
An Exploration of Improving Collaborative
Recommender Systems via User-Item Subgroups

Bin Xu Jiajun Bu Chun Chen
Zhejiang Provincial Key Laboratory of Service

Robot, College of Computer Science
Zhejiang University, Hangzhou, China

xbzju,bjj,chenc@zju.edu.cn

Deng Cai
State Key Lab of CAD&CG

College of Computer Science
Zhejiang University, Hangzhou, China

dengcai@cad.zju.edu.cn

ABSTRACT
Collaborative filtering (CF) is one of the most successful
recommendation approaches. It typically associates a user
with a group of like-minded users based on their preferences
over all the items, and recommends to the user those items
enjoyed by others in the group. However we find that two
users with similar tastes on one item subset may have to-
tally different tastes on another set. In other words, there
exist many user-item subgroups each consisting of a subset
of items and a group of like-minded users on these items.
It is more natural to make preference predictions for a user
via the correlated subgroups than the entire user-item ma-
trix. In this paper, to find meaningful subgroups, we for-
mulate the Multiclass Co-Clustering (MCoC) problem and
propose an effective solution to it. Then we propose an
unified framework to extend the traditional CF algorithms
by utilizing the subgroups information for improving their
top-N recommendation performance. Our approach can be
seen as an extension of traditional clustering CF models.
Systematic experiments on three real world data sets have
demonstrated the effectiveness of our proposed approach.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering; H.3.5 [Online Information Services]: Web-based
services

General Terms
Algorithms, Performance

Keywords
Collaborative Filtering, Recommender Systems, User-Item
Subgroups, Clustering Model

1. INTRODUCTION
Recommender systems have been indispensable nowadays

due to the incredible increasing of information in the world,
especially on the Web. These systems apply knowledge dis-
covery techniques to make personalized recommendations
that can help people sift through huge amount of available
articles, movies, music, webpages, etc. Popular examples of
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Figure 1: A toy example of the user-item matrix
and subgroups. Note that users and items are not
necessarily adjacent in a subgroup.

such systems include product recommendation in Amazon1,
music recommendation in Last.fm2, and movie recommen-
dation in Movielens3.

Collaborative filtering (CF) [1, 14, 30] is one of the most
widely adopted and successful recommendation approaches.
Unlike many content-based approaches which utilize the at-
tributes of users and items, CF approaches make predic-
tions by using only the user-item interaction information.
These methods can capture the hidden connections between
users and items and have the ability to provide serendipi-
tous items [21], which are helpful to improve the diversity
of recommendation.

The user-item interaction information can be either ex-
plicit or implicit [3]. Explicit interactions refer to users con-
sciously expressing their preferences for items, e.g., discrete
ratings for movies. Implicit interactions can be any source of
user-generated information, such as purchases, clicks, book-
marks, listening times, etc. Usually, both explicit and im-
plicit interactions can be recorded in a large but very sparse
user-item matrix (Fig.1 shows an example).

Typical CF-based recommender systems associate a user
with a group of like-minded users based on their preferences
over all the items, and then recommends to the user those
items enjoyed by others in the group. The basic assumption
is that users with similar behaviors (e.g., ratings) will have
similar tastes on all the items. However, we find that this
assumption is not always tenable – two users having similar
tastes on one item subset may have totally different tastes
on another set. Moreover, one user’s interests are usually

1http://www.amazon.com
2http://www.last.fm
3http://www.movielens.org
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concentrative on some topics, but not dispersive over all
items. So it is more natural to say a group of users are
like-minded on a subset of items. In this paper, we call a
subset of items and a group of interested users as a user-
item subgroup. Fig.1 shows two subgroups. Note that
users and items are not necessarily adjacent in the matrix.
We expect that subgroups can help to capture similar user
tastes on a subset of items.

Many clustering CF models utilize user clusters [29], item
clusters [23], or co-clusters [9] to design CF algorithms. In
these models, each user or item can only belong to a single
cluster. In reality, it is more natural to assume that users
(items) can join multiple clusters (subgroups), e.g., a user
could like some movie topics and a movie could belong to
multiple movie categories.

In this paper we extend traditional clustering CF mod-
els by co-clustering both users and items into multiple sub-
groups, and try to use them to improve the performance
of CF-based recommender systems. Many previous works
focus on the prediction accuracy, but the low prediction er-
ror can not guarantee a good recommendation quality. We
focus on the top-N recommendation performance, which is
more meaningful for real recommender systems. The main
contributions of this paper include: (1) we formulate the
Multiclass Co-Clustering problem (MCoC) and propose an
effective solution to it for finding user-item subgroups; (2)
we propose an unified framework to combine subgroups with
(any) pure CF models; (3) we provide top-N recommenda-
tion comparisons of many CF models (before and after using
our framework) on three real data sets and make a system-
atic empirical analysis for the results.

The remaining of this paper is structured as follows. Sec-
tion 2.1 introduces CF and clustering CF models. Section
3 describes our proposed approach in detail. Experimen-
tal settings and results are discussed in section 4 and 5. In
section 6 we provide a conclusion.

