
Unsupervised Feature Selection for Multi-Cluster Data

Deng Cai Chiyuan Zhang Xiaofei He

State Key Lab of CAD&CG, College of Computer Science
Zhejiang University, China

{dengcai,xiaofeihe}@cad.zju.edu.cn, pluskid@gmail.com

ABSTRACT

In many data analysis tasks, one is often confronted with
very high dimensional data. Feature selection techniques are
designed to find the relevant feature subset of the original
features which can facilitate clustering, classification and re-
trieval. In this paper, we consider the feature selection prob-
lem in unsupervised learning scenario, which is particularly
difficult due to the absence of class labels that would guide
the search for relevant information. The feature selection
problem is essentially a combinatorial optimization problem
which is computationally expensive. Traditional unsuper-
vised feature selection methods address this issue by select-
ing the top ranked features based on certain scores com-
puted independently for each feature. These approaches ne-
glect the possible correlation between different features and
thus can not produce an optimal feature subset. Inspired
from the recent developments on manifold learning and L1-
regularized models for subset selection, we propose in this
paper a new approach, calledMulti-Cluster Feature Selection
(MCFS), for unsupervised feature selection. Specifically, we
select those features such that the multi-cluster structure
of the data can be best preserved. The corresponding op-
timization problem can be efficiently solved since it only
involves a sparse eigen-problem and a L1-regularized least
squares problem. Extensive experimental results over vari-
ous real-life data sets have demonstrated the superiority of
the proposed algorithm.

Categories and Subject Descriptors

I.5.2 [Pattern Recognition]: Design Methodology—Fea-
ture evaluation and selection

General Terms

Algorithms, Theory

Keywords

Feature selection, Unsupervised, Clustering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-1/10/07 ...$10.00.

1. INTRODUCTION
In many applications in computer vision, pattern recog-

nition and data mining, one is often confronted with very
high dimensional data. High dimensionality significantly in-
creases the time and space requirements for processing the
data. Moreover, various data mining and machine learning
tasks, such as classification and clustering, that are ana-
lytically or computationally manageable in low dimensional
spaces may become completely intractable in spaces of sev-
eral hundred or thousand dimensions [12]. To overcome this
problem, feature selection techniques [3, 4, 17, 21, 29, 30] are
designed to reduce the dimensionality by finding a relevant
feature subset. Once a small number of relevant features are
selected, conventional data analysis techniques can then be
applied.

Based on whether the label information is available, fea-
ture selection methods can be classified into supervised and
unsupervised methods. Supervised feature selection meth-
ods usually evaluate the importance of features by the cor-
relation between features and class label. The typical super-
vised feature selection methods include Pearson correlation
coefficients [23], Fisher score [12], and Information gain [11].
However, in practice, there is usually no shortage of unla-
beled data but labels are expensive. Hence, it is of great
significance to develop unsupervised feature selection algo-
rithms which can make use of all the data points. In this
paper, we consider the problem of selecting features in unsu-
pervised learning scenarios, which is a much harder problem
due to the absence of class labels that would guide the search
for relevant information.

The feature selection aims at selecting the most relevant
feature subset based on certain evaluation criteria. This
problem is essentially a combinatorial optimization prob-
lem which is computationally expensive. Traditional fea-
ture selection methods address this issue by selecting the
top ranked features based on some scores computed inde-
pendently for each feature. The scores are usually defined
to reflect the power of each feature in differentiating differ-
ent classes/clusters. This approach may work well on binary
classes/clusters problems. However, it is very likely to fail
in multi classes/clusters cases. Fig. (1) shows an intuitive
example. There are three Gaussians in a three dimensional
space. Without the label information, some popular unsu-
pervised feature selection methods (e.g ., Maximum variance
and LaplacianScore [17]) rank the features as a > b > c. If
one is asking to select two features, these methods will select
features a and b, which is obviously sub-optimal. When deal-
ing with multi classes/clusters data, different features have

333

0 5 10

0

5

10

feature a

fe
a
tu

re
 b

(a) plane a⊗ b

0 5 10

0

5

10

feature a

fe
a
tu

re
 c

(b) plane a⊗ c

0 5 10

0

5

10

feature b

fe
a
tu

re
 c

(c) plane b⊗ c

Figure 1: A failed example for binary clusters/classes feature selection methods. (a)-(c) show the projections
of the data on the plane of two joint features, respectively. Without the label information, both Maximum
variance and LaplacianScore [17] methods rank the features as a > b > c. If one is asking to select two
features, both Maximum variance and LaplacianScore methods will select features a and b, which is obviously
sub-optimal.

different powers on differentiating different classes/clusters
(e.g ., cluster 1 vs. cluster 2 and cluster 1 vs. cluster 3).
There are some studies on supervised feature selection [2]
trying to solve this issue. However, without label informa-
tion, it is unclear how to apply the similar ideas to unsuper-
vised feature selection methods.
Inspired from the recent developments on spectral analy-

sis of the data (manifold learning) [1, 22] and L1-regularized
models for subset selection [14, 16], we propose in this pa-
per a new approach, called Multi-Cluster Feature Selection
(MCFS), for unsupervised feature selection. Specifically, we
select those features such that the multi-cluster structure of
the data can be well preserved. By using spectral analysis
techniques, MCFS suggests a principled way to measure the
correlations between different features without label infor-
mation. Thus, MCFS can well handle the data with multiple
cluster structure. The corresponding optimization problem
only involves a sparse eigen-problem and a L1-regularized
least squares problem, thus can be efficiently solved. It is
important to note that our method essentially follows our
previous work on spectral regression [5] and sparse subspace
learning [6, 7].
The rest of the paper is organized as follows: in Section

2, we provide a brief review of the related work. Our multi
cluster feature selection algorithm is introduced in Section 3.
The experimental results are presented in Section 4. Finally,
we provide the concluding remarks in Section 5.

