
Tensor Space Model for Document Analysis

Deng Cai
Dept. of Computer Science

UIUC

dengcai2@cs.uiuc.edu

Xiaofei He
Yahoo! Research Labs

hex@yahoo-inc.com

Jiawei Han
Dept. of Computer Science

UIUC

hanj@cs.uiuc.edu

ABSTRACT
Vector Space Model (VSM) has been at the core of informa-
tion retrieval for the past decades. VSM considers the doc-
uments as vectors in high dimensional space. In such a vec-
tor space, techniques like Latent Semantic Indexing (LSI),
Support Vector Machines (SVM), Naive Bayes, etc., can be
then applied for indexing and classification. However, in
some cases, the dimensionality of the document space might
be extremely large, which makes these techniques infeasible
due to the curse of dimensionality. In this paper, we pro-
pose a novel Tensor Space Model for document analysis.
We represent documents as the second order tensors, or ma-
trices. Correspondingly, a novel indexing algorithm called
Tensor Latent Semantic Indexing (TensorLSI) is devel-
oped in the tensor space. Our theoretical analysis shows
that TensorLSI is much more computationally efficient than
the conventional Latent Semantic Indexing, which makes it
applicable for extremely large scale data set. Several experi-
mental results on standard document data sets demonstrate
the efficiency and effectiveness of our algorithm.

Categories and Subject Descriptors:
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing − Indexing methods

General Terms:
Algorithms, Theory, Experimentation, Performance

Keywords:
Tensor Space Model, Vector Space Model, Latent Semantic
Indexing, Tensor Latent Semantic Indexing

1. INTRODUCTION
Document indexing and representation has been a fun-

damental problem in information retrieval for many years.
Most of previous works are based on the Vector Space Model
(VSM, [3]). The documents are represented as vectors, and
each word corresponds to a dimension. Learning techniques
such as Latent Semantic Indexing (LSI, [2]), Support Vector
Machines, Naive Bayes, etc., can be then applied in such a
vector space. The main reason of the popularity of VSM is
probably due to the fact that most of the existing learning
algorithms can only take vectors as their inputs, rather than
tensors.

When VSM is applied, one if often confronted with a doc-

Copyright is held by the author/owner(s).
SIGIR’06, August 6–11, 2006, Seattle, Washington, USA.
ACM 1-59593-369-7/06/0008.

ument space R
n with a extremely large n. Let x ∈ R

n de-
notes the document vector. Let us consider n = 1, 000, 000
and learning a linear function g(x) = wT x. In most cases,
learning g in such a space is infeasible in the sense of com-
putability. For example, when LSI is applied in such a space,
one needs to compute eigen-decomposition of a 1M × 1M

matrix 1.
Different from traditional Vector Space Model based docu-

ment indexing and representation, in this paper, we consider
documents as matrices, or the second order tensors. For a
document set with n words, we represent the documents
as the second order tensors (or, matrices) in R

n1 ⊗ R
n2 ,

where n1 × n2 ≈ n. For examples, a 1, 000, 000-dimensional
vector can be converted into a 1000 × 1000 matrix. Let
X ∈ R

n1 ⊗ R
n2 denotes the document matrix. Naturally,

a linear function in the tensor space can be represented as
f(X) = uT Xv, where u ∈ R

n1 and v ∈ R
n2 . Clearly, f(X)

has only n1 + n2(=2000 in our case) parameters which is
much less than n(= 1, 000, 000) of g(x).

Based on the tensor representation of documents, we pro-
pose a novel indexing algorithm called Tensor Latent Se-
mantic Indexing (TensorLSI) operated in the tensor space
rather than vector space. Sharing similar properties as the
conventional Latent Semantic Indexing (LSI) [2], TensorLSI
tries to find the principal components of the tensor space.
Let {ui}

n1

i=1
be a set of basis functions of R

n1 and {vj}
n2

j=1

be a set of basis functions of R
n2 . It is easy to show that

{uiv
T
j } forms a basis of R

n1⊗R
n2 . Thus, TensorLSI aims at

finding bases {ui} and {vj} such that the projections of the
documents onto {uiv

T
j } can best represent the documents

in the sense of reconstruction error.
It would be important to note that, while searching for the

optimal bases {ui} and {vj}, we need only to compute the
eigen-decompositions of two n1 × n1 and n2 × n2 matrices.
This property makes our algorithm particularly applicable
for the case when the number of words is extremely large.
This work is foundamentally motivated by [4]. For more
detailed document analysis using TSM, please see [1].

2. THE ALGORITHM
TensorLSI is fundamentally based on LSI. It tries to project

the data to the tensor subspace in which the reconstruc-
tion error is minimized. Given a set of document matrices
Xi ∈ R

n1×n2 , i = 1, · · · , m. Let Yi = UT XiV denote its
projection in the tensor subspace U ⊗V. The reconstruction

1Note, we assume that the number of documents (m) is
larger than n. When m < n, it suffices to compute the
eigen-decomposition of a m × m matrix.



