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Abstract

Spectral clustering is one of the most popular cluster-
ing approaches. Despite its good performance, it is lim-
ited in its applicability to large-scale problems due to
its high computational complexity. Recently, many ap-
proaches have been proposed to accelerate the spectral
clustering. Unfortunately, these methods usually sacri-
fice quite a lot information of the original data, thus
result in a degradation of performance. In this paper,
we propose a novel approach, called Landmark-based
Spectral Clustering (LSC), for large scale clustering
problems. Specifically, we select p (� n) representa-
tive data points as the landmarks and represent the orig-
inal data points as the linear combinations of these land-
marks. The spectral embedding of the data can then be
efficiently computed with the landmark-based represen-
tation. The proposed algorithm scales linearly with the
problem size. Extensive experiments show the effective-
ness and efficiency of our approach comparing to the
state-of-the-art methods.

Introduction
Clustering is one of the fundamental problems in data min-
ing, pattern recognition and many other research fields.
A series of methods have been proposed over the past
decades (Jain, Murty, and Flynn 1999). Among them, spec-
tral clustering, a class of methods which is based on eigen-
decomposition of matrices, often yields more superior ex-
perimental performance comparing to other algorithms (Shi
and Malik 2000). While many clustering algorithms are
based on Euclidean geometry and consequently place lim-
itations on the shape of the clusters, spectral clustering can
adapt to a wider range of geometries and detect non-convex
patterns and linearly non-separable clusters (Ng, Jordan, and
Weiss 2001; Filippone et al. 2008).

Despite its good performance, spectral clustering is lim-
ited in its applicability to large-scale problems due to its high
computational complexity. The general spectral clustering
method needs to construct an adjacency matrix and calcu-
late the eigen-decomposition of the corresponding Laplacian
matrix (Chung 1997). Both of these two steps are computa-
tional expensive. For a data set consisting of n data points,
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the above two steps will have time complexities of O(n2)
and O(n3), which is an unbearable burden for large-scale
applications.

In recent years, much effort has been devoted for accel-
erating the spectral clustering algorithm. A natural option
is finding the methods to reduce the computational cost of
the eigen-decomposition of the graph Laplacian. (Fowlkes
et al. 2004) adopted the classical Nyström method for ef-
ficiently computing an approximate solution of the eigen-
problem. Another option is to perform a reduction in the
data size beforehand. (Shinnou and Sasaki 2008) replaced
the original data set with a relatively small number of data
points, and the follow-up operations are performed on the
adjacency matrix corresponding to the smaller set. Based
on a similar idea, (Yan, Huang, and Jordan 2009) provided
a general framework for fast approximate spectral cluster-
ing. (Sakai and Imiya 2009) used another variant which is
based on random projection and sampling. (Chen et al. 2006;
Liu et al. 2007) introduced a sequential reduction algorithm
based on the observation that some data points converge to
their true embedding quickly, so that an early stop strategy
will speed up decomposition. However, their idea can only
tackle binary clustering problems and should resort to a hi-
erarchical scheme for multi-way clustering.

Inspired by the recent progress on sparse coding (Lee et
al. 2006) and scalable semi-supervised learning (Liu, He,
and Chang 2010), we propose a scalable spectral clustering
method termed Landmark-based Spectral Clustering (LSC)
in this paper. Specifically, LSC selects p (� n) representa-
tive data points as the landmarks and represent the remaining
data points as the linear combinations of these landmarks.
The spectral embedding of the data can then be efficiently
computed with the landmark-based representation. The pro-
posed algorithm scales linearly with the problem size. Ex-
tensive experiments show the effectiveness and efficiency of
our approach comparing to the state-of-the-art methods.

The rest of the paper is organized as follows: in Section 2,
we provide a brief review of several popular methods which
are designed for speeding up the spectral clustering. Our
Landmark-based Spectral Clustering method is introduced
in Section 3. The experimental results are presented in Sec-
tion 4. Finally, we provide the concluding remarks in Section
5.
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Related Work

Given a set of data points x1, x2, . . . , xn ∈ R
m, spectral

clustering first constructs an undirected graph G = (V,E)
represented by its adjacency matrix W = (wij)

n
i,j=1, where

wij ≥ 0 denotes the similarity (affinity) between xi and
xj . The degree matrix D is a diagonal matrix whose en-
tries are column (or row, since W is symmetric) sums of
W , Dii =

∑
j Wji. Let L = D − W , which is called

graph Laplacian (Chung 1997). Spectral clustering then use
the top k eigenvectors of L (or, the normalized Laplacian
D−1/2LD−1/2) corresponding to the k smallest eigenval-
ues1 as the low dimensional (with dimensionality k) rep-
resentations of the original data. Finally, the traditional k-
means method (Hartigan and Wong 1979) is applied to ob-
tain the clusters. Due to the high complexity of the graph
construction (O(n2)) and the eigen-decomposition (O(n3)),
it is not easy to apply spectral clustering on large-scale data
sets.

