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Abstract

Gaussian Mixture Model (GMM) is one of the most popular
data clustering methods which can be viewed as a linear com-
bination of different Gaussian components. In GMM, each
cluster obeys Gaussian distribution and the task of clustering
is to group observations into different components through
estimating each cluster’s own parameters. The Expectation-
Maximization algorithm is always involved in such estima-
tion problem. However, many previous studies have shown
naturally occurring data may reside on or close to an un-
derlying submanifold. In this paper, we consider the case
where the probability distribution is supported on a sub-
manifold of the ambient space. We take into account the
smoothness of the conditional probability distribution along
the geodesics of data manifold. That is, if two observations
are “close” in intrinsic geometry, their distributions over dif-
ferent Gaussian components are similar. Simply speaking,
we introduce a novel method based on manifold structure for
data clustering, called Locally Consistent Gaussian Mixture
Model (LCGMM). Specifically, we construct a nearest neigh-
bor graph and adopt Kullback-Leibler Divergence as the “dis-
tance” measurement to regularize the objective function of
GMM. Experiments on several data sets demonstrate the ef-
fectiveness of such regularization.

Introduction

Clustering is an unsupervised classification of pat-
terns (observations, data items, or feature vectors) into
groups(clusters) (Jain, Murty, and Flynn 1999). The goal
of it is to organize objects into groups such that members
within each group are similar in some way. Therefore, a
cluster is a collection of objects which are “close” between
them and are “dissimilar” to others belonging to different
clusters. Data clustering is one of the common techniques
in exploratory data analysis. It has been addressed in many
contexts and has drawn enormous attention in many fields,
including data mining, machine learning, pattern recognition
and information retrieval.

The clustering algorithms can be roughly divided into two
categories: similarity-based and model-based. Similarity-
based clustering algorithms are designed on the basis of
similarity function between data observations without any
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probability assumption. K-means (Duda, Hart, and Stork
2000) and spectral clustering (Ng, Jordan, and Weiss 2001;
Shi and Malik 1997) are two representative examples. The
former is designed to minimize the sum of distances between
the assumed cluster centers and data samples, while the lat-
ter usually clusters the data points using the top eigenvec-
tors of graph Laplacian (Chung 1997), which is defined on
the affinity matrix of data points. From the graph partition-
ing perspective, spectral clustering tries to find the best cut
of the graph, aiming at optimizing the predefined criterion
function. Normalized cut (Shi and Malik 1997) is one of the
most well applied criterion functions.

Unlike similarity-based methods, model-based cluster-
ing can generate soft partition which is sometimes more
flexible. Model-based methods use mixture distributions
to fit the data and the conditional probabilities are natu-
rally used to assign probabilistic labels. One of the most
widely used mixture models for clustering is Gaussian Mix-
ture Model (Bishop 2006). Each Gaussian density is called
a component of the mixture and has its own mean and
covariance. In many applications, their parameters are
determined by maximum likelihood, typically using the
Expectation-Maximization algorithm (Dempster, Laird, and
Rubin 1977).

GMM assumes that the probability distribution generat-
ing the data is supported on the Euclidean space. How-
ever, many previous studies (Tenenbaum, de Silva, and
Langford 2000; Roweis and Saul 2000; Belkin and Niyogi
2001) have shown naturally occurring data may reside on or
close to an underlying submanifold. It has also been shown
that learning performance can be significantly enhanced if
the manifold (geometrical) structure is exploited (Ng, Jor-
dan, and Weiss 2001; Belkin, Niyogi, and Sindhwani 2006;
Cai, Wang, and He 2009; Cai, He, and Han 2010).

In this paper, we propose a novel model-based algorithm
for data clustering, called Locally Consistent Gaussian Mix-
ture Model (LCGMM), which explicitly considers the man-
ifold structure. Following the intuition that naturally occur-
ring data may reside on or close to a submanifold of the
ambient space, we incorporate a regularizer into the objec-
tive function of Gaussian Mixture Model after constructing
a nearest neighbor graph and adopting Kullback-Leibler Di-
vergence as the “distance” measurement. It is important to
note that the work presented here is fundamentally based on
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our previous work LapGMM (He et al. 2010). The major
difference is that LapGMM constructs the regularizer using
Euclidean distance and uses generalized EM to estimate the
parameters. In this work, we use KL-Divergence to mea-
sure the “distance” of two probability distributions which is
much more natural. Moreover, by using KL-Divergence, the
new objective function can be solved more effectively by or-
dinary EM algorithm.

