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Abstract

Recent study has shown that canonical algorithms such as
Principal Component Analysis (PCA) and Linear Discrimi-
nant Analysis (LDA) can be obtained from graph based di-
mensionality reduction framework. However, these algo-
rithms yield projective maps which are linear combination
of all the original features. The results are difficult to be
interpreted psychologically and physiologically. This paper
presents a novel technique for learning a sparse projection
over graphs. The data in the reduced subspace is represented
as a linear combination of a subset of the most relevant fea-
tures. Comparing to PCA and LDA, the results obtained by
sparse projection are often easier to be interpreted. Our algo-
rithm is based on a graph embedding model, which encodes
the discriminating and geometrical structure in terms of the
data affinity. Once the embedding results are obtained, we
then apply regularized regression for learning a set of sparse
basis functions. Specifically, by using aL1-norm regular-
izer (e.g. lasso), the sparse projections can be efficiently
computed. Experimental results on two document databases
demonstrate the effectiveness of our method.

Introduction
Dimensionality reduction has been a key problem in many
fields of information processing, such as data mining, in-
formation retrieval, and pattern recognition. The most pop-
ular linear methods include Principal Component Analysis
(PCA) (Duda, Hart, & Stork 2000) and Linear Discriminant
Analysis (LDA) (Fukunaga 1990).

One of the major disadvantages of these two algorithms
is that the learned projective maps are linear combinations
of all the original features, thus it is often difficult to in-
terpret the results. Recent psychological and physiological
evidence have shown that the representation of objects in hu-
man brain may be component-based (Lee & Seung 1999).
This motivates us to develop sparse subspace learning algo-
rithms. In other words, the data in the reduced subspace is
represented as a linear combination of a subset of the fea-
tures which are the most informative. Zhouet al. (Zhou,
Hastie, & Tibshirani 2004) proposed an elegant sparse PCA
(SparsePCA) algorithm by usingL1-penalized regression on
regular principle components, which can be solved very ef-
ficiently usingleast angle regression(LARS) (Efron et al.
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2004). More recently, d’Aspremontet al. (d’Aspremont
et al. 2004) relaxed the hard cardinality constraint and
obtained a convex approximation by using semi-definite
programming. In (Moghaddam, Weiss, & Avidan 2005;
2006), Moghaddamet al. proposed a spectral bounds frame-
work for sparse subspace learning. Particularly, they pro-
posed both exact and greedy algorithms for both sparse
PCA and sparse LDA. It would be important to note that
the sparse LDA algorithm (Moghaddam, Weiss, & Avidan
2006) can only be applied to two-class problems.

In this paper, we propose a novel algorithm for learning
a Sparse Projection over Graphs (SPG). Recent study has
shown that both PCA and LDA can be obtained from graph
Laplacian based dimensionality reduction framework (He
et al. 2005). Using techniques from spectral graph theory
(Chung 1997), we construct an affinity graph to encode both
discriminating and geometrical structure in the data. The
affinity graph is usually sparse (e.g. nearest neighbor graph),
so the embedding results can be very efficiently computed.
Once we get the embedding results,lassoregression can be
naturally applied to obtain sparse basis functions.

The new algorithm is interesting from a number of per-
spectives.

1. Comparing to canonical subspace learning algorithms
such as PCA and LDA, our algorithm produces sparse ba-
sis functions which can be better interpreted psychologi-
cally and physiologically.

2. Comparing to previous sparse subspace learning algo-
rithms such as sparse PCA (Zhou, Hastie, & Tibshirani
2004) and sparse LDA (Moghaddam, Weiss, & Avidan
2006), our algorithm is more flexible. To be specific, our
algorithm can be performed in either supervised, unsu-
pervised, or semi-supervised manner. When there is label
information available, it can be easily incorporated into
the graph structure.

3. Unlike sparse LDA (Moghaddam, Weiss, & Avidan 2006)
which can only be applied to two-class problems, our al-
gorithm can be applied to multiple-class problems.

Graph Laplacian based Linear Dimensionality
Reduction

In this Section, we provide a brief review of graph Laplacian
based dimensionality reduction.



Suppose we havem data samples{xi}
m
i=1 ⊂ R

n and let
X = (x1, · · · , xm). Consider a linear mapf(x) = aT x.
The optimala can be obtained by minimizing the following
loss function:

∑

i,j

(aT xi − aT xj)
2Wij

whereW is the weight matrix of a given graph constructed
over all the data points. Both discriminant and geometri-
cal structure can be encoded into the graph and the result-
ing embedding results found by solving the above objection
function respect the defined graph structure.