2. BACKGROUND

2.1 Collaborative Filtering
Breese et al. [3] divide collaborative filtering approaches

into two classes: memory based and model based algorithms.
Memory based algorithms maintain the original setup of

the CF task. They use statistical techniques to build the
neighborhood relationship for an active user, and then usu-
ally use a weighted sum of the ratings to prediction missing
values. This process is a bit like a ranking-analogue of near-
est neighbor classifier, whereas the result is a real score but
not a category label. A general user-based formulation of
the weighted sum scheme can be [3]:

pa,j = ra + κ
n∑

i=1

w(a, i)(ri,j − ri), (1)

where n is the size of neighbors and ra, ri are the average
ratings for the active user a and neighbor user i respectively.
Actually, The most important part for memory based algo-
rithms is the similarity measurement. Popular examples are
pearson correlation (PC) [26], vector similarity and various
extensions of them [30]. Saewar et al. [27] and Deshpande
et al. [7] compute item-item similarities and obtain the pre-
dictions or top-N recommendation via item-based ways.

Model based algorithms, in contrast, utilize the collection

of training data to learn a model first and then use it to
make predictions instead of directly manipulating the orig-
inal database. The modeling process is always performed
by machine learning or data mining techniques such as the
Bayesian model [11], Regression-based model [32], Latent
Semantic model [5,12] and Clustering model [9,23,29,31].

Although traditional CF models have been successful in
many areas, they all have to face several critical problems:
data sparsity, scalability and cold-start. To alleviate the
sparsity problem, many matrix factorization models are used,
such as the Singular Value Decomposition (SVD) [28], Non-
negative Matrix Factorization (NMF) [4,16], MaximumMar-
gin Matrix Factorization (MMMF) [25] and Nonparametrix
pPCA (NPCA) [33]. These models usually reduce the di-
mensions of the user-item matrix and smoothing out the
noise information, which is also helpful to algorithm scala-
bility. Many evidence have shown that many matrix factor-
ization models outperform traditional CF methods in pre-
diction accuracy. The cold-start situation is very common
for real recommender systems, since they have many new
users and new items in different time windows. For a new
user with only a few user-generated information, normal
CF methods can not capture his (her) personal taste accu-
rately. An intuitive solution is to adding the content-based
characteristics to collaborative models. Typical works us-
ing content information include [2, 21]. Personality diag-
nosis (PD) [24] is a special kind of hybrid approach which
combines memory based and model based CF methods and
retains some advantages of both algorithms. With the hot
development of Web2.0, recently many new collaborative fil-
tering algorithms are designed to integrate social or trust
information [15,18].

2.2 Clustering Collaborative Filtering Models
The most related model to this paper is the clustering

collaborative filtering model. A cluster is a collection of
data samples having similar features or close relationships.
For the collaborative filtering task, clustering is often an
intermediate process and the resulting clusters are used for
further analysis [30].

In general, the clustering models can be classified into
several different types. We draw the sketch maps in Fig. 2.
The most straightforward way is to partition the users into
distinct groups. Sarwar et al. [29] cluster the complete user
set based on user-user similarity and use the cluster as the
neighborhood. In contrast, O’Connor et al. [23] use cluster-
ing algorithms to partition the set of items based on user
rating data. Unger et al. [31] propose to cluster users and
items separately by variants of k-means and Gibbs sampling.
Users can then be re-clustered based on the number of items
in each item cluster they rated, and items can similarly be
re-clustered based on the number of user in each user cluster
that rated them. The above three algorithms are all one-
sided clutering, either for users or items. See Fig. 2(a) and
Fig. 2(b), after some row (column) exchanges, we get the
hard partitions of users (items).

Some other works consider of the two-sided clustering
model. Typical works are [9, 13]. We could see these meth-
ods as co-clustering (CoC) based CF models, since their clus-
tering strategies are traditional co-clustering, e.g., the key
idea of [9] is to simultaneously obtain user and item neigh-
borhoods via co-clustering and generate predictions based
on the average ratings of the co-clusters while taking the bi-
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(a) User Clustering (b) Item Clustering (c) Co-Clustering (d) Biclustering (e) Multiclass CoC

Figure 2: Comparison of five clustering models for collaborative filtering.

ases of the users and items into account. See Fig. 2(c), after
some row and column exchanges, we can get the distinct co-
clusters with both users and items (we call them user-item
subgroups in this paper).

One big limitation of the co-clustering approaches as well
as the above one-sided clustering approaches is that, each
user or item can be clustered into one single cluster only,
whereas some recommender systems may benefit from the
ability of clustering users and items into several clusters at
the same time [1]. For example, in a movie web site, a user
may be interested in multiple topics of movies and a movie
can be liked by different groups of users from different as-
pects. So the multiclass co-clustering (MCoC) model, which
is shown in Fig. 2(e), is more reasonable. It allows each user
and item to be in multiple subgroups at the same time, i.e.,
subgroups may have some overlaps.

The last clustering type is the biclustering model (see
Fig.2(d)) which is well studied in gene expression data anal-
ysis [6, 19]. It seems similar to MCoC – a bicluster is a
subgroup of genes (users) and conditions (items). But they
are different for that biclustering usually finds some max-
imum biclusters with low residue scores [6], i.e., biclusters
always can not cover all rows and columns.