Background

Gaussian mixture model can be viewed as a linear superposi-
tion of different Gaussian components in which each is a ba-
sis function or a “hidden” unit, aiming at offering a compar-
atively richer model than the single Gaussian (Bishop 2006):

P (x|Θ) =

K
∑

k=1

πkpk(x|θk)

where each component prior (πk) can be viewed as posi-

tive weights in an output layer and satisfying
∑K

k=1
πk =

1. And all parameters here are represented by Θ where
Θ = (π1, . . . , πK , θ1, . . . , θK). Note that each θk describes
a Gaussian density function pk, meaning that pk(x|θk) ∼
N (x|µk, Σk).

The optimal parameter Θ is determined by Maximum
Likelihood (ML) principle. Given observations X =
(x1, x2, . . . , xN ), ML tries to find Θ such that P (X|Θ) is a
maximum. For the sake of efficient optimization, it is typical
to introduce the log likelihood function defined as follows:

L(Θ) =logP (X|Θ) = log

N
∏

i=1

P (xi|Θ)

=

N
∑

i=1

log

(

K
∑

k=1

πkpk(xi|θk)

)

Since the above log likelihood function contains the log of
the sum, it is difficult to find the optimal solution. By intro-
ducing the latent variable P (c|x) which represents the pos-
sibility of observation x belonging to the component c, the
complete log likelihood function is (Bishop 2006):

N
∑

i=1

K
∑

k=1

P (ck|xi)
(

log πk + logN (xi|µk, Σk)
)

(1)

With this complete log likelihood, we are able to obtain esti-
mates for Θ under the assumption that P (c|x) is fixed. This
procedure is known as Expectation-Maximization algorithm
(Dempster, Laird, and Rubin 1977) , which is a powerful
method for finding maximum likelihood solutions for mod-
els with latent variables. It is a process of iteration which
alternates between an expectation (E) step computing an ex-
pectation of the latent variable (P (c|x) in the GMM case),
and a maximization (M) step computing the parameters (Θ)
which maximize the complete log likelihood. Parameters
computed either in E or M step are alternatively fixed during
the other step as known quantities.

In fact, there is a close similarity between K-means and
EM algorithm for Gaussian mixtures (Bishop 2006). The

K-means algorithm does the clustering in a hard way, in
which each sample is associated directly with only one clus-
ter, while the EM algorithm makes a comparatively soft as-
signment relied on the posterior probabilities. It is notice-
able that we can derive the K-means algorithm as a non-
probabilistic limit of EM for GMM. For more information,
please see (Bishop 2006).

Gaussian Mixture Model with

Local Consistency

Naturally occurring data may be generated with possibly
much fewer degrees of freedom than what the ambient di-
mension would suggest (Tenenbaum, de Silva, and Lang-
ford 2000; Roweis and Saul 2000). Thus, the general GMM
might not obtain an ideal result since it doesn’t consider the
case when the data is supported on a submanifold of the am-
bient space. In this section, we introduce a novel method to
show how geometric knowledge of the probability distribu-
tion is incorporated into learning a Gaussian mixture model.

GMM with Locally Consistent Regularizer

Recall the standard framework of learning from examples.
There is a probability distribution P on X ×R according to
which examples are generated for function learning. Unla-
beled examples are simply x ∈ X drawn according to the
marginal distribution PX of P . Previous studies have shown
that there may be connection between the marginal and con-
ditional distributions (Belkin, Niyogi, and Sindhwani 2006).
Therefore, we make a specific assumption about the con-
nection between the distribution of observations PX and
the conditional distribution P (c|xi), where c represents the
clusters. That is, within some neighboring samples, their
P (c|xi) are “similar” to a certain degree. In another way, the
conditional probability distribution P (c|x) varies smoothly
along the geodesics in the intrinsic geometry of PX . This is
usually referred to as local consistency assumption (Zhou et
al. 2003; Cai, Wang, and He 2009), which plays an essential
role in developing various kinds of algorithms including di-
mensionality reduction (Belkin and Niyogi 2001) and semi-
supervised learning algorithms (Belkin, Niyogi, and Sind-
hwani 2006; Zhu and Lafferty 2005).

