6 72.9±0.5 0 , 11.73 0 , 8.649
10% 64.7±0.7 39.4±1.0 46.4±1.7 77.3±0.7 78.9±0.4 0 , 23.04 0 , 17.25
20% 70.0±0.3 43.5±0.7 54.6±2.0 −∗ 84.4±0.2 0 , 43.98 0 , 33.34
30% 72.8±0.6 45.6±0.5 58.8±3.1 −∗ 86.7±0.2 0 , 61.93 0 , 47.74
40% 75.4±0.3 46.9±0.2 60.9±1.6 −∗ 88.2±0.2 0 , 76.58 0 , 59.59
50% 77.6±0.4 48.1±0.5 61.5±2.0 −∗ 89.3±0.2 0 , 85.38 0 , 67.73

60% (Orig Split) 67.2 44.9 59.6 −∗ 82.3 0 , 86.02 0 , 70.34
Support Vector Machine (SVM)

Accuracy (mean±std-dev%) Time on Training & Test (s)
Baseline LSI PLSI LPI RLPI Baseline LSI/PLSI LPI/RLPI

5% 69.1±0.7 44.8±1.0 42.9±1.3 72.0±0.6 72.8±0.5 2.100 , 2.265 0.183 , 0.159 0.036 , 0.159
10% 75.7±0.3 49.3±1.0 51.1±1.1 77.3±0.7 78.8±0.4 6.851 , 2.048 0.595 , 0.159 0.121 , 0.159
20% 81.5±0.4 53.1±0.7 57.4±1.8 −∗ 84.3±0.2 21.33 , 1.566 1.943 , 0.132 0.452 , 0.132
30% 84.0±0.2 54.5±0.6 61.0±2.5 −∗ 86.6±0.2 40.11 , 1.212 3.739 , 0.126 0.941 , 0.126
40% 85.8±0.3 55.1±0.4 62.9±1.7 −∗ 88.0±0.2 62.01 , 0.933 6.119 , 0.099 1.561 , 0.099
50% 86.9±0.2 55.9±0.5 62.7±1.8 −∗ 89.0±0.2 86.71 , 0.675 9.064 , 0.078 2.295 , 0.078

60% (Orig Split) 79.6 53.3 60.1 −∗ 81.6 109.7 , 0.420 12.11 , 0.056 3.090 , 0.056
∗LPI can not be applied due to the memory limit

5% 10% 20% 30% 40% 50% 60%
0

10

20

30

40

50

60

70

80

90

Training sample ratio

N
C

 A
cc

ur
ac

y
(%

)

Baseline
LSI
PLSI
LPI
RLPI

5% 10% 20% 30% 40% 50% 60%
0

10

20

30

40

50

60

70

80

90

Training sample ratio

K
N

N
 A

cc
ur

ac
y

(%
)

Baseline
LSI
PLSI
LPI
RLPI

5% 10% 20% 30% 40% 50% 60%
0

10

20

30

40

50

60

70

80

90

Training sample ratio

S
V

M
 A

cc
ur

ac
y

(%
)

Baseline
LSI
PLSI
LPI
RLPI

Figure 3: Performance comparisons on categorization

• Nearest Centroid (NC). This is a simple but efficient clas-
sifier which classifies a test example according to the label
of its nearest centroid (centroid of each class in the training
set). There is no parameter in this method. Both training and
testing phases of this classifier are very efficient.

All the three classifiers are performed in original document space
(Baseline) as well as LSI (PLSI, LPI and RLPI) subspace. The
dimension of the LSI (PLSI and LPI) subspace is the number of
categoriesc(= 20) and the dimension of the RLPI subspace isc −
1(= 19). The value of parameterα in RLPI is also set to 0.1. The
parameterk in kNN andC in SVM are tuned to achieve the best
Baseline performance.

We use the popular 20 Newsgroups4 as our data set. The 20
Newsgroups is a data set collected and originally used for document
classification by Lang [15]. We use the “bydate” version which
contains 18,846 documents, evenly distributed across 20 classes.
This corpus contains 26214 distinct terms after stemming and stop
word removal. The original split is separated in time, with 11,314
(60%) training documents and 7,532 (40%) testing documents. In
order to examine the effectiveness of different algorithms with dif-
ferent size of the training set, we further perform several tests that
the training set contains 5%, 10%, 20%, 30%, 40% and 50% doc-

4http://people.csail.mit.edu/jrennie/20Newsgroups/

Table 5: Computational time of LSI, PLSI, LPI and RLPI (s)
Train Size LSI PLSI LPI RLPI

5% 3.84 62.33 12.97 9.560
10% 4.08 86.05 73.83 12.01
20% 5.43 131.7 −∗ 16.37
30% 6.35 173.4 −∗ 20.97
40% 7.51 214.5 −∗ 26.22
50% 9.02 254.3 −∗ 32.38

60% (Orig Split) 9.75 294.1 −∗ 39.52
∗LPI can not be applied due to the memory limit

5% 10% 20% 30% 40% 50% 60%

10
0

10
1

10
2

Training sample ratio

T
im

e
on

 D
im

en
si

on
 R

ed
uc

tio
n(

s)

LSI
PLSI
LPI
RLPI

Figure 4: Computational time of LSI, PLSI, LPI and RLPI

uments. For these tests, we averaged the results over 10 random
splits.

