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Abstract

In supervised learning scenarios, feature selection has lséudied
widely in the literature. Selecting features in unsupedikearning sce-
narios is a much harder problem, due to the absence of clasls fdhat
would guide the search for relevant information. And, altradlsof pre-
vious unsupervised feature selection methods are “wrapeehnniques
that require a learning algorithm to evaluate the candiigatteire subsets.
In this paper, we propose a “filter” method for feature sétectvhich is
independent of any learning algorithm. Our method can bpeed in
either supervised or unsupervised fashion. The proposétbichés based
on the observation that, in many real world classificatiavbfgms, data
from the same class are often close to each other. The inmgertaf a
feature is evaluated by its power of locality preserving,L@aplacian
Score We compare our method with data variance (unsupervisatl) an
Fisher score (supervised) on two data sets. Experimersialtsedemon-
strate the effectiveness and efficiency of our algorithm.

1 Introduction

Feature selection methods can be classified into “wrappethatds and “filter” methods

[4]. The wrapper model techniques evaluate the featureguke learning algorithm that

will ultimately be employed. Thus, they “wrap” the selectiprocess around the learning
algorithm. Most of the feature selection methods are wrappehods. Algorithms based
on the filter model examine intrinsic properties of the datavaluate the features prior to
the learning tasks. The filter based approaches almost alkgyon the class labels, most
commonly assessing correlations between features andab label. In this paper, we
are particularly interested in the filter methods. Somedsidiilter methods include data
variance, Pearson correlation coefficients, Fisher sema Kolmogorov-Smirnov test.

Most of the existing filter methods are supervised. Datsavereé might be the simplest
unsupervise@valuation of the features. The variance along a dimensiftects its repre-
sentative power. Data variance can be used as a criteriadture selection and extraction.
For example, Principal Component Analysis (PCA) is a ctaddeature extraction method
which finds a set of mutually orthogonal basis functions tagture the directions of max-
imum variance in the data.

Although the data variance criteria finds features that aefulifor representing data, there



is no reason to assume that these features must be usefiddandnating between data in
different classes. Fisher score seeks features that arieeffior discrimination. It assigns
the highest score to the feature on which the data pointsfigireint classes are far from
each other while requiring data points of the same class tdse to each other. Fisher
criterion can be also used for feature extraction, such asdri Discriminant Analysis

(LDA).

In this paper, we introduce a novel feature selection algarcalledLaplacian Score(LS).
For each feature, its Laplacian score is computed to refieddéality preserving power.
LS is based on the observation that, two data points are plpbalated to the same topic
if they are close to each other. In fact, in many learning f@ois such as classification,
the local structure of the data space is more important tmaglobal structure. In order to
model the local geometric structure, we construct a neaggghbor graph. LS seeks those
features that respect this graph structure.

2 Laplacian Score

Laplacian Score (LS) is fundamentally based on Laplaciayefdnaps [1] and Locality
Preserving Projection [3]. The basic idea of LS is to evaulaé features according to their
locality preserving power.

2.1 The Algorithm

Let L,. denote the Laplacian Score of théh feature. Letf,; denote the-th sample of the
r-th featurej = 1, --- , m. Our algorithm can be stated as follows:

1. Construct a nearest neighbor graptwith m nodes. The-th node corresponds
to x;. We put an edge between nodeand if x; andx; are "close”, i.e.x; is
amongk nearest neighbors of; or x; is amongk nearest neighbors of. When
the label information is available, one can put an edge batwwo nodes sharing
the same label.
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2. Ifnodes and; are connected, pu;; = e*M, wheret is a suitable constant.
Otherwise, putS;; = 0. The weight matrixS of the graph models the local
structure of the data space.