It would be interesting to note that recent study has shown
that many popular linear dimensionality reduction algo-
rithms can be derived from the graph Laplacian framework.
Particularly, Heet al. have shown that with specially de-
signed graph structure, we can get both PCA and LDA (He
et al. 2005):
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wheremi(i = 1, · · · , c) is the number of data points in the
i-th class. Clearly, the PCA graph describes the global ge-
ometrical structure, whereas the LDA graph describes the
discriminant structure.

Sparse Projection over Graphs
In this section, we introduce our algorithm for learning a
sparse projection over graphs. We begin with a formal de-
scription of the learning problem.

The Problem

The generic problem of linear sparse dimensionality reduc-
tion is the following. Given a setx1, · · · , xm in R

n, find
a transformation matrixA = (a1, · · · , al) that maps these
m points to a set of pointsy1, · · · , ym in R

l (l ≪ n), such
that yi(= AT xi) “represents”xi and the cardinality ofai

(i = 1, · · · , l) is less thank, wherek(< n) is a suitable in-
teger. The cardinality of a vector is defined as the number of
non-zero entries.

The Algorithm
We adopt graph Laplacian framework to develop an algo-
rithm for learning a sparse projection. Given graphG with
weight matrixW over the data points, we aim to minimize
the following objective function:

min
∑

ij

(
aT xi − aT xj

)2
Wij

subject to aT XDXT a = 1
card(a) ≤ k

(1)

whereD is a diagonal matrix whose entries are the row
(or column, sinceW is symmetric) sums ofW . That is,
Dii =

∑

j Wij . Let yi = (yi
1, · · · , yi

m) be a projection on
the eigenvectorai. For anyi 6= j, it is easy to show that
yiD(yi)T = yjD(yj)T = 1 andyiD(yj)T = 0. This indi-
cates that the projections in the reduced space are weighted
uncorrelated.

The objective function (1) is NP-hard and therefore gen-
erally intractable. In the following we describe an efficient
method for solving this optimization problem. By simple
algebraic formulation, it is easy to verify:

∑

ij

(
aT xi − aT xj

)2
Wij = aT XLXT a (2)

where the matrixL = D−W is usually called graph Lapla-
cian (Chung 1997). A natural relaxation to this problem is
to first remove the cardinality constraint and solve the fol-
lowing eigenvector problem:

XLXT a = λXDXT a (3)

Once the embedding resultsyi = aT xi are obtained, we can
apply lasso regression to get a sparse transformation vector.
Specifically, let̃a be the sparse approximation ofa. Thus,ã
can be obtained by minimizing the sum of least squares with
L1-norm penalty:

min
ã





m∑

i=1

(

aT xi − ãT xi

)2

+ β

n∑

j=1

|ãj |



 (4)

which is equivalent to

min
ã





m∑

i=1

(

yi − ãT xi

)2

+ β

n∑

j=1

|ãj |



 (5)

whereãj is thej-th element iña. Due to the nature of the
L1-norm penalty, some coefficients̃aj ’s will be shrunk to
exact zero ifβ is sufficiently large. Specifically, for any
given k, there existsβ such that the solution of the opti-
mization problem in Eqn. (5) satisfiescard(ã) ≤ k (Hastie,
Tibshirani, & Friedman 2001)(Efronet al. 2004). TheLeast
Angel Regression(LARS) algorithm (Efronet al. 2004) can
be used to efficiently compute the entire solution path (the
solutions with all the possible cardinality oña) of the prob-
lem in Eqn. (5).

One problem still remains. That is, the generalized eigen-
vector problem (3) is computationally expensive. In order to
reduce the computational complexity, we have the following
theorem:



Theorem 1 Let y be the eigenvector of the following equa-
tion:

Ly = λDy (6)

If XT a = y, thena is the eigenvector of the eigen-problem
(3) with the same eigenvalue.

Proof We haveLy = λDy. At the left hand side of Eq. (3),
replaceXT a by y, thus we have

XLXT a = XLy = XλDy = λXDy = λXDXT a

Therefore,a is the eigenvector of eigen-problem (3) with the
same eigenvalueλ.