A natural way to handle this scalability issue is using the
sampling technique. The basic idea is using pre-processing
to reduce the data size. (Yan, Huang, and Jordan 2009) pro-
posed the k-means-based approximate spectral clustering
(KASP) method. It firstly performs k-means on the data set
with a large cluster number p. Then, the traditional spectral
clustering is applied on the p cluster centers. The data point
is assigned to the cluster as its nearest center.

(Shinnou and Sasaki 2008) adopted a slightly different
way to reduce the data size. Their approach firstly applies
k-means on the data set with a large cluster number p. It
then removes those data points which are close to the cen-
ters (with pre-defined distance threshold). The centers are
called committees in their algorithm. The traditional spec-
tral clustering is applied on the remaining data points plus
the cluster centers. Those removed data points are assigned
to the cluster as their nearest centers. In the experiments, we
named this approach Committees-based Spectral Clustering
(CSC).

Another way to handle the scalability issue of spec-
tral clustering is reducing the computational cost of the
eigen-decomposition step. (Fowlkes et al. 2004) applied
the Nyström method to accelerate the eigen-decomposition.
Given an n×n matrix, Nyström method computes the eigen-
vectors of a p × p (p � n) sub-matrix (randomly sampled
from the original matrix). The calculated eigenvectors are
used to estimate an approximation of the eigenvectors of the
original matrix.

All these approaches used the sampling technique. Some
key data points are selected to represent the other data
points. In reality, this idea is very effective. However, a lot
of information of the detailed structure of the data is lost in
the sampling step.

1It is easy to check that the eigenvectors of D−1/2LD−1/2 cor-
responding to the smallest eigenvalues are the same as the eigen-
vectors of D−1/2WD−1/2 corresponding to the largest eigenval-
ues (Ng, Jordan, and Weiss 2001).

Landmark-based Spectral Clustering

In this section, we introduce our Landmark-based Spec-
tral Clustering (LSC) for large scale spectral clustering.
The basic idea of our approach is designing an efficient
way for graph construction and Laplacian matrix eigen-
decomposition. Specifically, we try to design the affinity ma-
trix which has the property as follows:

W = ẐT Ẑ, (1)

where Ẑ ∈ R
p×n and p � n. Thus, we can build the graph

in O(np) and compute eigenvectors of the graph Laplacian
in O(p3 + p2n). Our approach is motivated from the re-
cent progress on sparse coding (Lee et al. 2006) and scalable
semi-supervised learning (Liu, He, and Chang 2010).

Landmark-based Sparse Coding

Sparse coding is a matrix factorization technique which tries
to ”compress” the data by finding a set of basis vectors and
the representation with respect to the basis for each data
point. Let X = [x1, · · · , xn] ∈ R

m×n be the data matrix,
matrix factorization can be mathematically defined as find-
ing two matrices U ∈ R

m×p and Z ∈ R
p×n whose product

can best approximate X:

X ≈ UZ.

Each column of U can be regarded as a basis vector which
captures the higher-level features in the data and each col-
umn of Z is the p-dimensional representation of the origi-
nal inputs with respect to the new basis. A common way to
measure the approximation is by Frobenius norm of a ma-
trix ‖ · ‖. Thus, the matrix factorization can be defined as the
optimization problem as follows:

min
U,Z

‖X − UZ‖2 (2)

Since each basis vector (column vector of U ) can be re-
garded as a concept, a dense matrix Z indicates that each
data point is a combination of all the concepts. This is
contrary to our common knowledge since most of the data
points only include several semantic concepts. Sparse Cod-
ing (SC) (Lee et al. 2006; Olshausen and Field 1997) is a
recently popular matrix factorization method trying to solve
this issue. Sparse coding adds the sparse constraint on Z,
more specifically, on each column of A, in the optimiza-
tion problem (2). In this way, SC can learn a sparse rep-
resentation. SC has several advantages for data represen-
tation. First, it yields sparse representations such that each
data point is represented as a linear combination of a small
number of basis vectors. Thus, the data points can be in-
terpreted in a more elegant way. Second, sparse represen-
tations naturally make for an indexing scheme that would
allow quick retrieval. Third, the sparse representation can be
over-complete, which offers a wide range of generating el-
ements. Potentially, the wide range allows more flexibility
in signal representation and more effectiveness at tasks like
signal extraction and data compression (Olshausen and Field
1997).
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However, solving the optimization problem (2) with
sparse constraint is very time consuming. Most of the ex-
isting approaches compute U and Z iteratively. Apparently,
these approaches cannot be used for spectral clustering.