The classification results of the three classifiers on five document
representation methods are listed in Table 4 and Figure 3. Table 5
and Figure 4 show the dimensionality reduction time of the four
algorithms. The main observations from the performance compar-
isons include:

• LSI and PLSI are not promising in dimension reduction for
document categorization. All the three classifiers get lower
accuracy in the LSI (PLSI) subspace.

• LPI and RLPI use the label information to build the graph
and the corresponding subspace well preserves the class struc-
ture. As a result, all the three classifiers achieve better perfor-
mance in the LPI (RLPI) subspace than in original document
space. We noticed that the performance improvements are
especially significant for NC and kNN classifiers. For a more
powerful classifier,e.g. SVM, the performance improvement
is limited.

• The high computational cost of LPI (both in time and mem-
ory) makes it not practical for large data sets. As the size of
the training set increases, LPI can not be applied due to the
memory limit.

• All the three classifiers achieve almost the same performance
in RLPI subspace. It is very interesting that the simplest and
the most efficient Nearest Centroid classifier can achieve the
similar performance with SVM in the RLPI subspace. Con-
sidering the efficiency of Nearest Centroid classifier in both
training and testing phases, we believe performing Nearest
Centroid rule in the RLPI subspace will become a very promis-
ing text categorization method.

4.3 Discussions
We summarize the experiments below:

1. The low dimensionality of the document subspace obtained
in our experiments show that dimensionality reduction is in-
deed necessary as a preprocessing for document clustering,
classification, retrieval, etc.

2. The effectiveness and efficiency are two essential factors in
designing good dimensionality reduction algorithm. LSI, PLSI
and ordinary LPI fail to meet these two requirements. As an
alternative choice of LPI, RLPI avoids the expensive compu-
tation of LPI while remains its effectiveness. This property
makes RLPI a good choice for dimensionality reduction in
large scale text processing problems.

5. CONCLUSIONS AND FUTURE WORK
We have proposed a new algorithm for document indexing and

representation, called Regularized Locality Preserving Indexing.
RLPI shares the same locality preserving character as LPI while
avoids the expensive computation. Specifically, RLPI can be com-
puted by a sparse matrix eigen-decomposition followed with a reg-
ularized least squares. Moreover, with a specific graph design in su-
pervised case, the eigen-decomposition becomes trivial and RLPI
only needs to solve a set of regularized least squares problems.
Such property makes RLPI can be efficiently computed even for a
large scale data set. Extensive experiments on TDT2 and 20News-
groups datasets demonstrated the effectiveness and efficiency of
RLPI.

There is a parameterα which controls the smoothness of the
basis functions of RLPI. Our theoretical analysis shows that RLPI
gives the same solution of LPI whenα decreases to zero. For super-
vised learning, when the training set is small, LPI tends to over-fit
the training data. In such case, a smoother (with small norm) basis
function is usually preferred and RLPI withα > 0 can have bet-
ter performance than LPI. However, it remains unclear that how to
automatically estimate the bestα.

6. REFERENCES
[1] R. Ando. Latent semantic space: Iterative scaling improves

precision of inter-document similarity measurement. InProc.
2000 Int. Conf. on Research and Development in Information
Retrieval (SIGIR’00), Athens, Greece, July 2000.

[2] B. T. Bartell, G. W. Cottrell, and R. K. Belew. Latent
semantic indexing is an optimal special case of
multidimensional scaling. InProc. 1992 Int. Conf. on
Research and Development in Information Retrieval
(SIGIR’92), pages 161–167, Copenhagen, Denmark, June
1992.

[3] D. Cai and X. He. Orthogonal locality preserving indexing.
In Proc. International Conference on Research and
Development in Information Retrieval (SIGIR’05), pages
3–10, Salvador, Brazil, 2005.

[4] D. Cai, X. He, and J. Han. Document clustering using
locality preserving indexing.IEEE Transactions on
Knowledge and Data Engineering, 17(12):1624–1637,
December 2005.

[5] D. Cai, X. He, and J. Han. Spectral regression for
dimensionality reduction. Technical report, Computer
Science Department, UIUC, UIUCDCS-R-2007-2856, May
2007.

[6] C.-C. Chang and C.-J. Lin.LIBSVM: a library for support
vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[7] F. R. K. Chung.Spectral Graph Theory, volume 92 of
Regional Conference Series in Mathematics. AMS, 1997.

[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. harshman. Indexing by latent semantic
analysis.Journal of the American Society of Information
Science, 41(6):391–407, 1990.

[9] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern
Classification. Wiley-Interscience, Hoboken, NJ, 2nd
edition, 2000.