2. RELATED WORK
Feature selection methods can be classified into“wrapper”

methods and “filter” methods [19, 21]. The wrapper model
techniques evaluate the features using the mining algorithm
that will ultimately be employed. Thus, they “wrap” the
selection process around the mining algorithm. Algorithms
based on the filter model examine intrinsic properties of the
data to evaluate the features prior to the mining tasks.
For unsupervised “wrapper” methods, the clustering is a

commonly used mining algorithm [10, 13, 20, 24]. These
algorithms consider feature selection and clustering simul-

taneously and search for features better suited to clustering
aiming to improve clustering performance. However, these
“wrapper” methods are usually computationally expensive
[19] and may not be able to be applied on large scale data
mining problems. In this paper, we are particularly inter-
ested in the filter methods which are much more efficient.

Most of the existing filter methods are supervised. Max-
imum variance might be the most simple yet effective un-
supervised evaluation criterion for selecting features. This
criterion essentially projects the data points along the di-
mensions of maximum variances. Note that, the Principal
Component Analysis (PCA) algorithm shares the same prin-
ciple of maximizing variance, but it involves feature trans-
formation and obtains a set of transformed features rather
than a subset of the original features.

Although the maximum variance criteria finds features
that are useful for representing data, there is no reason to
assume that these features must be useful for discriminat-
ing between data in different classes. Recently, the Lapla-
cianScore algorithm [17] and its extensions [30] have been
proposed to select those features which can best reflect the
underlying manifold structure. LaplacianScore uses a near-
est neighbor graph to model the local geometric structure of
the data and selects those features which are smoothest on
the graph. It has been proven [17] that with label informa-
tion LaplacianScore becomes Fisher criterion score. The lat-
ter is a supervised feature selection method (filter method)
which seeks features that are efficient for discrimination [12].
Fisher criterion score assigns the highest score to the feature
on which the data points of different classes are far from
each other while requiring data points of the same class to
be close to each other.

Wolf et al. proposed a feature selection algorithm called
Q-α [29]. The algorithm optimizes over a least-squares crite-
rion function which measures the clusterability of the input
data points projected onto the selected coordinates. The op-
timal coordinates are those for which the cluster coherence,
measured by the spectral gap of the corresponding affinity

334

matrix, is maximized [29]. A remarkable property of the
algorithm is that it always yields sparse solutions.

3. MULTI-CLUSTER FEATURE

SELECTION
The generic problem of unsupervised feature selection is

the following. Given a set of points X = [x1,x2, · · · ,xN],
xi ∈ R

M , find a feature subset with size d which contains
the most informative features. In other words, the points
{x′

1,x
′

2, · · · ,x
′

N} represented in the d-dimensional space R
d

can well preserve the geometric structure as the data repre-
sented in the original M -dimensional space.
Since naturally occurring data usually have multiple clus-

ters structure, a good feature selection algorithm should con-
sider the following two aspects:

• The selected features can best preserve the cluster struc-
ture of the data. Previous studies on unsupervised fea-
ture selection [13, 20, 24] usually use Gaussian shape
clusters. However, recent studies have shown that hu-
man generated data are probably sampled from a sub-
manifold of the ambient Euclidean space [1, 25, 28].
The intrinsic manifold structure should be considered
while measuring the goodness of the clusters [22].

• The selected features can “cover” all the possible clus-
ters in the data. Since different features have differ-
ent power on differentiating different clusters, it is cer-
tainly undesirable that all the select features can well
differentiate cluster 1 and cluster 2 but failed on dif-
ferentiating cluster 1 and cluster 3.

In the remaining part of this section, we will introduce our
Multi-Cluster Feature Selection (MCFS) algorithm which con-
siders the above two aspects. We begin with a discussion
on spectral embedding for cluster analysis with arbitrary
shapes.