To measure the “similarity” (or “distance”) between two
distributions, it is common to use Kullback–Leibler Diver-
gence (KL-Divergence). Given two distributions Pi(c) and
Pj(c), the KL-Divergence between them is defined as be-
low:

D
(

Pi(c)‖Pj(c)
)

=
∑

c

Pi(c) log
Pi(c)

Pj(c)
(2)

The above equation is not symmetric, we can use

Dij =
1

2

(

D
(

Pi(c)‖Pj(c)
)

+ D
(

Pj(c)‖Pi(c)
)

)

(3)

to measure the distance between distributions Pi(c) and
Pj(c).

Recent studies on spectral graph theory (Chung 1997) and
manifold learning theory (Belkin and Niyogi 2001) have
demonstrated that the local geometric structure can be effec-
tively modeled through a nearest neighbor graph on a scatter
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of data points. Consider a graph with N vertices where each
vertex corresponds to a data point. Define the edge weight
matrix W as follows:

Wij =

{

1 if xi ∈ Np(xj) or xj ∈ Np(xi).
0 otherwise.

(4)

where Np(xi) denotes the data sets of p nearest neighbors
of xi.

Let Pi(c) = P (c|xi), with the weight matrix of the near-
est neighbor graph in Eq. (4), the following term can be used
to measure the smoothness of P (c|x) on the graph:

R =
N

i,j=1

DijWij

=
1

2

N

i,j=1

D Pi(c)‖Pj(c) + D Pj(c)‖Pi(c) Wij

(5)

The smaller of R, the smoother of P (c|x) over the graph
(consequently along the geodesics in the intrinsic geometry
of the data).

Incorporating the above smoothness term into the likeli-
hood of original GMM, we have

L =L − λR

∝
N

i=1

log
K

k=1

πkN (xi|µk, Σk)

−
λ

2

N

i,j=1

D Pi(c)‖Pj(c) + D Pj(c)‖Pi(c) Wij

(6)

where Pi(c) is the abbreviation of P (c|xi) and λ is the regu-
larization parameter. Since this approach incorporates local
consistency through a regularizer, we call it Locally Con-
sistent Gaussian Mixture Model (LCGMM). The idea of in-
corporating locally consistent regularization in GMM model
has also been studied in our previous work LapGMM (He et
al. 2010). The major difference is that LapGMM constructs
the regularizer using Euclidean distance. While in this work,
we use the divergence measure which leads to a new objec-
tive function as well as a nice EM algorithm.

In the next subsection, we show how to apply EM algo-
rithm to maximize this regularized log-likelihood function.

Model Fitting with EM

To find maximum likelihood estimation when there exist la-
tent variables, we need to use the EM algorithm. In our case,
the latent variables are the Gaussian components to which
the data points belong. Firstly, we need to estimate values
to perform the E-step, computing expectations for the latent
variables. Then we use these variables to obtain the param-
eters which maximize the log likelihood (M-step). These
two steps are repeated until a certain stopping criterion is
reached.

The parameters of LCGMM is the same as that of GMM.
For simplicity, we use Θ to denote all the parameters, Θ =
(π1, . . . , πK , (µ1, Σ1), . . . , (µk, Σk)).

E-step:

The E-step for LCGMM is exactly the same as that in
original GMM. The posterior probabilities for the latent
variables are P (ck|xi), which can be computed by simply
applying Bayes’ formula (Bishop 2006):

P (ck|xi) = P (ck = 1|xi) =
πkN (xi|µk, Σk)

∑K

j=1
πjN (xi|µj , Σj)

(7)

M-step:
With simple derivations (Bishop 2006), one can obtain the

expected complete data log-likelihood for LCGMM:

Q(Θ) = Q1(Θ) − Q2(Θ)

=

N

i=1

K

k=1

P (ck|xi) log πk + logN (xi|µk, Σk)

−
λ

2

N

i,j=1

D Pi(c)‖Pj(c) + D Pj(c)‖Pi(c) Wij

(8)

Notice that Q(Θ) has two parts. The first part Q1(Θ) is ex-
actly the expected complete data log-likelihood for GMM in
Eq. (1). The second part Q2(Θ) is the locally consistent reg-
ularizer which only involves the parameters {µk, Σk}K

k=1
.