The basis vectors (column vectors of U ) have the same
dimensionality with the original data points. We can treat
the basis vectors as the landmark points of the data set. The
most efficient way to select landmark points from a data
set is random sampling. Besides random selection, several
methods were proposed for landmark points selection (Ku-
mar, Mohri, and Talwalkar 2009; Boutsidis, Mahoney, and
Drineas 2009). For instance, we can apply the k-means al-
gorithm to first cluster all the data points and then use the
cluster centers as the landmark points. But, many of these
methods are computationally expensive and do not scale to
large data sets. We therefore focus on the random selection
method, although the comparison between random selection
and k-means based landmark selection is presented in our
empirical study.

Suppose we already have the landmark matrix U , we can
solve the optimization problem (2) to compute the repre-
sentation matrix Z. By fixing U , the optimization problem
becomes a constraint (sparsity constraints) linear regression
problem. There are many algorithms (Liu, He, and Chang
2010; Efron et al. 2004) which can solve this problem. How-
ever, these optimization approaches are still time consum-
ing. In our approach, we simply use Nadaraya-Watson ker-
nel regression (Härdle 1992) to compute the representation
matrix Z.

For any data point xi, we find its approximation x̂i by

x̂i =

p∑

j=1

zjiuj (3)

where uj is j-th column vector of U and zji is ji-th ele-
ment of Z. A natural assumption here is that zji should be
larger if xi is closer to uj . We can emphasize this assump-
tion by setting the zji to zero as uj is not among the r (≤ p)
nearest neighbors of xi. This restriction naturally leads to a
sparse representation matrix Z. Let U〈i〉 ∈ R

m×r denote a
sub-matrix of U composed of r nearest landmarks of xi. We
compute zji as

zji =
Kh(xi, uj)∑

j′∈U〈i〉
Kh(xi, uj′)

j ∈ U〈i〉. (4)

where Kh(·) is a kernel function with a bandwidths h. The
Gaussian kernel Kh(xi, uj) = exp(−‖xi − uj‖2/2h2) is
one of the most commonly used.

Spectral Analysis on Landmark-based Graph

We have the landmark-based sparse representation Z ∈
R

p×n now and we simply compute the graph matrix as

W = ẐT Ẑ, (5)

which can have a very efficient eigen-decomposition. In the
algorithm, we choose Ẑ = D−1/2Z where D is the row-
sum of Z. Note that in the previous section, each column of

Algorithm 1 Landmark-based Spectral Clustering
Input:

n data points x1, x2, . . . , xn ∈ R
m;

Cluster number k ;
Output:

k clusters;
1: Produce p landmark points using k-means or random se-

lection;
2: Construct a sparse affinity matrix Z ∈ R

p×n between
data points and landmark points, with the affinity calcu-
lated according to Eq. (4);

3: Compute the first k eigenvectors of ZZT , denoted by
A = [a1, · · · , ak];

4: Compute B = [b1, · · · , bk] according to Eq. (7);
5: Each row of B is a data point and apply k-means to get

the clusters.

Table 1: Time complexity of accelerating methods
Method Pre-process Construction Decomposition

KASP O(tpnm) O(p2m) O(p3)
CSC O(tpnm) O(p2m) O(p3)

Nyström / O(pnm) O(p3 + pn)
LSC-R / O(pnm) O(p3 + p2n)
LSC-K O(tpnm) O(pnm) O(p3 + p2n)

* n: # of points; m: # of features; p: # of landmarks / centers /
sampled points; t: # of iterations in k-means.

** The final clustering is O(tnk2) for each algorithm, with k de-
note the number of clusters.

Z sums up to 1 and thus the degree matrix of W is I , i.e. the
graph is automatically normalized.