3.1 Spectral Embedding for Cluster Analysis
To detect the cluster (arbitrary shapes) structure of data,

spectral clustering techniques [8, 22, 26] received significant
interests recently. The spectral clustering usually clusters
the data points using the top eigenvectors of graph Laplacian
[9], which is defined on the affinity matrix of data points.
From the graph partitioning perspective, spectral clustering
tries to find the best cut of the graph so that the prede-
fined criterion function can be optimized. Many criterion
functions, such as ratio cut [8], average association [26], and
normalized cut [26] have been proposed along with the corre-
sponding eigen-problems for finding their optimal solutions.
Spectral clustering has a close connection with the stud-

ies on manifold learning [1, 25, 28], which consider the case
when the data are drawn from sampling a probability dis-
tribution that has support on or near to a submanifold of
the ambient space. In order to detect the underlying mani-
fold structure, many manifold learning algorithms have been
proposed [1, 25, 28]. These algorithms construct a nearest
neighbor graph to model the local geometric structure and
perform spectral analysis on the graph weight matrix. This
way, these manifold learning algorithms can “unfold” the
data manifold and provide the “flat” embedding for the data
points. The spectral clustering can be thought as a two-step
approach [1]. The first step is “unfolding” the data manifold
using the manifold learning algorithms and the second step

is performing traditional clustering (typically k-means) on
the “flat” embedding for the data points [22].

Consider a graph with N vertices where each vertex cor-
responds to a data point. For each data point xi, we find
its p nearest neighbors and put an edge between xi and its
neighbors. There are many choices to define the weight ma-
trix W on the graph. Three of the most commonly used are
as follows:

1. 0-1 weighting. Wij = 1 if and only if nodes i and j

are connected by an edge. This is the simplest weight-
ing method and is very easy to compute.

2. Heat kernel weighting. If nodes i and j are con-
nected, put

Wij = e
−

‖xi−xj‖
2

σ

Heat kernel has an intrinsic connection to the Laplace
Beltrami operator on differentiable functions on a man-
ifold [1].

3. Dot-product weighting. If nodes i and j are con-
nected, put

Wij = xT
i xj

Note that, if x is normalized to have unit norm, the
dot product of two vectors is equivalent to the cosine
similarity of the two vectors.

If the heat kernel or dot-product weighting is used, some
researchers [22] use a complete graph (i.e., put an edge be-
tween any two points) instead of the p-nearest neighbors
graph.

Define a diagonal matrix D whose entries are column (or
row, since W is symmetric) sums of W, Dii =

∑

j
Wij ,

we can compute the graph Lapalcian L = D −W [9]. The
“flat” embedding for the data points which “unfold” the data
manifold can be found by solving the following generalized
eigen-problem [1]:

Ly = λDy (1)

Let Y = [y
1
, · · · ,yK], yk’s are the eigenvectors of the above

generalized eigen-problem with respect to the smallest eigen-
value. Each row of Y is the “flat” embedding for each data
point. The K is the intrinsic dimensionality of the data and
each yk reflects the data distribution along the correspond-
ing dimension (topic, concept, etc.) [1]. When one tries to
perform cluster analysis of the data, each yk can reflect the
data distribution on the corresponding cluster. Thus, if the
cluster number of the data is known, the K is usually set to
be equal to the number of clusters [22].

3.2 Learning Sparse Coefficient Vectors
After we obtain the“flat”embeddingY for the data points,

we can measure the importance of each feature along each
intrinsic dimension (each column of Y), correspondingly, the
contribution of each feature for differentiating each cluster.

Given yk, a column of Y, we can find a relevant subset of
features by minimizing the fitting error as follows:

min
ak

‖yk −XTak‖
2 + β|ak| (2)

where ak is a M -dimensional vector and |ak| =
∑M

j=1
|ak,j |

denotes the L1-norm of ak. ak essentially contains the com-
bination coefficients for different features in approximating

335

yk. Due to the nature of the L1-norm penalty, some coeffi-
cients will be shrunk to exact zero if β is large enough. In
this case, we can select a subset containing the most rele-
vant features (corresponding to the non-zero coefficients in
ak) with respect to yk. Eq. (2) is essentially a regression
problem. In statistics, this L1-regularized regression prob-
lem is called LASSO [16].
The regression problem in Eq. (2) has the following equiv-

alent formulation:

min
ak

‖yk −XTak‖
2

s.t. |ak| ≤ γ
(3)

The Least Angel Regression (LARs) algorithm [14] can be
used to solve the optimization problem in Eq. (3). Instead
of setting the parameter γ, LARs provides another choice
to control the sparseness of ak by specifying the cardinality
(the number of non-zero entries) of ak, which is particularly
convenient for feature selection.
It is very possible that some features are correlated. And

the combination of several “weak” features1 can better dif-
ferentiate different clusters. Several supervised feature se-
lection algorithms [2] have been designed to address this
issue. Thus, the advantage of using a L1-regularized regres-
sion model to find the subset of features instead of evaluating
the contribution of each feature independently is clear.

3.3 Feature Selection on Sparse Coefficient
Vectors

We consider selecting d features from the M feature can-
didates. For a data set containing K clusters, we can use the
method discussed in the previous subsections to compute K

sparse coefficient vectors {ak}
K
k=1 ∈ R

M . The cardinality of
each ak is d and each entry in ak corresponds to a feature.
If we select all the features that have at least one non-zero
coefficient in K vectors {ak}

K
k=1, it is very possible that we

will obtain more than d features. In reality, we can use the
following simple yet effective method for selecting exactly d

features from the K sparse coefficient vectors.
For every feature j, we define the MCFS score for the

feature as

MCFS(j) = max
k

|ak,j | (4)

where ak,j is the j-th element of vector ak. We then sort all
the features according to their MCFS scores in descending
order and select the top d features.
We summarize the complete MCFS algorithm for feature

selection in Table (1).