In this paper, we pay our most attention to the model of
multiclass co-clustering.

3. OUR ALGORITHM
Our primary goal is to find potential user-item interest

subgroups flooded in the large user-item matrix, and then
use them to improve the performance of collaborative rec-
ommender systems. There are two main questions:

1. How to find meaningful user-item subgroups from lim-
ited information? The only information we have is the
user-item matrix, such as ratings for movies and lis-
tening times for music.

2. How to combine user-item subgroups with existing col-
laborative filtering methods and improve their perfor-
mance? We need a strategy to handle the cases that
one user and one item can both belong to one, two (or
more), or zero subgroups.

Our algorithm is to answer these two questions – we find
user-item subgroups by solving a Multiclass Co-Clustering
problem (MCoC) and propose an unified strategy to com-
bine subgroups with existing collaborative filtering methods.
Considering that this paper is just an exploration work –
to explore a new improving space for collaborative recom-
mender systems, we choose to pay our attention to the pure
CF situation.

3.1 Problem Formulation of MCoC
Suppose there are n users and m items, and the only in-

formation we have is the user-item matrix T ∈ R
n×m where

each element Tij is the preference of user i to item j. We use
ui to denote the i-th user and yj to denote the j-th item.

The goal is to simultaneously divide the users {u1, · · · ,un}
and items {y1, · · · ,ym} into c subgroups. This is a bit like
the Co-Clustering (CoC) problem [8, 9, 34], but the main
difference and also the key point is that any user or item
can appear in multiple subgroups. So we call it Multiclass
Co-Clustering problem, or just MCoC for short.

We want the MCoC result be represented by a partition
matrix P ∈ [0, 1](n+m)×c, where each element Pij is an indi-
cator value of the corresponding entry (a user or an item).
Pij > 0 if the i-th entry belongs to the j-th subgroup, and
Pij = 0 otherwise. The magnitude of Pij shows the relative
weight of entry i belonging to subgroup j, thus each row of
P sums to 1. If we fix the number of subgroups that each
entry belongs to, e.g., k subgroups (1 ≤ k ≤ c), then we
get exactly k non-zeros in each row of P . When k = 1,
the problem above is equal to the traditional Co-Clustering
problem. Naturally, partition matrix P can be written as

P =

[
Q
R

]
, (2)

where Q ∈ [0, 1]n×c is the partition matrix of users and
R ∈ [0, 1]m×c is the partition matrix of items.

3.2 Solution of MCoC
We use a very simple but reasonable method to solve

MCoC Problem. However, better methods could be explored
to further improve the quality of user-item subgroups in fu-
ture work. Intuitively, if one user and one item have a high
rating score, they are very likely to appear in one or more
subgroups together. In order to make those strongly asso-
ciated users and items together, inspired by [10, 34, 35], we
adopt the following loss function to model the user-item re-
lationships:

ε(Q,R) =

n∑
i=1

m∑
j=1

(‖ qi√
Drow

ii

− rj√
Dcol

jj

‖2Tij), (3)

where qi is the i-th row of Q and rj is the j-th row of R.
Drow ∈ R

n×n is the diagonal degree matrix of users with
Drow

ii =
∑m

j=1 Tij and Dcol ∈ R
m×m is the diagonal degree

matrix of items with Dcol
jj =

∑n
i=1 Tij .

The loss function is easy to understand. Since we have
only the user-item interaction information, minimizing Eq.(3)
means that the indicator vectors of user i (qi) and item j (rj)
should be very close if they have a high rating score. And
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for those missing value pairs, there is no restriction to their
indicator vectors. By some simple linear algebra derivations,
we can get :

ε(Q,R)

=
n∑

i=1

‖qi‖2 +
m∑

j=1

‖ri‖2 −
n∑

i=1

m∑
j=1

2qT
i rjTij√

Drow
ii Dcol

jj

= Tr(QTQ+RTR−QTSR)

= Tr

(
[QT RT ]

[
In −S
−ST Im

] [
Q
R

])
= Tr(P TMP ),

(4)

where

S = (Drow)−
1
2 T (Dcol)−

1
2 , M =

[
In −S
−ST Im

]
. (5)

In is an identity matrix in the size of n×n. We have several
strong constraints on the partition matrix P (described in
section 3.1), so finally, we are to solve the following opti-
mization problem:

min
P

Tr(PTMP )

s.t. P ∈ R
(m+n)×c,

P ≥ 0,
P1c = 1m+n,
|Pi| = k, i = 1, . . . , (m+ n).

(6)

The combined constraints P ≥ 0 and P1c = 1m+n force each
element of P to stay in the range of [0, 1]. Parameter c is the
total number of subgroups and k is the number of subgroups
each user or item can join in (1 ≤ k ≤ c). Notation | · | is the
cardinality constraint which means the number of non-zero
elements of a vector. Vector Pi is the i-th row of partition
matrix P .

Solving objective function (6) directly is not easy, since
it is nonconvex and discontinuous. In this paper, we pro-
pose to use an efficient approximation method to solve this
problem. Similar to the spectral clustering model [22] and
the bipartite graph model [8], our method has two primary
stages:

Stage 1. Mapping all users and items into a shared low-
dimensional space.