Let the Singular Value Decomposition (SVD) of Ẑ is as
follows:

Ẑ = AΣBT , (6)

where Σ = diag(σ1, · · · , σp) and σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0

are the singular values of Ẑ, A = [a1, · · · , ap] ∈ R
p×p and

ai’s are called left singular vectors, B = [b1, · · · , bp] ∈
R

n×p and bi’s are called right singular vectors.
It is easy to check that B = [b1, · · · , bp] ∈ R

n×p are
the eigenvectors of matrix W = ẐT Ẑ; A = [a1, · · · , ap] ∈
R

p×p are the eigenvectors of matrix ẐẐT ; and σ2
i are the

eigenvalues. Since the size of matrix ẐẐT is p × p, we can
compute A within O(p3) time. B can then be computed as

BT = Σ−1AT Ẑ (7)

The overall time is O(p3 + p2n), which is a significant re-
duction from O(n3) considering p � n.

Computational Complexity Analysis

Suppose we have n data points with dimensionality m and
we use p landmarks, we need O(pnm) to construct the graph
and O(p3 + p2n) to compute the eigenvectors. If we use k-
means to select the landmarks, we need additional O(tpnm)
time, where t is the number of iterations in k-means. We
summarize our algorithm in Algorithm 1 and the computa-
tional complexity in Table 1. For the sake of comparison,
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Table 2: Data sets used in our experiments
Data set # of instances # of features # of classes

MNIST 70000 784 10
LetterRec 20000 16 26
PenDigits 10992 16 10
Seismic 98528 50 3
Covtype 581012 54 7

Table 1 also lists several other popular accelerating spectral
clustering methods. We use LSC-R to denote our method
with random landmark selection and LSC-K to denote our
method with k-means landmark selection.

Experiments

In this section, several experiments were conducted to
demonstrate the effectiveness of the proposed Landmark-
based Spectral Clustering (LSC).

Data Sets

We have conducted experiments on five real-world large data
sets downloaded from the UCI machine learning repository2

and the LibSVM data sets page3. An brief description of
the data sets is listed below (see Table 2 for some important
statistics):

MNIST A data set of handwritten digits from Yann Le-
Cun’s page 4. Each image is represented as a 784 dimen-
sional vector.

LetterRec A data set of 26 capital letters in the English al-
phabet. 16 character image features are selected.

PenDigits Also a handwritten digit data set of 250 samples
from 44 writers, but it uses the sampled coordination in-
formation instead.

Seismic A data set initially built for the task of classifying
the types of moving vehicles in a distributed, wireless sen-
sor network (Duarte and Hu 2004).

Covtype A data set to predict forest cover type from carto-
graphic variables.

Each data point is normalized to have the unit norm and no
other preprocessing step is applied.

Evaluation Metric

The clustering result is evaluated by comparing the obtained
label of each sample with the label provided by the data set.
We use the accuracy (AC) (Cai et al. 2005) to measure the
clustering performance. Given a data point xi, let ri and si
be the obtained cluster label and the label provided by the
corpus, respectively. The AC is defined as follows:

AC =

∑N
i=1 δ(si,map(ri))

N

2http://archive.ics.uci.edu/ml
3http://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/datasets/
4http://yann.lecun.com/exdb/mnist/

where N is the total number of samples and δ(x, y) is the
delta function that equals 1 if x = y and equals 0 otherwise,
and map(ri) is the permutation mapping function that maps
each cluster label ri to the equivalent label from the data
corpus. The best mapping can be found by using the Kuhn-
Munkres algorithm (Lovasz and Plummer 1986).

We also record the running time of each method. All
the codes in the experiments are implemented in MATLAB
R2010a and run on a Linux machine with 2.66 GHz CPU,
4GB main memory.

Compared Algorithms

To demonstrate the effectiveness and efficiency of our pro-
posed Landmark-based Spectral Clustering, we compare
it with three other state-of-the-art approaches described in
Section 2. Following is a list of information concerning ex-
perimental settings of each method:

KASP k-means-based approximate spectral clustering
method proposed in (Yan, Huang, and Jordan 2009). The
authors have provided their R code on the website5. For
fair comparison, we implement a multi-way partition
version in MATLAB.

CSC Committees-based Spectral Clustering proposed in
(Shinnou and Sasaki 2008).

Nyström There are several variants available for Nyström
approximation based spectral clustering, and we choose
the Matlab implementation with orthogonalization (Chen
et al. 2010), which is available online6.

To test the effectiveness of the accelerating scheme, we also
report the results of the conventional spectral clustering. For
our Landmark-based Spectral Clustering, we implemented
two versions as follows:

LSC-R Short for Landmark-based Spectral Clustering us-
ing random sampling to select landmarks.