3.4 Computational Complexity Analysis
Our MCFS algorithm consists of five steps as shown in

Table (1). The computational cost for each step can be
computed as follows:

• The p-nearest neighbor graph construction step needs
O(N2M) to compute the pair wise distances andO(N2p)
to find p neighbors for each data point.

• For a p-nearest neighbor graph, each row of the weight
matrixW contains approximate p non-zero values. We

1They are not very informative in differentiating different
clusters if evaluated independently

Table 1: MCFS for Feature Selection
Input: N data points with M features;

The number of clusters K;
The number of selected features d;
The number of nearest neighbors p;
the weighting scheme (and the parameter

σ if choosing to use the heat
kernel weighting),

Output: d selected features.
1: Construct a p nearest neighbor graph as

discussed in Section 3.1.

2: Solve the generalized eigen-problem in Eq. (1),
Let Y = [y

1
, · · · ,yK] contain the top K

eigenvectors with respect to the smallest
eigenvalues.

3: Solve K L1-regularized regression problems in
Eq. (3) using LARs algorithm with the
cardinality constraint set to d. We get K sparse
coefficient vectors {ak}

K
k=1 ∈ R

M .

4: Compute the MCFS score for each feature
according to Eq. (4).

5: return the top d features according to their MCFS
scores.

can use Lanczos algorithm to compute the topK eigen-
vectors of eigen-problem in Eq. (1) within O(KNp)
time [27].

• The LARs algorithm can solve the L1-regularize re-
gression problem in Eq. (3) with cardinality constraint
(cardi(ak) = d) in O(d3 + Nd2) [14]. Thus, we need
O(Kd3 + NKd2) to solve the K regression problems
in total.

• The MCFS scores for all the features can be computed
within O(KM).

• The top d features can be found within O(M logM).2

Considering K ≪ N and p is usually fixed as a constant
5, the total cost for our MCFS algorithm is:

O(N2
M +Kd

3 +NKd
2 +M logM). (5)

4. EXPERIMENTS
In this section, several experiments were performed to

show the effectiveness of our proposed MCFS for unsuper-
vised feature selection. These experiments include clustering
and nearest neighbor classification. The following four un-
supervised feature selection algorithms (filter methods) are
compared:

• Our proposed MCFS algorithm. The number of near-
est neighbors (p) is set to be 5 and we use the binary
weighting for its simplicity.

• Q-α algorithm [29], which aims to maximize the clus-
ter coherence.

2If d is very small, this cost can be reduced to O(dM)

336

0 50 100 150 200
50

55

60

65

70

75

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(a) 10 Clusters

0 50 100 150 200
50

55

60

65

70

75

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(b) 20 Clusters

0 50 100 150 200
50

55

60

65

70

75

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(c) 30 Clusters

0 50 100 150 200
50

55

60

65

70

75

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(d) 40 Clusters

Figure 2: Clustering performance vs. the number of selected features on ORL data set.

Table 3: Clustering performance (%) by using 50 features on the ORL data set. The last row shows the
performance by using all the 1024 features.

10 Clusters 20 Clusters 30 Clusters 40 Clusters Average
MCFS 79.5±6.7 74.7±2.4 75.0±1.7 74.7 76.0
Q-α 65.6±10.1 62.9±2.6 64.8±1.9 65.2 64.6

LaplacianScore 70.7±8.4 68.8±4.4 67.5±2.7 68.6 68.9
MaxVaiance 65.2±7.9 63.9±2.9 63.9±1.5 66.6 64.9

All Features 76.4±7.2 74.0±2.9 73.3±2.2 75.9 74.9

Table 2: Statistics of the four data sets
data set size # of features # of classes
ORL 400 1024 40
USPS 9298 256 10
COIL20 1440 1024 20
Isolet 1560 617 26

• LaplacianScore [17], which selects those features that
can best preserve the local manifold structure.

• Feature selection based on maximum variance (Max-
Variance), which selects those features of maximum
variances in order to obtain the best expressive power.

After selecting the features, the clustering and classification
are then performed by only using the selected features.

4.1 Data Sets
Four real world data sets were used in our experiments.

The important statistics of these data sets are summarized
below (see also Table 2):

• The first one is ORL face database which consists of a
total of 400 face images, of a total of 40 subjects (10
samples per subject). The images were captured at dif-
ferent times and have different variations including ex-
pressions (open or closed eyes, smiling or non-smiling)
and facial details (glasses or no glasses). The images
were taken with a tolerance for some tilting and rota-
tion of the face up to 20 degrees. The original images
were normalized (in scale and orientation) such that
the two eyes were aligned at the same position. Then,
the facial areas were cropped into the final images for
matching. The size of each cropped image is 32 ×
32 pixels, with 256 grey levels per pixel. Thus, each

face image can be represented by a 1024-dimensional
vector.

• The second one is the USPS handwritten digit database
[18]. A popular subset3 contains 9298 16 × 16 hand-
written digit images in total is used in this experiment.