According to the objective function (6), we think that the
optimal r-dimensional embedding X∗, which preserves the
user-item preference information, could be got by solving
the following problem:

min
X

Tr(XTMX)

s.t. X ∈ R
(m+n)×r, XTX = I.

(7)

The constraint XTX = I is to avoid the arbitrary scaling
of X. From Eq. (3) and (4), we find that M is a positive
semidefinite matrix. The optimal solution X∗ that mini-
mizes the objective function (7) is given by the solution of
eigenvalue problemMX = λX. So X∗ = [x1, . . . ,xr], where
x1, . . . ,xr are the smallest eigenvectors of matrix M sorted
by their corresponding eigenvalues.

Stage 2. Discovering subgroups.
As long as we have the unified representation X of users

and items, we need to find the user-item subgroups, i.e., to
compute the partition matrix P .

There are two cases: a user or an item can belong to one
single class or multiple classes. For single class case, we use
k-means to cluster the data X. Then each row of P has only
one positive number and the index is the cluster label. For
multiple class case, which is the main focus of this paper,
we choose to use the fuzzy c-means [17], a soft clustering
method. The algorithm is an iterative optimization that
minimizes the criterion function:

Jm(P, V ) =

m+n∑
i=1

c∑
j=1

(Pij)
ld(xi,vj)

2, (8)

where Pij is the membership of entry xi (a user or an item)
in cluster j, and vj is the center of cluster j. The function
d is a distance function which can be predefined and the
parameter l is a weighting exponent controlling the fuzziness
of the resulting partition. In our method, d is the Euclidean
distance and l is 2. During each iteration, we update P and
V as follows:

Pij = (d(xi,vj))
2/(1−l)

/[
c∑

k=1

(d(xi,vk))
2/(1−l)

]
, (9)

and

vj =

[
m+n∑
i=1

P l
ijxi

]/[
m+n∑
i=1

P l
ij

]
, (10)

for all i = 1, . . . , (n + m), and j = 1, . . . , c. The algorithm
is stopped if the improvement of objective function values
at two successive iteration steps is less than a threshold ε.
In our experiments, ε is 1e-5. Then for each row of P , only
the top-k biggest elements are retained and each row sums
to one (normalized).

3.3 Recommendation with Subgroups
By now we have find some user-item subgroups, then, we’ll

describe how to combine them with existing collaborative
recommender systems. The main idea is applying some CF
algorithm in each subgroup and try to merge the prediction
results together. For a pure CF method, the only input is
the user-item matrix and the output is the prediction score
for each missing value in the matrix. Actually, for each sub-
group, we could get a submatrix from the original big user-
item matrix T , i.e., we could adopt any CF method without
any modification. This is a big benefit for us that we can
pay our most attention to subgroup discovering, for better
subgroup quality, but concern little about the effectiveness
of a CF method.

The last problem is how to merge the prediction results
from all subgroups. One user and one item can belong to
one , two (or more), or zero subgroups, so we propose an
unified framework to handle all cases. Let Pre(ui, yj , k) be
the prediction score of user i to item j in subgroup k by
some CF method, and Yij be the final prediction score of
user i to item j, we define

Yij =

⎧⎪⎪⎨
⎪⎪⎩

∑
k Pre(ui,yj , k) · δik if ui and yj belong to

one or more subgroups,

0 otherwise.

(11)
In the above formulation, δik is an indicator value of user i
representing whether subgroup k is his (her) most interesting
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subgroup in the shared subgroups with item j. Then

δik =

{
1 if Pik is max(Rui

⋂
Qyj ),

0 otherwise.
(12)

where operator
⋂

returns the index of non-zero overlap items
of two vectors and function max(·) returns the maximal ele-
ment value in a vector and matrix P is the partition matrix
which has been described above. This simple framework can
handle different overlapping cases for users and items.

We could see δik as a weight of the prediction Pre(ui,yj , k),
but in this paper we just use the hard weight, 0 or 1. The
performance of using a soft weight could be investigated in
future work. By the strategy above, we get a lot of (but
not all) prediction scores for each user and commonly the
items (un-rated) having top scores are recommended to the
user. This is the end of our method. It is independent of
any specific CF algorithm.

3.4 Discussion
In this section, we will talk about several detailed issues

for our proposed approach.
By Eq.(11), we just consider of those correlated users and

items – an item could be a candidate recommendation item
for a user if and only if they both belong to one or more
subgroups. But occasionally, some subgroups may have very
few elements due to the unbalance of clustering, e.g., less
than 10. So under the extreme case, some user may have
not enough correlated items for recommendation. We could
remove the small subgroups or recompute the fuzzy c-mean
process, or just make an easy solution – add some popular
items to those users for this time of recommendation. The
latter one is a good strategy for a real recommender system.
But our goal is to investigate the usefulness of subgroups,
so we don’t add any additional uncorrelated items.

Although the user-item interaction data is very sparse,
our method utilize the dimensionality reduction technique
to alleviate the data sparsity problem. Even for some new
users with very few interaction data (we call it Cold Start
problem), the algorithm is still competent for this case and
recommend items for them in the same way. Moreover, since
users and items belong to multiple groups, most submatri-
ces are more dense but smaller than the original user-item
matrix. So the sparsity and scalability problems for some
recommendation methods are both reduced in a degree in
our framework.