Thus, the M-step re-estimation equation for πk will be ex-
actly the same as that in GMM. It is (Bishop 2006):

πk =

∑N

i=1
P (ck|xi)

N
(9)

Now let us derive the re-estimation equation for
{µk, Σk}K

k=1
.

With the posterior probabilities for the latent variables in
Eq. (7) estimated in E-step, we have:

D
(

Pi(c)‖Pj(c)
)

=

K
∑

k=1

Pi(ck) log
Pi(ck)

Pj(ck)

=
K
∑

k=1

P (ck|xi) log
N (xi|µk, Σk)

N (xj |µk, Σk)
+ O(xi||xj)

=
K
∑

k=1

P (ck|xi)
(1

2
(xj − µk)T Σ−1

k (xj − µk)

−
1

2
(xi − µk)T Σ−1

k (xi − µk)
)

+ O(xi||xj)

(10)

where

O(xi||xj) = log

∑K

k=1
πkN (xj |µk, Σk)

∑K

k=1
πkN (xi|µk, Σk)

Note that O(xi||xj)+O(xj ||xi) = 0, which means only the
former term of Eq. (10) will be involved in the following
computation.

The relevant part (only relevant to {µk, Σk}K
k=1

) of Q(Θ)
is:

Q̃(Θ) = Q̃1(Θ) − Q2(Θ) (11)

where

Q̃1(Θ) =

N
∑

i=1

K
∑

k=1

P (ck|xi)
(1

2
log(|Σ−1

k |)

−
1

2
(xi − µk)T Σ−1

k (xi − µk)
)

(12)
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By taking the derivative of Eq. (11) with respect to µk and
setting it to zero, we get:

N
∑

i=1

P (ck|xi)
(

Σ−1

k (xi − µk)
)

−
λ

2

N
∑

i,j=1

(

(

P (ck|xi) − P (ck|xj)
)

Σ−1

k (xi − xj)
)

Wij = 0

By solving the equation above, one obtains the M–step re-
estimation equation for µk:

µk =
N

i=1
xiP (ck|xi)

Nk

−
λ N

i,j=1
P (ck|xi) − P (ck|xj) (xi − xj) Wij

2Nk

(13)

where

Nk =
N
∑

i=1

P (ck|xi)

Let Si,k = (xi − µk)(xi − µk)T , we have:

(xi−µk)T Σ−1

k (xi−µk) = Tr
(

Si,kΣ−1

k

)

= Tr
(

Σ−1

k Si,k

)

where Tr(·) denotes the trace of a matrix. We can rewrite
the Eq. (11) as:

Q̃1(Θ) =
1

2

N
∑

i=1

K
∑

k=1

P (ck|xi)

(

log(|Σ−1

k |) − Tr
(

Σ−1

k Si,k

)

)

and

Q2(Θ) =
λ

4

N
∑

i,j=1

K
∑

k=1

(

(

P (ck|xi) − P (ck|xj)
)

(

Tr
(

Σ−1

k Sj,k

)

− Tr
(

Σ−1

k Si,k

)

)

)

Wij

By taking the derivative of Eq. (11) with respect to Σ−1

k and

setting it to zero1, we get:

1

2

N
∑

i=1

P (ck|xi)
(

Σk − Si,k

)

=
λ

4

N
∑

i,j=1

(

P (ck|xi) − P (ck|xj)
)(

Sj,k − Si,k

)

Wij

Solving the above equation, we obtain the M-step re-
estimation equation for Σk:

Σk =
N

i=1
P (ck|xi)Si,k

Nk

−
λ N

i,j=1
P (ck|xi) − P (ck|xj) Si,k − Sj,k Wij

2Nk

(14)

1Note that ∂log |M |/∂M = (M−1)T , ∂Tr(MN)/∂M =
NT and both Σk and Si,k are symmetric matrices.

When the regularization parameter λ = 0, we can easily
see the above M-step re-estimation equations (Eq. 13 and
14) boil down to the M-step in original GMM. The E-step
(Eq. 7) and M-step (Eq. 9, 13 and 14) are alternated until a
termination condition is met.