• The third one is COIL20 image library from Columbia
which contains 20 objects. The images of each object
were taken 5 degrees apart as the object is rotated on
a turntable and each objects has 72 images. The size
of each image is 32 × 32 pixels, with 256 grey levels
per pixel.

• The fourth one is Isolet spoken letter recognition data4.
This data set was first used in [15]. It contains 150 sub-
jects who spoke the name of each letter of the alphabet
twice. The speakers are grouped into sets of 30 speak-
ers each, and are referred to as isolet1 through isolet5.
In our experiment, we use isolet1 which consists 1560
examples with 617 features.

4.2 Clustering
Clustering is a common technique for exploratory data

analysis. In this experiment, we perform k-means clustering
by using the selected features and compare the results of
different algorithms.

4.2.1 Evaluation Metrics

The clustering result is evaluated by comparing the ob-
tained label of each data point using clustering algorithms
with that provided by the data set. We use the normalized
mutual information metric (NMI) [17] to measure the per-
formance. Let C denote the set of clusters obtained from the

3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools
/datasets/multiclass.html#usps
4http://www.ics.uci.edu/∼mlearn/MLSummary.html

337

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(a) 3 Clusters

0 50 100 150 200 250
0

10

20

30

40

50

60

70

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(b) 5 Clusters

0 50 100 150 200 250
0

10

20

30

40

50

60

70

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(c) 7 Clusters

0 50 100 150 200 250
0

10

20

30

40

50

60

70

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(d) 10 Clusters

Figure 3: Clustering performance vs. the number of selected features on USPS data set.

Table 4: Clustering performance (%) by using 50 features on the USPS data set. The last row shows the
performance by using all the 256 features.

3 Clusters 5 Clusters 7 Clusters 10 Clusters Average
MCFS 72.8±16.6 59.7±10.9 62.5±2.8 61.8 64.2
Q-α 13.6±3.8 12.6±5.3 16.0±2.0 16.9 14.8

LaplacianScore 62.5±17.0 55.4±8.2 53.3±4.9 49.3 55.1
MaxVariance 67.3±16.2 58.3±7.9 59.6±5.4 58.8 61.0

All Features 68.3±15.0 60.4±10.2 64.2±3.9 61.3 63.5

ground truth and C′ obtained from a clustering algorithm.
Their mutual information metric MI(C,C′) is defined as fol-
lows:

MI(C,C′) =
∑

ci∈C,c′
j
∈C′

p(ci, c
′

j) · log2
p(ci, c

′

j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a data point
arbitrarily selected from the data set belongs to the clusters
ci and c′j , respectively, and p(ci, c

′

j) is the joint probability
that the arbitrarily selected data point belongs to the clus-
ters ci as well as c′j at the same time. In our experiments,
we use the normalized mutual information NMI as follows:

NMI(C,C′) =
MI(C,C′)

max(H(C), H(C′))

where H(C) and H(C′) are the entropies of C and C′, re-
spectively. It is easy to check that NMI(C,C′) ranges from
0 to 1. NMI= 1 if the two sets of clusters are identical, and
NMI= 0 if the two sets are independent.

4.2.2 Clustering Results

In order to randomize the experiments, we evaluate the
clustering performance with different number of clusters (K
= 10, 20, 30, 40 on ORL; K = 3, 5, 7, 10 on USPS; K =
5, 10, 15, 20 on COIL20 and K = 10, 15, 20, 26 on Isolet).
For each given cluster number K (except using the entire
data set), 20 tests were conducted on different randomly
chosen clusters, and the average performance as well as the
standard deviation was computed over these 20 tests. In
each test, we applied different algorithms to select d features
and applied k-means for clustering. The k-means algorithm
was applied 10 times with different random starting points
and the best result in terms of the objective function of k-
means was recorded.
Fig. (2, 3, 4 and 5) show the plots of clustering perfor-

mance versus the number of selected features (d) on ORL,

USPS, COIL20 and Isolet, respectively. As we can see, our
proposed MCFS algorithm consistently outperforms all its
competitors on all the four data sets. MCFS converges to
the best results very fast, with typically around 50 features.
For all the other methods, they usually require more than
200 features to achieve a reasonably good result, as can be
seen from Fig. 2∼5. It would be interesting to note that, on
the ORL data set, our proposed MCFS algorithm performs
surprisingly well by using only 20 features. For example, in
10 clusters case and only 20 features are selected, the clus-
tering normalized mutual information for MCFS is 78.7%,
which is even better than the clustering result by using all
the 1024 features (76.4%). We can see similar results in 20
and 30 clusters cases. The MaxVariance, LaplacianScore,
and Q-α algorithms perform comparably to one another on
ORL data set. On USPS data set, Variance is slightly better
than LaplacianScore while LaplacianScore becomes slightly
better than Variance on COIL 20 data set. These two meth-
ods also perfom comparably to each other on Isolet data set.
The Q-α performs very bad on USPS and Isolet data sets.