The last critical issue is the computational cost. Our
method seems to be costly – both the eigenvector compu-
tation and fuzzy clustering are time consuming. However,
due to the high sparsity of the user-item matrix, we just re-
quire very few eigenvectors, e.g., 3, for data representation
(see section 5.1.2). Clustering a data set with only 3 dimen-
sions is always very fast. So for a common size data set,
our framework will not affect the recommender system’s ef-
ficiency. Both the sparsity and computational cost are com-
pared by experiments in section 5.5.

3.5 Algorithm Overview
Here we make a brief summary of our framework for top-N

recommendation. In practice, we do following steps:
Step1: Dimensionality reduction.

1a. Calculate matrix S by normalizing the user-item ma-
trix T and construct matrix M . See Eq.(5).

1b. Compute the r smallest eigenvectors of M: x1, . . . ,xr,
and form the shared low dimensional representation
X∗ = [x1, . . . ,xr]. See Eq.(7)

Step2: Finding subgroups.

2a. Cluster users and items into c subgroups by fuzzy c-
means for multi-class case or by k-means for single-
class case. See Eq.(9) and (10). So we get the partition
matrix P describing group information of all the users
and items.

Step3: Top-N recommendation.

3a. Run any CF method on each submatrix (subgroup) to
predict missing values, and merge the results by an
unified framework. See Eq.(11).

3b. For each user, N items with highest predict scores are
recommended.

4. EXPERIMENTAL SETTINGS
We conduct many experiments to evaluate the effective-

ness of the proposed method. In this chapter, we describe
the experimental settings in detail.

4.1 Data Description
Our experiments are performed on three real data sets:

MovieLens-100K4, MovieLens-1M and Lastfm.
The MovieLens-100K data set is a classic movie rating

data set collected through the MovieLens web site. It con-
sists of 100,000 ratings (1-5) from 943 users on 1,682 movies
and each user has rated at least 20 movies.

The MovieLens-1M data set is a larger data set which
consists of 1,000,209 ratings (1-5) from 6,040 users on 3,952
movies and each user has rated at least 20 movies.

We collected Lastfm data set from Last.fm web site in
December 2009. We firstly crawled the listening counts of
2,598 users on 30,727 songs. Then we reduced the candidate
set of songs and users by restricting that each song has been
listened by more than 30 users and each user has listened
more than 50 songs. So we get a subset of 2,059 users and
4,173 songs. The basic statistics of these three data sets are
shown in Table 1.

Table 1: Basic statistics of the data sets MovieLens-
100K, MovieLens-1M and Lastfm.

ML-100K ML-1M Lastfm
# of users 943 6,040 2,059
# of items 1,682 3,952 4,173
# of ratings 100,000 1,000,209 257,117
# of ratings per user 106.04 165.60 124.87
# of ratings per item 59.45 253.09 61.61

4.2 Comparisons
We investigate many popular CF methods including two

memory based algorithms with User-based and Item-based,
one hybrid method of personality diagnosis (PD), four well
known matrix factorization methods (model based) of SVD,

4http://www.grouplens.org/
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NMF, MMMF, NPCA, and also recommendation by popu-
larity (POP). Later we combine these recommendation meth-
ods with our framework and check whether their perfor-
mance is improved.
User-based: For user-based algorithm, we use a represen-
tative similarity metric – pearson correlation, to measure the
user-user similarities and use the user-based model in [14].
Item-based: For item-based algorithm, we use the vector
cosine similarity model to compute the item-item similarities
and use the item-based model in [14].
PD: Personality diagnosis is a representative hybrid CF ap-
proach that combines memory based and model based algo-
rithms and retains some advantages of both algorithms [24].
We adopt the procedure in the CF toolkit5 for PD.
SVD: This is maybe the most popular collaborative filtering
technique. Once the user-item matrix is decomposed into
three component matrices with k features: T = UkSkV

T
k ,

the prediction score of user i to item j is Predij = ri +

Uk

√
Sk

T
(i) · √SkV

T
k (j), where ri is the i-th row average of

T , and T is the normalization of T according to [28].
NMF: We use the most commonly used algorithm for Non-
negative Matrix Factorization described in [16]. Similar to
SVD, the user-item matrix is decomposed into two compo-
nent matrices with the base matrix having k bases. For both
SVD and NMF, we use k = 6.
MMMF: The Maximum Margin Matrix Factorization is a
state-of-the-art algorithm with good collaborative prediction
performance. We use the procedure in [25].
NPCA: The algorithm was proposed in [33] and according
to the authors, it produced one of the most accurate predic-
tion results among matrix factorization methods.
POP: Recommendation by popularity is wildly used in many
recommender systems. Usually, it has a competitive recom-
mendation precision due to the hot effect – hot items are
more likely to be clicked. But it’s result could not reflect
personalization. In this paper, we use the number of ratings
for each item as the popularity score.