Experiment

In this section, several experiments were conducted to
demonstrate the effectiveness of our proposed approach. We
begin with the description of the data sets used in our exper-
iment.

Data Sets

Eight real world data sets are used in the experiment. Two
of them are image data (face image and hand written digit
image). Another two of them are from the “The Elements of
Statistical Learning” web site2 and the rest four are all from
UC Irvine Machine Learning Repository3. The important
statistics of these data sets are summarized below (see also
Table 1):

• The MNIST database of handwritten digits from Yann
LeCun’s page4. Here we use the test set which contains
10000 examples.

• The Yale face image database5. It containing 165 gray-
scale face images from 15 individuals. Each individual
has 11 images. The images demonstrate variations in
lighting condition and facial expression.

• The Waveform model which is described in (Breiman et
al. 1984). The “The Elements of Statistical Learning”
web site6 provides an instance with 800 samples. Each
sample has 21 features and there is 3 classes.

• The Vowels data set which has 990 samples of eleven
steady state vowels of British English.

• The Libras movement data set. It contains 15 classes of
24 instances each, where each class refers to a hand move-
ment type in LIBRAS.

• The Control Charts data set. It contains 600 examples of
control charts and there are six different classes of control
charts.

• The Cloud data set contains 2048 samples. Each sample
has 10 features and there is 2 classes.

• The Breast Cancer Wisconsin data set. It is computed
from a digitized image of a fine needle aspirate (FNA) of
a breast mass. They describe characteristics of the cell
nuclei present in the image. There are 569 instances and
each is described by 30 features.

2http://www-stat.stanford.edu/ tibs/ElemStatLearn/
3http://archive.ics.uci.edu/ml/
4http://yann.lecun.com/exdb/mnist/
5http://cvc.yale.edu/projects/yalefaces/yalefaces.html
6http://www-stat.stanford.edu/ tibs/ElemStatLearn/
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Table 1: Statistics of the eight data sets
data set size # of features # of classes

MNIST 10000 784 10
Yale 165 4096 15

Waveform 800 21 3

Vowels 990 10 11
Libras 360 90 15

Control Chart 600 60 6

Cloud 2048 10 2
Breast Cancer 569 30 2

Table 2: Clustering accuracy on the eight data sets (%)
Data sets LCGMM GMM k-means Ncut
MNIST 73.6 66.6 53.1 68.8

Yale 54.3 29.1 51.5 54.6
Libras 50.8 35.8 44.1 48.6
Chart 70.0 56.8 61.5 58.8
Cloud 100.0 96.2 74.4 61.5
Breast 95.5 94.7 85.4 88.9
Vowel 36.6 31.9 29.0 29.1

Waveform 75.3 76.3 51.9 52.3

Evaluation Metric

We evaluate the clustering results by comparing the obtained
labels using clustering algorithms with the provided ground
truth. Specific speaking, the accuracy (AC) (Cai, He, and
Han 2005) is adopted to measure the performance. Given a
point xi, let ri and si represent the obtained label and the la-
bel provided by the data set, respectively. The AC is defined
as follows:

AC =

∑N

i=1
δ(si, map(ri))

N
(15)

where N is the total number of samples and δ(x, y) is the
delta function that equals one if x = y and equals zero other-
wise, and map(ri) is the permutation mapping function that
maps the obtained label ri to the equivalent label from the
data set. The best mapping can be realized by adopting the
Kuhn-Munkres algorithm (Lovasz and Plummer 1986).

Compared Algorithms

To demonstrate how the clustering performance can be im-
proved by our method, we compared the following four clus-
tering algorithms:

• Locally Consistent Gaussian Mixture Model (LCGMM),
the method proposed in this paper. There are two parame-
ters in LCGMM algorithm: the number of nearest neigh-
bors p and the regularization parameter λ. In our experi-
ments, we empirically set them to 20 and 0.1, respectively.
The model selection will be discussed in the later section.

• The classical Gaussian Mixture Model (GMM) approach
(Bishop 2006).

• The traditional k-means algorithm.

• Spectral clustering algorithm based on normalized cut cri-
terion (Ncut)(Shi and Malik 1997).