Since the goal of feature selection is to reduce the dimen-
sionality of the data, in Table 3∼6, we report the detailed
clustering performance by using 50 features for each algo-
rithm. The last column of each table records the average
clustering performance over different numbers of clusters.
As can be seen, MCFS significantly outperforms the other
three methods on all the four data sets. LaplacianScore per-
forms the second best on ORL, COIL20 and Isolet data sets.
MaxVariance performs the second best on USPS data set.
Comparing with second best method, MCFS achieves 10.3%,
5.2%, 10.6% and 10.6% relative improvements in average
when measured by normalized mutual information on the
ORL, USPS, COIL20 and Isolet data sets, respectively. The
last row of each table records the clustering performances
by using all the features.

338

0 50 100 150 200
45

50

55

60

65

70

75

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(a) 5 Clusters

0 50 100 150 200
45

50

55

60

65

70

75

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(b) 10 Clusters

0 50 100 150 200
50

55

60

65

70

75

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(c) 15 Clusters

0 50 100 150 200
45

50

55

60

65

70

75

80

85

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(d) 20 Clusters

Figure 4: Clustering performance vs. the number of selected features on COIL20 data set.

Table 5: Clustering performance (%) by using 50 features on the COIL20 data set. The last row shows the
performance by using all the 1024 features.

5 Clusters 10 Clusters 15 Clusters 20 Clusters Average
MCFS 76.4±13.6 75.1±7.7 76.4±5.7 77.9 76.4
Q-α 60.7±14.9 62.2±10.5 63.9±5.5 62.4 62.3

LaplacianScore 71.1±11.7 68.5±7.0 68.6±4.6 68.4 69.1
MaxVariance 68.2±11.5 62.5±9.1 66.6±4.6 64.0 65.3

All Features 75.3±11.4 74.2±7.5 78.3±4.8 79.2 76.8

0 50 100 150 200
10

20

30

40

50

60

70

80

90

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(a) 10 Clusters

0 50 100 150 200
10

20

30

40

50

60

70

80

90

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(b) 15 Clusters

0 50 100 150 200
20

30

40

50

60

70

80

of features

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(c) 20 Clusters

0 50 100 150 200
20

30

40

50

60

70

80

of features
N

o
rm

a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(d) 26 Clusters

Figure 5: Clustering performance vs. the number of selected features on Isolet data set.

Table 6: Clustering performance (%) by using 50 features on the Isolet data set. The last row shows the
performance by using all the 617 features.

10 Clusters 15 Clusters 20 Clusters 26 Clusters Average
MCFS 80.6±6.0 76.9±3.4 75.1±4.1 72.0 76.1
Q-α 27.3±9.2 30.3±4.1 31.7±3.5 32.8 30.5

LaplacianScore 72.4±6.2 70.1±5.7 66.3±3.0 66.5 68.8
MaxVariance 70.6±3.5 67.9±3.0 66.2±1.5 62.2 66.8

All Features 82.9±5.3 80.3±3.2 78.8±2.5 74.8 79.2

4.2.3 Parameter Selection

Our MCFS has only one parameter, which is the p in p-
nearest neighbor graph construction. Figure (6) shows the
clustering performance of MCFS versus the number of near-
est neighbors (parameter p). The clustering is performed
using the entire data set. The feature selection algorithms
select d = 10, 20, · · · , 190, 200 features (20 sets) and the av-
erage performance over these 20 feature subsets is shown
in the figure. As we can see, the performance of MCFS is

very stable with respect to the nearest neighbors parameter
p. MCFS achieves consistent good performance with the p

varying from 3 to 10 on all the four data sets. When p is
larger than 10, the performance slightly decreases as the p

increases.
In our MCFS algorithm, we use multiple eigenvectors of

eigen-problem in Eq. (1) to capture the multi-cluster struc-
ture of the data. To demonstrate the effectiveness and the
necessity to use multiple eigenvectors in multi-cluster prob-
lems, we conduct the clustering experiments by modifying

339

5 10 15 20

70

71

72

73

74

75

76

p

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(a) ORL

5 10 15 20
30

35

40

45

50

55

60

65

p

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(b) USPS

5 10 15 20
70

72

74

76

78

80

p

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(c) COIL20

5 10 15 20
50

55

60

65

70

75

p

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(d) Isolet

Figure 6: The performance of MCFS is very stable with respect to the nearest neighbors parameter p. MCFS
achieves consistent good performance with the p varying from 3 to 10 on all the four data sets. When p is
larger than 10, the performance slightly decreases as the p increases.

0 20 40 60 80 100

70

71

72

73

74

75

76

of eigenvectors

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(a) ORL

0 20 40 60 80 100
30

35

40

45

50

55

60

65

of eigenvectors

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(b) USPS

0 20 40 60 80 100
70

72

74

76

78

80

of eigenvectors

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(c) COIL20

0 20 40 60 80 100
50

55

60

65

70

75

of eigenvectors

N
o

rm
a
li
z
e
d

 M
u

tu
a
l
In

fo
rm

a
ti

o
n

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

All Features

(d) Isolet

Figure 7: Clustering performance vs. the number of used eigenvectors. MCFS achieves its best performance
as the number of used eigenvectors is equal to the number of clusters.