Theorem (1) shows that instead of solving the eigen-
problem in Eq. (3), the embedding resulty can be directly
obtained by solving Eq. (6). Since the graph is usually spe-
cially designed and sparse, the computation can be very ef-
ficient.

Once the embedding resulty is obtained, we can apply
lasso regression (Hastie, Tibshirani, & Friedman 2001) in
Eqn. (5) to solve the optimization problem (1).

The Eigenvectors of Eigen-problem (6)
Noticing thatL = D − W , we have

Ly = λDy
⇒ (D − W )y = λDy
⇒ Wy = (1 − λ)Dy = λ′Dy (7)

Thus, finding the eigenvectors of the eigen-problem (6) with
respect to thesmallesteigenvalue is equivalent to finding the
eigenvectors of eigen-problem (7) with respect to thelargest
eigenvalue.

Generally, we need to solve the eigen-problem in Eq. (7)
to get the embedding vectorsy’s. Nevertheless, in some
cases,i.e. LDA, the weight matrixW has a block diagonal
structure and there is no need to solve the eigen-problem.

Without loss of generality, we assume that the data points
in {x1, · · · , xm} are ordered according to their labels. Thus,
W has a block-diagonal structure, as defined in Section
2. SinceW is block-diagonal, its eigenvalues and eigen-
vectors1 are the union of the eigenvalues and eigenvec-
tors of its blocks (the latter padded appropriately with ze-
ros) (Golub & Loan 1996). LetW (t) be thet-th diagonal
block. That is,W (t) is amt × mt matrix andW

(t)
ij = 1

mt
,

∀i, j. It is straightforward to show thatW (t) has eigen-
vector e(t) ∈ R

mt associated with eigenvalue 1, where
e(t) = [1, 1, · · · , 1]T . Also there is only one non-zero eigen-
value ofW (t) because the rank ofW (t) is 1. Thus, there
are exactlyc eigenvectors ofW with the same eigenvalue 1.
These eigenvectors are

yt = [ 0, · · · , 0
︸ ︷︷ ︸
∑ t−1

i=1
mi

, 1, · · · , 1
︸ ︷︷ ︸

mt

, 0, · · · , 0
︸ ︷︷ ︸

∑
c
i=t+1

mi

]T . (8)

1It is easy to check thatD = I with the LDAW defined in Sec-
tion 2. The generalized eigenvectors in Eqn. (7) reduce to ordinary
eigenvectors ofW .

Since 1 is a repeated eigenvalue ofW , we could just pick any
otherc orthogonal vectors in the space spanned by{yk}, and
define them to be ourc eigenvectors. The vector of all onese
is naturally in the spanned space. This vector is useless since
the responses of all the data points are the same. In reality,
we can picke as our first eigenvector and use Gram-Schmidt
process to get the remainingc − 1 orthogonal eigenvectors.
The vector of all ones can then be removed.

In binary classification case, the above procedure will pro-
duce the following embedding vector

y = [
m

m1
, · · · ,

m

m1
︸ ︷︷ ︸

m1

,
−m

m2
, · · · ,

−m

m2
︸ ︷︷ ︸

m2

]T . (9)

This is consistent with the previous well-known result on the
relationship between LDA and regression for a binary prob-
lem (Hastie, Tibshirani, & Friedman 2001). The SPG algo-
rithm proposed in this paper extends this relation to multi-
class case. Moreover, our approach also establishes the con-
nection between regression and many other graph based sub-
space learning algorithms,e.g., Locality Preserving Projec-
tions (He & Niyogi 2003).

Computational Complexity of SPG
The SPG computation involves two steps: responses genera-
tion (i.e., calculate the eigenvectors of eigen-problem inEq.
(7)) and lasso regression.

Two of the most popular graphs are supervised block-
diagonal graph (e.g., LDA) and unsupervisedp-nearest
neighbor graph. For the weight matrixW of a block-
diagonal graph, the cost of the first step is mainly the cost
of Gram-Schmidt method, which isO(mc2) (Golub & Loan
1996). For ap-nearest neighbor graph,W is sparse and there
are aroundp non-zero elements in each row ofW . The
Lanczos algorithm can be used to efficiently compute the
first l eigenvectors of the eigen-problem in Eqn. (7) within
O(lqmp), whereq is the number of iterations in Lanczos
(Golub & Loan 1996).