[10] G. H. Golub and C. F. V. Loan.Matrix computations. Johns
Hopkins University Press, 3rd edition, 1996.

[11] T. Hastie, R. Tibshirani, and J. Friedman.The Elements of
Statistical Learning: Data Mining, Inference, and
Prediction. New York: Springer-Verlag, 2001.

[12] X. He, D. Cai, H. Liu, and W.-Y. Ma. Locality preserving
indexing for document representation. InProc. 2004 Int.
Conf. on Research and Development in Information Retrieval
(SIGIR’04), pages 96–103, Sheffield, UK, July 2004.

[13] T. Hofmann. Probabilistic latent semantic indexing. InProc.
1999 Int. Conf. on Research and Development in Information
Retrieval (SIGIR’99), pages 50–57, Berkeley, CA, Aug.
1999.

[14] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
ECML’98, 1998.

[15] K. Lang. Newsweeder: Learning to filter netnews. In
Proceedings of the Twelfth International Conference on
Machine Learning, pages 331–339, 1995.

[16] L. Lovasz and M. Plummer.Matching Theory. Akad́emiai
Kiadó, North Holland, Budapest, 1986.

[17] C. C. Paige and M. A. Saunders. Algorithm 583 LSQR:
Sparse linear equations and least squares problems.ACM
Transactions on Mathematical Software, 8(2):195–209, June
1982.

[18] C. C. Paige and M. A. Saunders. LSQR: An algorithm for
sparse linear equations and sparse least squares.ACM
Transactions on Mathematical Software, 8(1):43–71, March
1982.

[19] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala.
Latent semantic indexing: a probabilistic analysis. InProc.
17th ACM Symp. Principles of Database Systems, Seattle,
WA, June 1998.

[20] R. Penrose. A generalized inverse for matrices. In
Proceedings of the Cambridge Philosophical Society,
volume 51, pages 406–413, 1955.

[21] G. W. Stewart.Matrix Algorithms Volume I: Basic
Decompositions. SIAM, 1998.

[22] G. W. Stewart.Matrix Algorithms Volume II: Eigensystems.
SIAM, 2001.

[23] W. Xu, X. Liu, and Y. Gong. Document clustering based on
non-negative matrix factorization. InProc. 2003 Int. Conf.
on Research and Development in Information Retrieval
(SIGIR’03), pages 267–273, Toronto, Canada, Aug. 2003.

[24] Y. Yang and X. Liu. A re-examination of text categoriztion
methods. InSIGIR’99, 1999.

APPENDIX

A. PROOF OF THEOREM 2
PROOF. Supposerank(X) = r, the SVD decomposition ofX

is

X = UΣV
T

whereΣ = diag(σ1, · · · , σr), U ∈ R
n×r, V ∈ R

m×r and we

haveUT U = V T V = I. They is in the space spanned by row
vectors ofX, therefor,y is in the space spanned by column vectors
of V . Thus,y can be represented as the linear combination of the
column vectors ofV . Moreover, the combination is unique because
the column vectors ofV are linear independent. Suppose the com-
bination coefficients areb1, · · · , br. Let b = [b1, · · · , br]

T , we
have:

V b=y ⇒ V
T
V b=V

T y ⇒ b=V
T y ⇒ V V

T y=y (19)

To continue our proof, we need introduce the concept of pseudo
inverse of a matrix [20], which we denote as(·)+. Specifically,
pseudo inverse of the matrixX can be computed by the following
two ways:

X
+ = V Σ−1

U
T

and

X
+ = lim

α→0
(XT

X + αI)−1
X

T

The above limit exists even ifXT X is singular and(XT X)−1

does not exist [20]. Thus, the regularized least squares solution in
Eqn. (15)

a =
(
XX

T + αI
)−1

Xy α→0
= (XT)+y = UΣ−1

V
T ȳ

Combine with the equation in Eqn. (19), we have

X
T a = V ΣU

T a = V ΣU
T
UΣ−1

V
T y = V V

T y = y

By Theorem (1),a is the eigenvector of eigen-problem in Eqn.
(5).

B. PROOF OF COROLLARY 3

PROOF. The matricesW andD are of sizem×m and there are
m eigenvectors{yj}

m
j=1 of eigen-problem (8). Sincerank(X) =

m, all thesem eigenvectorsyj are in the space spanned by row
vectors ofX. By Theorem (2), allm correspondingaj of RLPI
in Eqn (15) are eigenvectors of eigen-problem in Eqn. (5) asα

decreases to zero. They are

aRLPI
j = UΣ−1

V
T yj .

Consider the eigen-problem in Eqn. (6), since them eigenvectors
yj are also in the space spanned by row vectors ofX̃ = UT X =

ΣV T , eigenvectorbj will be the solution of linear equations sys-
tem X̃T bj = yj . The row vectors ofX̃ = ΣV T are linearly
independent, thusbj is unique and

bj = Σ−1
V

T yj .

Thus, the projective functions of LPI

aLPI
j = Ubj = UΣ−1

V
T yk = aRLPI

j