4.3 Evaluation Metric Discussion
Many previous works compute Root Mean Square Error

(RMSE) or Mean Absolute Error (MAE) to evaluate ac-
curacy of the predict scores. In our consideration, they
are good measurements for prediction or matrix completion
task, but not for a general top-N recommendation task. For
a real top-N recommender system, no matter what strategy
it adopts, the final output for a user is just a ranked list
of items, e.g., a list of movies in a video web site, a list of
songs in a music web site, or a list of hotels in a travel web
site. The low error prediction scores can’t guarantee a good
recommendation list, e.g., prediction score 3 and 5 have the
same absolute error with the test score 4 (ground truth),
but their positions in the ranked list are extremely different
in a 1-5 rating system. So the most important is to evaluate
the quality of the ranked list.

The click action at a recommended item maybe the most
straightforward but useful feedback from the user – at least
he (she) is interested in the item. The click may cause a
user to listen to a song in a music web site or buy a product
in a e-commerce web site. So if one recommended item is
clicked, it is treated as a hit item, otherwise it’s a miss item.
But we don’t have the click information, so we use the test

5http://www.cs.cmu.edu/ lebanon/IR-lab.htm

data (e.g., ratings) to approximate the click action – if one
recommended item has a rating score on the test data, it’s
a hit item, otherwise it’s a miss item.

To make the experimental results comparable, we use many
well known metrics to measure the ranked list. Similar to
information retrieval evaluation, we use Precision@K to eval-
uate the quality of the top K recommended items. Consid-
ering that some users may have a large number of ratings in
the test data while some other users just have a few, so F1

score may be more reasonable. MAP (Mean Average Preci-
sion) provides a single-figure measure of quality across recall
levels [20]. For a single user j, Average Precision is the av-
erage of precisions computed at the point of each correctly
recommended item (d1, . . . , dmj) in the ranked list, and this
value is then averaged over the user set U :

MAP(U) =
1

|U |
|U|∑
j=1

1

mj

mj∑
k=1

Precision(Rjk), (13)

where Rjk is the set of ranked results from the top result
until you get to item dk. NDCG [20] is a wildly used metric
for a ranked list. NDCG@K is defined as:

NDCG@K =
1

IDCG
×

K∑
i=1

2ri−1

log2(i+ 1)
, (14)

where ri is 1 if the item at position i is a hit item and 0
otherwise. IDCG is chosen so that the perfect ranking has
a NDCG value 1.

5. EXPERIMENTAL RESULTS AND
ANALYSIS

We run many state-of-the-art recommendation methods
and check whether their top-N recommendation performance
are improved after using our framework. After that, we
make an empirical analysis to the results, as well as the
sparsity and scalability.

5.1 Performance on MovieLens-100K
The MovieLens-100K data set is divided into five disjoint

splits. Each split is used for testing and the rest four for
training, so there are five different training/testing sets. We
repeat our experiment with each set and average the re-
sults. In Fig.3 we plot MAP of the top-N recommendation
results versus different number of subgroups by eight meth-
ods described above. In each subgraph, the horizontal bro-
ken line represents original performance of that method, and
the other two lines represent the performance of using sub-
groups. The red line with small squares is for the case that
users and items belong to multiple classes and the blue line
for single class. From the results, we find that our method
has positive effect for most of the methods including POP,
User-based, SVD, NMF, MMMF, and PD. However it has
unstable effect to NPCA and has negative effect to Item-
based recommendation method.

Then in Table 2, we record other three evaluation metrics:
Precision, NDCG and F1 score on position 10. We compare
the performance of using 15 and 25 subgroups with the base
performance. The bold number indicates that its value has
an obvious improvement than the base value (difference ≥
0.01). The magnitude of Precision directly shows the hit
rate of top-10 recommendation, while F1 score, which both
considering of the corresponding recall value, is more fair
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Figure 3: Comparisons of the recommendation performance on MovieLens-100K data set by eight CF meth-
ods. In each subgraph, the black broken line shows the original performance while the red (with squares)
and blue real lines show the performance of using subgroups for multi-class and single-class respectively. The
number of subgroup varies along the horizontal axis.

Table 2: Performance Comparisons on MovieLens-100K in terms of Precision, F1 and NDCG. 15 and 25
subgroups are used for our approach. The bold number indicates an obvious improvement (difference ≥ 0.01).

Recommendation base performance performance on 15 subgroups performance on 25 subgroups
Method P@10 NDCG@10 F1@10 P@10 NDCG@10 F1@10 P@10 NDCG@10 F1@10
POP 0.222 0.301 0.118 0.258 0.351 0.139 0.282 0.373 0.156

User-based 0.221 0.333 0.109 0.235 0.347 0.121 0.244 0.351 0.128
Item-based 0.335 0.421 0.188 0.302 0.394 0.172 0.292 0.384 0.165

SVD 0.292 0.395 0.149 0.304 0.409 0.160 0.296 0.414 0.154
NMF 0.341 0.422 0.189 0.340 0.416 0.190 0.324 0.411 0.179

MMMF 0.176 0.295 0.082 0.199 0.306 0.103 0.211 0.317 0.112
NPCA 0.151 0.283 0.066 0.151 0.297 0.067 0.157 0.303 0.074
PD 0.184 0.293 0.092 0.205 0.297 0.114 0.216 0302 0.121

and comprehensive. But to evaluate the quality of a ranked
list, only the hit rate is not enough – a hit item in position
1 or position 10 has the same Precision@10. Thus NDCG
is more meaningful to compare the ranked lists. From the
NDCG values in Table 2, we can see that our method has
positive effect for the methods of POP, User-based, SVD,
MMMF, NPCA and PD, but has negative effect for NMF
and Item-based methods.