By using theLeast Angel Regression(LARS) algorithm,
the entire solution path (the solutions with all the possible
cardinality onã) of lasso in Eqn. 5 can be computed in
O(n3 + mn2) (Efron et al. 2004). If we requirecard(a) ≤
k, this cost can be reduced toO(k3 + mk2) (Efron et al.
2004).

Consideringm ≫ c, SPG provides a sparse LDA solution
with O(n3 + mn2) complexity. Comparing to theO(n4 +
mn2) greedy algorithm described in (Moghaddam, Weiss,
& Avidan 2006), SPG is much more efficient.

Experimental Results
In this section, we investigate the use of our algorithm for
text clustering. The following five methods are compared in
the experiment:

• Baseline: K-means on the original term-document ma-
trix, which is treated as our baseline.

• LSI: K-means after Latent Semantic Indexing. LSI is es-
sentially similar to PCA.



Table 1: Statistics of TDT2 and Reuters corpora.
TDT2 Reuters

No. docs. used 9394 8067
No. clusters used 30 30
Max. cluster size 1844 3713
Min. cluster size 52 18
Med. cluster size 131 45
Avg. cluster size 313 269

Table 2: Statistics of clusters in TDT2 and Reuters corpora.
No. of Avg. docs. # Avg. terms #

clusters (c) TDT2 Reuters TDT2 Reuters
2 605 641 6011 2486
3 939 1099 8342 3979
4 1180 1401 10102 5030
5 1660 1101 12773 4594
6 1650 1360 13042 5168
7 2255 1794 15423 6766
8 2557 2602 16761 7980
9 2725 2840 16943 8538
10 2987 2488 18842 8137

• SPCA: K-means after SparsePCA.

• SPG: K-means after SPG.

• NMF: Nonnegative Matrix Factorization-based clustering
(Xu, Liu, & Gong 2003)). The weighted NMF-based
clustering method is a recently proposed algorithm which
has been shown to be very effective in document cluster-
ing (Xu, Liu, & Gong 2003).

Note that, our SPG algorithm needs to construct a graph over
the documents. In this experiment, we set the parameterp
(number of nearest neighbors) to 7.

All these algorithms are tested on the TDT2 corpus2, and
the Reuters-21578 corpus3. These two document corpora
have been among the ideal test sets for document cluster-
ing purposes because documents in the corpora have been
manually clustered based on their topics and each docu-
ment has been assigned one or more labels indicating which
topic/topics it belongs to.

The TDT2 corpus consists of data collected during the
first half of 1998 and taken from 6 sources, including 2
newswires (APW, NYT), 2 radio programs (VOA, PRI) and
2 television programs (CNN, ABC). It consists of 11201 on-
topic documents which are classified into 96 semantic cat-
egories. In this experiment, those documents appearing in
two or more categories were removed, and only the largest
30 categories were kept, thus leaving us with 9,394 docu-
ments in total.

Reuters corpus contains 21578 documents which are
grouped into 135 clusters. Compared with TDT2 corpus,
the Reuters corpus is more difficult for clustering. In TDT2,

2Nist Topic Detection and Tracking corpus at
http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

3Reuters-21578 corpus is at
http://www.daviddlewis.com/resources/testcollections/reuters21578/

the content of each cluster is narrowly defined, whereas in
Reuters, documents in each cluster have a broader variety of
content. Moreover, the Reuters corpus is much more unbal-
anced, with some large clusters more than 200 times larger
than some small ones. In our test, we discarded documents
with multiple category labels, and only selected the largest
30 categories. This left us with 8067 documents in total.
Table 2 provides the statistics of the two document corpora.

Each document is represented as a term frequency (TF)
vector and each vector is normalized to unit. For the purpose
of reproducibility, we provide our algorithms and data sets
used in these experiments at:
http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html

Evaluation Metric The clustering result is evaluated by
comparing the obtained label of each document with that
provided by the document corpus. Two metrics, the accu-
racy (AC) and the normalized mutual information metric
(MI) are used to measure the clustering performance (Cai,
He, & Han 2005), (Xu, Liu, & Gong 2003). Given a doc-
umentxi, let ri andsi be the obtained cluster label and the
label provided by the corpus, respectively. TheAC is de-
fined as follows:

AC =

∑n

i=1 δ(si,map(ri))

n

wheren is the total number of documents andδ(x, y) is the
delta function that equals one ifx = y and equals zero other-
wise, and map(ri) is the permutation mapping function that
maps each cluster labelri to the equivalent label from the
data corpus. The best mapping can be found by using the
Kuhn-Munkres algorithm (Lovasz & Plummer 1986).