Table 3: Clustering accuracy on MNIST (%)
K LCGMM GMM k-means Ncut

2 93.5±2.1 92.3±2.0 89.7±1.9 93.8±2.0
3 90.6±1.4 88.9±1.3 79.6±2.1 89.3±2.1
4 83.5±1.6 78.1±1.5 67.6±1.3 75.1±1.4
5 80.9±1.0 75.4±0.9 67.0±1.1 76.7±0.9
6 85.3±1.1 79.0±1.0 65.5±1.2 79.5±0.8
7 82.5±1.3 73.1±0.9 61.2±0.3 76.7±0.4
8 81.9±0.8 72.4±0.5 59.4±0.7 74.7±0.1
9 75.1±0.5 67.2±0.4 55.9±0.4 70.7±0.2

10 73.6 66.6 53.1 68.8

Avg 83.0 77.0 66.6 78.4

Figure 1: Clustering accuracy on MNIST data set

Among these four algorithms, LCGMM and GMM are
model based approaches while k-means and Ncut are sim-
ilarity based algorithms. k-means and GMM consider the
Euclidean structure of the data while Ncut and LCGMM
consider the intrinsic geometrical structure of the data.

Results

Table (2) shows the clustering accuracy of the four methods
on all the eight data sets. As we can see, LCGMM out-
performs all of its competitors on six data sets and ranks
No.2 on the remaining two data sets. Specifically, LCGMM
achieves 7% performance gain on MNIST over the second
best method, 4.5% on Libras, 19% on Chart, 4% on Cloud,
0.8% on Breast and 14.7% on Vowel. On the remaining two
data sets, LCGMM has 0.55% performance loss on Yale and
1.3% on Waveform comparing with the best method. Over-
all, LCGMM is the best one among all the four compared
algorithms. k-means algorithm performs the worst and the
performances of GMM and Ncut are comparable. Specif-
ically, GMM is the best of the remaining three algorithms
on four data sets (Cloud, Breast, Vowel and Waveform) and
Ncut is the best of the three algorithms on three data sets
(MNIST, Yale and Libras). Both LCGMM and GMM are
model based approaches. It is interesting to note that GMM
performs very poor on Yale and Libras while LCGMM per-
forms reasonably well on these two data sets. Our reason is
that traditional GMM fails to consider the local geometric
structure of the data. By incorporating the locally consistent
regularizer, LCGMM avoids this limitation.
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Figure 2: Performance of LCGMM vs. parameters λ and p.
LCGMM performs relatively stable with respect to both pa-
rameters. It achieves the best performance when λ is around
0.1.

To further examine the behaviors of these four methods,
we chose MNIST data set and conducted a through study.
Table (3) and Figure (1) show the clustering accuracies of
the four methods on MNIST. The evaluations were con-
ducted with the cluster numbers ranging from two to ten.
For each given cluster number K (except for 10), 20 test runs
were conducted on different randomly chosen clusters and
the average performance as well as the standard deviation
are reported. We can clearly see that LCGMM is the best
among all the four methods. It is interesting to note that the
performance improvement of LCGMM over other methods
increases as the number of clusters increases.

Model Selection

There are two essential parameters in our algorithm: the
number of nearest neighbors p and the regularization param-
eter λ. The parameter p can somehow define the range of
“locality” and the parameter λ decides the degree of smooth-
ness of the model on this graph. We already know that
LCGMM boils down to the original GMM when λ = 0.

Figure 2 shows how the average performance of LCGMM
on MNIST varies with the parameters λ and p, respectively.
As we can see, LCGMM performs relatively stable with re-
spect to both parameters. As we have described, LCGMM
uses a p-nearest neighbor graph to capture the local geomet-
ric structure of the data space. The success of LCGMM re-
lies on how the assumption that a data point shares the same
label with its p-nearest neighbor holds. It is expected that
performance of LCGMM decreases as the p increases (after
p is larger than 20).

Conclusions

We have introduced a novel algorithm, called Locally Con-
sistent Gaussian Mixture Model, for clustering. It takes
into consideration of the intrinsic geometry of the marginal
distribution by incorporating a regularizer into the log-
likelihood function, aiming at smoothing the conditional
probability distribution along the geodesics of data mani-
fold. Specifically, we construct a nearest neighbor graph to
detect the underlying nonlinear manifold structure and use
KL-Divergence to measure the distance between the poste-
rior probabilities. Experimental results on eight real world
data sets show the effectiveness of our method.
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