5.1.1 Multi-class vs. Single-class
An interesting phenomenon is that when the number of

subgroups (c) is very small, e.g., just 2 or 3, the performance
of our method with single-class is very good (see the blue
lines in Fig.3). This is easy to understand: one people’s in-
terests are usually concentrative on some topics or some cor-
related items, but not dispersive over all the item set. Clus-
tering with a small number of clusters actually do the work of
denoising – separating uncorrelated items into different sub-
groups. This result is conform with some previous clustering
CF models [9, 29]: they have good performance with small
number of clusters, e.g., in [9], the number of clusters is just
3. As c increases, the total number of items in each cluster
decreases, which makes the performance dropped quickly.

For some recommendation methods, such as POP, User-
based and MMMF, the performance of our method with
multi-class is just opposite to the single-class: bad in small
subgroup number but good in large number. In our consider-
ation, that means small number of subgroups can not clearly
partition different user-item interest subgroups. Under such
condition, the fuzzy weights are inaccurate to capture the
user’s preferences. As c increases, better subgroups are got
and the fuzzy weights are more meaningful. Then for those
algorithms, the effect of our method becomes more and more
evident.

5.1.2 Parameter Selection
Parameter selection plays a key role to many algorithms.

Sometimes, one algorithm’s performance may drastically vary
with different choices of parameters. For our method, there
are two main parameters: r and k. Parameter r is the num-
ber of eigenvectors computed in the dimensionality reduc-
tion step. Fig.4 shows the performance of combining MCoC
with SVD by different number of dimensionality r. From the
figure, we find that the performance is competitive when us-
ing just a few eigenvectors, so in our experiments, we just
select r = 3. Parameter k is the number of subgroups that
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Table 3: Performance Comparisons on MovieLens-1M in terms of MAP and NDCG. 5, 15 and 25 subgroups
are used for our approach. The bold number indicates an obvious improvement (difference ≥ 0.01).

Recommendation base 5 subgroups 15 subgroups 25 subgroups
Method NDCG@10 MAP NDCG@10 MAP NDCG@10 MAP NDCG@10 MAP
POP 0.379 0.264 0.391 0.272 0.419 0.294 0.429 0.300

User-based 0.368 0.201 0.382 0.213 0.385 0.231 0.409 0.246
Item-based 0.493 0.368 0.465 0.348 0.444 0.334 0.479 0.356

SVD 0.477 0.311 0.492 0.334 0.506 0.342 0.497 0.343
NMF 0.480 0.342 0.496 0.363 0.487 0.361 0.492 0.368

MMMF 0.329 0.220 0.309 0.207 0.361 0.245 0.355 0.244
NPCA 0.311 0.202 0.299 0.197 0.352 0.154 0.326 0.187
PD 0.293 0.213 0.297 0.222 0.299 0.225 0.303 0.227

each user or item can belong to. For different subgroup
number c, we set k = �log2(c)�.
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Figure 4: Performance on different number of di-
mensionality r with 10 and 20 subgroups.

5.2 Performance on MovieLens-1M
MovieLens-1M is a large data set with more distinct users

than items. It is randomly divided into 60% training data
and 40% testing data. Parameters are the same with those
in section 5.1.2. We record the MAP and NDCG@10 of
each algorithm’s result before and after using our method
in Table 3. We select to use 5, 15 and 25 subgroups for our
approach. The bold number indicates that its value has an
obvious improvement than base value (difference ≥ 0.01).
From NDCG values, we find that our method has positive
effect to POP, User-based, SVD, NMF, MMMF, NPCA and
PD. But from the MAP values, our method’s performance
falls in NPCA. That means in MovieLens-1M data set, by
using MCoC, the rate of hit items in NPCA’s recommenda-
tion list is reduced, whereas the positions of hit items are
moved up. Overall, the performance of our approach on
MovieLens-1M is similar to that on MovieLens-100K, since
they are from the same web source.

5.3 Performance on Lastfm
Lastfm data set is quite different with the above two Movie-

Lens data sets. Its user-item data is not user specified rat-
ings. In last.fm web site, we can get one user’s listening
logs. So we use the listening count as the implicit inter-
action data and form the user-item listening matrix. It is
randomly divided into 60% training data and 40% testing
data. Parameters are the same with those in section 5.1.2.

Obviously, the elements of the user-item matrix vary in a
large range – for a user, some music are just listened once
and some are listened more than one hundred times. So how
to use the user-item matrix is a problem. Besides to use the
original listening data, we use the re-scaled data to alleviate

the big variance. Let T̂ij be the new element of user-item
matrix T , then

T̂ij = log2(Tij + 1). (15)

By the equation, zero values will be still zero and positive
values will be re-scaled by logarithm. This is quite reason-
able for dealing with the listening number: listening one song
10 times means likeness for some users, but does listening
100 times for some other users means a 10 times stronger
likeness? Sometimes, it doesn’t mean a strong likeness for
those users, but just means that they are active users. The
usage of re-scaling could be observed from Table 4. Most al-
gorithms’ base performance are improved in a large degree
after using the re-scaled data.