Let C denote the set of clusters obtained from the ground
truth andC ′ obtained from our algorithm. Their mutual in-
formation metricMI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′
j
∈C′

p(ci, c
′

j) · log2

p(ci, c
′

j)

p(ci) · p(c′j)

wherep(ci) andp(c′j) are the probabilities that a document
arbitrarily selected from the corpus belongs to the clusters
ci andc′j , respectively, andp(ci, c

′

j) is the joint probability
that the arbitrarily selected document belongs to the clusters
ci as well asc′j at the same time. In our experiments, we use
the normalized mutual informationMI as follows:

MI(C,C ′) =
MI(C,C ′)

max(H(C),H(C ′))

whereH(C) andH(C ′) are the entropies ofC andC ′, re-
spectively. It is easy to check thatMI(C,C ′) ranges from
0 to 1. MI = 1 if the two sets of clusters are identical, and
MI = 0 if the two sets are independent.

Results The evaluations were also conducted with differ-
ent number of clusters, ranging from 2 to 10. For each
given cluster numberc, 50 tests were conducted on dif-
ferent randomly chosen categories, and the average perfor-
mance was computed over these 50 tests (except the 30 clus-
ter case). For each test, K-means algorithm was applied 10



Table 3: Clustering performance on TDT2

c
Accuracy (%) Normalized Mutual Information (%) Sparsity (%)

Baseline LSI SPCA SPG NMF Baseline LSI SPCA SPG NMF SPCA SPG
2 97.7 98.7 99.2 99.9 99.2 91.3 94.7 96.6 98.4 96.6 98.3 98.5
3 88.4 91.0 94.3 99.7 95.7 81.5 84.3 88.1 97.4 90.7 99.4 99.3
4 85.7 87.4 90.8 99.5 92.4 82.0 82.3 85.2 96.9 87.7 99.5 99.3
5 82.4 81.7 85.1 98.8 92.2 79.0 77.7 79.9 95.1 86.6 99.8 99.5
6 79.0 79.0 83.3 98.5 88.0 78.1 78.0 80.4 95.5 84.2 99.3 99.3
7 74.5 72.4 76.7 98.1 83.1 74.5 73.2 75.0 94.1 79.9 99.3 99.2
8 70.1 68.1 71.8 97.1 79.7 71.5 69.4 71.2 93.3 76.2 99.4 99.3
9 72.3 70.6 73.6 96.5 84.8 75.1 73.9 74.6 92.4 81.8 99.6 99.7
10 69.2 66.7 71.0 95.0 81.5 73.1 71.3 72.6 90.8 78.3 99.8 99.6

Avg. 79.9 79.5 82.9 98.1 88.5 78.5 78.3 80.4 94.9 84.7 99.4 99.3
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Figure 1: Accuracy and normalized mutual information vs. cardinality on TDT2 corpus

times with different start points and the best result in terms
of the objective function of K-means was recorded. After
LSI, SparsePCA, or SPG, how to determine the dimension-
ality of the subspace is still an open problem. In this exper-
iment, we keepc dimensions for all the three algorithms as
suggested by previous study (Cai, He, & Han 2005).

We show the performance change with the cardinality of
basis functions in SparsePCA and SPG. As can be seen, the
best performance is obtained with relatively small cardinal-
ity.

Conclusions
In this paper, we described a subspace learning algorithm
called Sparse Projection over Graphs. We construct an affin-
ity graph which can encode both discriminant and geomet-
rical structure in the data. The sparse projections can be
obtained by solving an optimization problem. We have also
suggested an approach for solving this optimization problem
by using techniques from spectral graph theory and lasso re-
gression. Several experiments on document clustering were
carried out on two databases. Our method was shown to
outperform both PCA, LDA, and sparse PCA.

Several questions remains unclear and will be investigated

in our future work. First, in this work, we use the simple
nearest neighbor graph to encode both discriminating and
geometrical structure of the data manifold. However, there
is no reason to believe this is the only or the best way to
construct the affinity graph. Second, our algorithm is linear,
but it also can be performed in reproducing kernel Hilbert
space (RKHS) which gives rise to nonlinear maps. The per-
formance of SPG in RKHS needs to be further examined.
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