Table 1: Complexity Comparison of TensorLSI and
LSI

Time complexity Minimum memory Storage size
TLSI O(mn1.5) O(n) O(2n)
LSI O((m + n)q2) O(q2) O(kn)

n is the number of features and m is the number of documents
q = min(m, n)
k is usually around several hundreds

error for Xi can be written as ‖Xi − UYiV
T ‖. Thus, the

objective function of TensorLSI can be described as follows:

min
U,V

mX
i=1

‖Xi − UYiV
T ‖2 (1)

which is equivalent to the following:

min
U,V

mX
i=1

‖Xi − UU
T
XiV V

T ‖2 (2)

With some algebraic steps [1], we can show that, the op-
timal U and V are given by solving the following two eigen-
vector problems: 

mX
i=1

XiX
T
i

!
u = λ

uu ,

 
mX

i=1

X
T
i Xi

!
v = λ

vv (3)

After obtaining the basis vectors {ui} (i = 1, · · · , n1) and
{vj} (i = 1, · · · , n2), each uiv

T
j is a basis of the transformed

tensor space, and uT
i Xtvj (t = 1, · · · , m) is the coordinate

of Xt corresponding to uiv
T
j in this tensor space. When we

want to keep the first k principle component of document in
the transformed tensor space, we use function

f(ui,vj) =
mX

t=1

tr(uT
i Xtvjv

T
i X

T
t uj) =

mX
t=1

(uT
i Xtvj)

2 (4)

to evaluate the importance of uiv
T
j with respect to i and j.

f(ui,vj) reflects the importance of the tensor basis uiv
T
j in

terms of reconstruction error. When we want to keep the
first k principle component in the transformed tensor space,
we sort f(ui,vj) for all the i and j in decreasing order and
choose the first k pairs.

Table 1 lists the computational complexity comparison of
TensorLSI and LSI, more detailed analysis can be found in
[1].

3. EXPERIMENTS
In this section, document clustering on Reuters-21578 cor-

pus2 is used to show the effectiveness of our proposed algo-
rithm. We chose k-means as our clustering algorithm and
compared three methods. These three methods are listed
below:

• k-means on original term-document matrix (Baseline)

• k-means after LSI (LSI)

• k-means after TensorLSI (TLSI)

The clustering result is evaluated by comparing the ob-
tained label of each document with that provided by the
document corpus. The accuracy (AC) is used to measure
the clustering performance [1].

2Reuters-21578 corpus is at http://www.daviddlewis.com/
resources/testcollections/reuters21578/

 

2 4 6 8 10
50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

Class Number

TensorLSI
LSI
Baseline

(a)

 

2 4 6 8 10
10

-2

10
-1

10
0

10
1

10
2

10
3

T
im

e 
(s

)

Class Number

TensorLSI
LSI
Baseline

(b)

Figure 1: (a)Clustering accuracy with respect to the
number of classes. (b) Computation time (time on
dimension reduction plus time on k-means) with re-
spect to the number of classes. As can be seen,
TensorLSI achieves comparable accuracy with LSI
while much faster than LSI.

The evaluations were conducted with different number of
clusters, ranging from 2 to 10. For each given cluster number
k, 50 tests were conducted on different randomly chosen
categories, and the average performance was computed over
these 50 tests.

The average accuracy and the computation time (time on
dimension reduction plus time on k-means) of three methods
are shown on fiure 1. Both LSI and TensorLSI are signifi-
cantly better than baseline with respect to both clustering
accuracy and computation time. For k = (2, 3, 4, 5, 6), LSI
and TensorLSI achieved almost same clustering accuracy.
For k = (8, 9, 10). Clustering using LSI is slightly better
than clustering using TensorLSI. However, in all cases, the
computation time (time on dimension reduction plus time
on k-means) of TensorLSI is extremely shorter than that of
LSI.

4. CONCLUSIONS
A novel document representation and indexing method

has been proposed in this paper, called Tensor Latent Se-
mantic Indexing. Different from conventional LSI which
considers documents as vectors, TensorLSI considers doc-
uments as the second order tensors, or matrices. Based on
the tensor representation, TensorLSI tries to find an opti-
mal basis for the tensor subspace in terms of reconstruction
error. Also, our theoretical analysis shows that TensorLSI
can be much more efficient than LSI in time, memory and
storage especially when the number of documents is larger
than the number of words.

5. REFERENCES
[1] D. Cai, X. He, and J. Han. Tensor space model for

document analysis. Technical report, Computer Science
Department, UIUC, UIUCDCS-R-2006-2715, April
2006.

[2] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.
Furnas, and R. A. harshman. Indexing by latent
semantic analysis. Journal of the American Society of

Information Science, 41(6):391–407, 1990.

[3] G. Salton, A. Wong, and C. S. Yang. A vector space
model for information retrieval. Communications of the

ACM, 18(11):613–620, 1975.

[4] J. Ye. Generalized low rank approximations of matrices.
Machine Learning, 61(1-3):167–191, Nov. 2005.