Due to the uncertain range of the data, we can’t use the
method of PD, since its procedure requires to input the num-
ber of distinct preference values. We use the rest seven meth-
ods in Lastfm data set and the results are showed in Table 4.
From NDCG and MAP values, we find that our approach is
useful for the methods of POP, User-based, SVD and NMF,
but not for Item-based, MMMF and NPCA.

5.4 Results Analysis
The results on two MovieLens data sets (100K and 1M)

and Lastfm data set evidently show that our approach has
positive effect for many CF methods, but not for all.

Among these methods, the Item-based method is a very
special one – our approach always lowers its performance
on all the data sets. This is mainly because the Item-based
method depends on the prior information of one user’s his-
tory ratings and all item-item similarities, i.e., it doesn’t
benefit from the neighborhood relationships as traditional
CF models does. When we use the subgroups, the prior in-
formation is reduced for each user, which negatively affects
the recommendation. But for the other seven methods, our
approach has positive effect for them on one or more data
sets. The Item-based method has almost the best base per-
formance on all the data sets. This proves our assumption
that one user’s interests are concentrative on some topics or
some correlated items, because Item-based method tends to
recommend similar items agreeing with the user’s preference
history. However, although Item-based method is good in
precision, it is hard to extend the selection range for the
user, i.e, the diversity of the recommendation is low. In our
consideration, a good recommendation list should consider
of both relevance and diversity.

Our approach acts differently on explicit rating data and
implicit listening data. On explicit rating data, it is useful
for most of the methods. On implicit listening data, it is only
useful for four methods, but the improvement is relatively
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Table 4: Performance Comparisons on Lastfm in terms of MAP and NDCG. 30 subgroups are used for our
approach. The left part is the result of using original data and the left part is the result of using normalized
data. The bold number indicates an obvious improvement (difference ≥ 0.01) and symbol * indicates a big
improvement (difference ≥ 0.05).

Original Data Re-scaled Data
Recommendation base 30 subgroups base 30 subgroups

Method NDCG@10 MAP NDCG@10 MAP NDCG@10 MAP NDCG@10 MAP
POP 0.224 0.107 0.261 0.122 0.224 0.107 0.277* 0.157*

User-based 0.180 0.057 0.221 0.104 0.337 0.107 0.320 0.171*
Item-based 0.602 0.458 0.544 0.423 0.694 0.545 0.625 0.493

SVD 0.230 0.096 0.345* 0.191* 0.340 0.123 0.511* 0.297*
NMF 0.230 0.097 0.347* 0.200* 0.380 0.213 0.552* 0.403*

MMMF 0.219 0.121 0.193 0.082 0.294 0.155 0.241 0.116
NPCA 0.234 0.081 0.170 0.078 0.598 0.475 0.467 0.310

large, e.g., the NDCG improvement of SVD on re-scaled
Lastfm data is very large (difference > 0.15).

At last, we find that people’s behaviors are largely af-
fected by the factor of popularity – for all the three data
sets, POP method has a relatively good performance. And
the popularity in a subgroup still works, so POP is always
improved by our approach. Actually, both the popularity
and personal taste can attract the user to click an item in a
real web system.

5.5 Sparsity and Scalability
In Table 5 we record the sparsity (percent of zero elements

in a matrix) of original user-item matrix and the average
sparsity of subgroups, as well as the computational time of
MCoC. 10, 20 and 30 subgroups are used for comparison.
Each number of our method are the average result of ten
independent runs. Experiments are run on a computer with
double 3.16 GHz CPU and 3 GB RAM.

From the results, we find that when more subgroups are
used, each subgroup becomes more dense, which is good for
reducing data sparsity problem for some CF methods. Note
that when 30 subgroups are used, the sparsity of Lastfm is
very low. In our opinion, this is one reason of why MCoC
has a big improvement for some CF methods on Lastfm.
The short runtime of MCoC shows its good efficiency.

Table 5: Sparsity and runtime comparisons on
MovieLens-100K, MovieLens-1M and Lastfm data
sets. Term subg is short for subgroups.

ML-100K ML-1M Lastfm
Base 0.950 0.975 0.982

Sparisity 10 subg 0.933 0.940 0.922
20 subg 0.736 0.925 0.542
30 subg 0.652 0.838 0.325

ML-100K ML-1M Lastfm
MCoC 10 subg 0.548 3.977 2.150
Runtime 20 subg 0.853 3.778 2.769

(s) 30 subg 1.203 3.098 4.166

6. CONCLUSIONS
User-item subgroups can help to capture similar user tastes

on a subset of items. In this paper, we explore a new improv-
ing space for collaborative recommender systems – utilizing
user-item subgroups. This is a natural extension of tra-
ditional clustering CF models. Experimental results show

that using subgroups is a promising way to further improve
the top-N recommendation performance for many popular
CF methods. We expect our exploration can attract further
research or practice on the topic of clustering CF model.
Future works are needed in two main aspects: one is to find
better user-item subgroups and the other is to design new
methods to fully utilize subgroups.
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