0 50 100 150 200
0

10

20

30

40

50

60

of features

E
rr

o
r

R
a
te

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

AllFeature

(a) ORL

0 50 100 150 200 250
0

10

20

30

40

50

60

of features

E
rr

o
r

R
a
te

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

AllFeature

(b) USPS

0 50 100 150 200
0

5

10

15

20

25

30

35

of features

E
rr

o
r

R
a
te

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

AllFeature

(c) COIL20

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

of features

E
rr

o
r

R
a
te

 (
%

)

MCFS

Q−α

LaplacianScore

MaxVariance

AllFeature

(d) Isolet

Figure 8: Classification error rate vs. the number of selected features.

MCFS algorithm to use various number of eigenvectors. Fig.
(7) shows the average clustering performance versus the num-
ber of used eigenvectors. Same to the previous experiment,
MCFS selects d = 10, 20, · · · , 190, 200 features (20 sets) and
averages the performance over these 20 feature subsets. As
we can see, the clustering performance increases rapidly as
the number of used eigenvectors increases. MCFS achieves
its best performance as the number of used eigenvectors is
equal to the number of clusters. In USPS and COIL20 data

sets, the performances of MCFS decrease as the number of
used eigenvectors keep increasing. While in ORL and Isolet
data sets, the performance is relatively stable as the num-
ber of eigenvectors increases. This result clearly shows the
effectiveness and the necessity to use multiple eigenvectors
in multi-cluster problems. Since the performance drop of
MCFS is comparatively small as the number of eigenvectors
become larger than the number of clusters, it is not a crucial
problem to estimate the number of clusters if it is unknown.

340

Table 7: Classification error rate (%) by using 50
features. The last row shows the error rate by using
all the features.

ORL USPS COIL20 ISOLET
MCFS 8.5 3.5 0.1 15.2
Q-α 21.0 33.9 3.1 68.2

LaplacianScore 18.0 14.2 15.8 25.3
MaxVariance 28.8 7.8 15.5 27.7

All Features 5.3 2.5 0 8.5

4.3 Nearest Neighbor Classification
In this subsection, we evaluate the discriminating power

of different feature selection algorithms. We consider the
nearest neighbor classifier and the good features should yield
high classification accuracy.
We perform leave-one-out cross validation as follows: For

each data point xi, we find its nearest neighbor x′

i. Let c(xi)
be the class label of xi. The nearest neighbor classification
error rate (ER) is thus defined as

ER = 1−
1

N

N
∑

i=1

δ
(

c(xi), c(x
′

i)
)

, (6)

where N is the number of data points and δ(a, b) = 1 if a = b

and 0 otherwise.
Fig. (8) shows the plots of nearest neighbor classifica-

tion error rate versus the number of selected features. As
can be seen, on all the four data sets, MCFS consistently
outperforms the other three methods. Similar to clustering,
MCFS converges to the best result very fast, with no more
than 100 features. Particularly, on the COIL20 data set,
MCFS can achieve 0.1% classification error rate by using
only 50 features. On this data set, the Q-α algorithm per-
forms comparably to our algorithms and much better than
MaxVariance and LaplacianScore. On the ORL data set,
the LaplacianScore and Q-α algorithms perform compara-
bly to each other, and MaxVariance performs the worst. On
the USPS and Isolet data sets, LaplacianScore and Max-
Variance algorithms perform comparably and Q-α performs
very bad. Similar to clustering, in Table (7) we show the
nearest neighbor classification error rate for each algorithm
using only 50 features. As can be seen, with only 50 features,
MCFS achieves comparable results with that using all the
features.

4.4 Summary
The clustering and nearest neighbor classification experi-

ments on four real world data sets have been systematically
performed. These experiments reveal a number of interest-
ing points:

• On all the four data sets, MCFS consistently outper-
forms the other three algorithms for both clustering
and nearest neighbor classification. As the number of
selected features increases, the clustering and nearest
neighbor classification performance for all the methods
increase and the performance difference among differ-
ent methods gets smaller.

• Our proposed algorithm performs especially well when
the number of selected features is small (e.g ., d ≤ 50).

By using only 50 features, the performance of our pro-
posed MCFS algorithm is comparable with and some-
times even better than (see Table 3∼6) the perfor-
mance by using all the features. Therefore, comparing
to MaxVariance, LaplacianScore, and Q-α, our algo-
rithm can achieve much more compact representation
without sacrifice of discriminating power.

• The experiments on clustering performance versus the
number of used eigenvectors show the effectiveness and
the necessity to use multiple eigenvectors in multi-
cluster problems.

5. CONCLUSIONS
This paper presents a novel unsupervised feature selection

algorithm, called Multi-Cluster Feature Selection (MCFS).
Inspired from the recent developments on spectral analysis
of the data (manifold learning) [1, 22] and L1-regularized
models for subset selection [14, 16], we propose to use mul-
tiple eigenvectors of graph Laplacian, which is defined on the
affinity matrix of data points, to capture the multi-cluster
structure of the data. Thus, MCFS can well handle multi-
cluster data. In comparison with one simple method, that
is, MaxVariance, and two state-of-the-art methods, namely,
LaplacianScore and Q-α, the experimental results validate
that the new method achieves significantly higher perfor-
mance for clustering and classification. Our proposed MCFS
algorithm performs especially well when the number of se-
lected features is less than 50.