LSC-K Short for Landmark-based Spectral Clustering us-
ing k-means for landmark-selection.

There are two parameters in our LSC approach: the num-
ber of landmarks p and the number of nearest landmarks r
for a single point.Throughout our experiments, we empiri-
cally set r = 6 and p = 500.

For fair comparison, we use the same clustering result for
landmarks (centers) selection in KASP, CSC and LSC-K.
We also use the same random selection for Nyström and
LSC-R. For each landmark number p (or number of centers,
number of selected samples), 20 tests are conducted and the
average performance is reported.

Experimental Results

The performance of the five methods along with original
spectral clustering on all the five data sets are reported in
Table 3 and 4. These results reveal a number of interesting
points as follows:

5http://www.cs.berkeley.edu/˜jordan/fasp.
html

6http://alumni.cs.ucsb.edu/˜wychen/
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Table 3: Clustering time on the five data sets (s)
Data set Original KASP CSC Nyström LSC-R LSC-K

MNIST 3654.90 416.66 439.06 48.88 35.95 468.17
LetterRec 195.63 66.65 66.93 24.43 9.63 61.59
PenDigits 60.48 22.15 26.22 11.49 3.11 28.58
Seismic 4328.35 16.64 18.34 38.34 21.73 67.02
Covtype 181006.17 360.07 402.14 258.25 134.71 615.84

Table 4: Clustering accuracy on the five data sets (%)
Data set Original KASP CSC Nyström LSC-R LSC-K

MNIST 72.46 56.51 55.51 53.70 62.66 67.04
LetterRec 31.04 29.49 27.12 30.11 29.22 30.33
PenDigits 76.55 72.47 70.78 73.94 79.04 79.27
Seismic 65.23 63.70 66.76 66.92 67.60 67.65
Covtype 44.24 22.42 21.65 22.31 24.75 25.50
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Figure 1: Clustering accuracy and running time VS. # of landmark points on MNIST data set

• Considering the accuracy, LSC-K outperforms all of its
competitors on all the data sets. For example, LSC-K
achieves a 11% performance gain on MNIST over the
second best non-LSC method. It even beats the original
spectral clustering algorithm on several data sets. The rea-
son might be the effectiveness of the proposed landmark-
based sparse representation. However, running time is its
fatal weakness due to the k-means based landmarks selec-
tion.

• LSC-R demonstrates an elegant balance between running
time and accuracy. It runs much faster than the other four
methods while still achieves comparable accuracy with
LSC-K. Particularly, on Covtype, it finishes in 135 sec-
onds, which is almost 1500 times faster than the orig-
inal spectral clustering. Comparing to LSC-K, LSC-R
achieves a similar accuracy within 1/9 time on PenDigits.
Overall, LSC-R is the best choice among the compared
approaches.

• The running time difference between LSC-R and LSC-K
shows how the initial k-means performs. It is not surpris-
ing that the k-means based landmark selection becomes
very slow as either the sample number or the feature num-
ber gets large.

Parameters Selection

In order to further examine the behaviors of these methods,
we choose the MNIST data set and conducted a thorough
study.

All the algorithms have the same parameter: the num-
ber of landmarks p (or the number of centers in KASP and
CSC, or the number of sampled points in Nyström). Fig-
ure 1 shows how the clustering accuracy and running time
changes as p varying from 100 to 1200 on MNIST. It can
be seen that LSC methods (both LSC-K and LSC-R) can
achieve better clustering results as the number of landmarks
increases.

Another essential parameter in LSC is the number of near-
est landmarks r for a single data point in sparse representa-
tion learning. Figure 2 shows how the clustering accuracy
and the running time of LSC varies with this parameter. As
we can see, LSC is very robust with respect to r. It achieves
consistent good performance with the r varying from 3 to
10.

Conclusion

In this paper, we have presented a novel large scale spectral
clustering method, called Landmark-based Spectral Cluster-
ing (LSC). Given a data set with n data points, LSC selects
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Figure 2: Clustering accuracy and running time VS. # of nearest landmarks on MNIST data set

p (� n) representative data points as the landmarks and
represent the original data points as the linear sparse combi-
nations of these landmarks. The spectral embedding of the
data can then be efficiently computed with the landmark-
based representation. As a result, LSC scales linearly with
the problem size. Extensive experiments on clustering show
the effectiveness and efficiency of our approach comparing
to the state-of-the-art methods.
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