Acknowledgments

This work was supported in part by National Natural Sci-
ence Foundation of China under Grants 60905001 and 90920303,
National Key Basic Research Foundation of China under
Grant 2009CB320801. Any opinions, findings, and conclu-
sions expressed here are those of the authors and do not
necessarily reflect the views of the funding agencies.

6. REFERENCES
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps and

spectral techniques for embedding and clustering. In
Advances in Neural Information Processing Systems
14, pages 585–591. 2001.

[2] J. Bi, K. Bennett, M. Embrechts, C. Breneman, and
M. Song. Dimensionality reduction via sparse support
vector machines. Journal of Machine Learning
Research, 3:1229–1243, 2003.

[3] S. Boutemedjet, N. Bouguila, and D. Ziou. A hybrid
feature extraction selection approach for
high-dimensional non-gaussian data clustering. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 31(8):1429–1443, 2009.

[4] C. Boutsidis, M. W. Mahoney, and P. Drineas.
Unsupervised feature selection for principal
components analysis. In Proceeding of the 14th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’08), pages 61–69,
2008.

[5] D. Cai. Spectral Regression: A Regression Framework
for Efficient Regularized Subspace Learning. PhD
thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, May 2009.

341

[6] D. Cai, X. He, and J. Han. Spectral regression: A
unified approach for sparse subspace learning. In Proc.
Int. Conf. on Data Mining (ICDM’07), 2007.

[7] D. Cai, X. He, and J. Han. Sparse projections over
graph. In Proc. 2008 AAAI Conf. on Artificial
Intelligence (AAAI’08), 2008.

[8] P. K. Chan, D. F. Schlag, and J. Y. Zien. Spectral
k-way ratio-cut partitioning and clustering. IEEE
Transactions on Computer-Aided Design,
13:1088–1096, 1994.

[9] F. R. K. Chung. Spectral Graph Theory, volume 92 of
Regional Conference Series in Mathematics. AMS,
1997.

[10] C. Constantinopoulos, M. K. Titsias, and A. Likas.
Bayesian feature and model selection for gaussian
mixture models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(6):1013–1018,
2006.

[11] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley-Interscience, 2nd edition,
2006.

[12] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley-Interscience, Hoboken, NJ, 2nd
edition, 2000.

[13] J. G. Dy and C. E. Brodley. Feature selection for
unsupervised learning. Journal of Machine Learning
Research, 5:845–889, 2004.

[14] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani.
Least angle regression. Annals of Statistics,
32(2):407–499, 2004.

[15] M. A. Fanty and R. Cole. Spoken letter recognition. In
Advances in Neural Information Processing Systems 3,
1990.

[16] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction. New York: Springer-Verlag,
2001.

[17] X. He, D. Cai, and P. Niyogi. Laplacian score for
feature selection. In Advances in Neural Information
Processing Systems 18, 2005.

[18] J. J. Hull. A database for handwritten text
recognition research. IEEE Trans. Pattern Anal.
Mach. Intell., 16(5), 1994.

[19] R. Kohavi and G. H. John. Wrappers for feature
subset selection. Artificial Intelligence,
97(1-2):273–324, 1997.

[20] M. H. C. Law, M. A. T. Figueiredo, and A. K. Jain.
Simultaneous feature selection and clustering using
mixture models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(9):1154–1166,
2004.

[21] H. Liu and L. Yu. Toward integrating feature selection
algorithms for classification and clustering. IEEE
Transactions on Knowledge and Data Engineering,
17(4):491–502, 2005.

[22] A. Y. Ng, M. Jordan, and Y. Weiss. On spectral
clustering: Analysis and an algorithm. In Advances in
Neural Information Processing Systems 14, pages
849–856. MIT Press, Cambridge, MA, 2001.

[23] J. L. Rodgers and W. A. Nicewander. Thirteen ways

to look at the correlation coefficient. The American
Statistician, 42(1):59–66, 1988.

[24] V. Roth and T. Lange. Feature selection in clustering
problems. In Advances in Neural Information
Processing Systems 16. 2003.

[25] S. Roweis and L. Saul. Nonlinear dimensionality
reduction by locally linear embedding. Science,
290(5500):2323–2326, 2000.

[26] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.

[27] G. W. Stewart. Matrix Algorithms Volume II:
Eigensystems. SIAM, 2001.

[28] J. Tenenbaum, V. de Silva, and J. Langford. A global
geometric framework for nonlinear dimensionality
reduction. Science, 290(5500):2319–2323, 2000.

[29] L. Wolf and A. Shashua. Feature selection for
unsupervised and supervised inference: The emergence
of sparsity in a weight-based approach. Journal of
Machine Learning Research, 6:1855–1887, 2005.

[30] Z. Zhao and H. Liu. Spectral feature selection for
supervised and unsupervised learning. In Proceedings
of the 24th Annual International Conference on
Machine Learning (ICML’07), pages 1151–1157, 2007.

342