3. For ther-th feature, we define:
fo =i frayo oo fom]", D = diag(S1),1=[1,--- 1], L=D -8
where the matrix¥. is often called graph Laplacian [2]. Let
Tt fZT”Dl
1'D1
4. Compute the Laplacian Score of th¢h feature as follows:
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3 Justification

3.1 Objective Function

Recall that given a data set we construct a weighted gtapfith edges connecting nearby
points to each otherS;; evaluates the similarity between theh and j-th nodes. Thus,



the importance of a feature can be thought of as the degrespécts the graph structure.
To be specific, a "good” feature should the one on which twa gaints are close to each
other if and only if there is an edge between these two poilstseasonable criterion for
choosing a good feature is to minimize the following objertdtion:

>4 (fri = fri)?Si;
Var(f,)
whereVar(f,) is the estimated variance of theth feature. By minimizing)_, . (f; —

f+i)2S:;, we prefer those features respecting the pre-defined gtapttige. For a good
feature, the bigges,;, the smaller(f,; — f;), and thus the Laplacian Score tends to be
small. Following some simple algebraic steps, we see that

D i = fei)* St = Y (FFi+ £ — 2vilrs) Sig
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ij

ij

L, =

)

By maximizing Var(f,.), we prefer those features with large variance which haveemor
representative power. Recall that the variance of a randamablea can be written as
follows:

Var(a) = /M(a — w)?dP(a), p= /M adP(a)

where M is the data manifoldyu is the expected value af and dP is the probability
measure. By spectral graph theory [2]? can be estimated by the diagonal matfixon
the sample points. Thus, theeighted data variance can be estimated as follows:

Var(f,) = Zi(fri - Nr)QDiz‘
ii _ o f?Dl
My = ZL (fm Z?D”) = (271[)”) (Zz men) = 1Tp1
To remove the mean from the samples, we define:

T
P f,.T D1
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Thus,
~2 ~T  ~
Var(f,) =Y f,,D; =1, Df,

Also, it is easy to show theft,TL?r = ffoT (please see Proposition 1 in Section 4.2 for
detials). We finally get equation (1).

It would be important to note that, if we do not remove the méaavector, can be a non-
zero constant vector such &slt is easy to check that” L1 = 0 and1” D1 > 0. Thus,
L, = 0. Unfortunately, this feature is clearly of no use since mtains no information.
With mean being removed, the new vectoris orthogonal tol with respect toD, i.e.

~T ~ ~ ~T ~
f, D1 = 0. Thereforef, can not be any constant vector other tiardf f, = O, f,. Lf, =

ffo,r = 0. Thus, the Laplacian Scork. becomes a trivial solution and theth feature
is excluded from selection. While computing the weightedarare, the matrixD models
the importance (or local density) of the data points. We daa simply replace it by the
identity matrix/, in which case the weighted variance becomes the standeeshwa. To
be specific,
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wherey is the mean off,.;, = 1,--- ,n. Thus,
-~ 1
Var(f,) =, If, = =t )" (f, — 1) 3)

which is just thestandardvariance.

In fact, the Laplacian scores can be thought of as the Raylgigtients for the features
with respect to the grapfi, please see [2] for details.

3.2 Connection to Fisher Score

In this section, we provide a theoretical analysis of thenemtion between our algorithm
and the canonical Fisher score.

Given a set of data pomts with labelx;, y; }7 =y yi € {1,---,c}. Letn; denote the
number of data points in clags Let y; ando; be the mean and variance of class
i=1,--- ¢, corresponding to the-th feature. Letu ando? denote the mean and variance
of the whole data set. The Fisher score is defined below:

Z;‘::l i (i — N)Z
25:1 niUz'Z

In the following, we show that Fisher score is equivalent &placian score with a special
graph structure. We define the weight matrix as follows:

1
) w vi=yi=
Sij = { O,l otherwise. ®)

F. = 4)

Without loss of generality, we assume that the data poi®etered according to which

class they are in, so thék,, - -- ,x,, } are in the first class{X,,+1, -+ , Xn,+n, | @re in
the second class, etc. Thuscan be written as follows:
Si 0 0
S=1 0 " o0
0O 0 S.

whereS; = illT is ann; x n; matrix. For eachs;, the raw (or column) sum is equal
to 1, soD; = diag(S;1) is just the identity matrix. Defin€ = [f,1,--- , frn,]7, 2 =
[frmat+1s s frnitns]  » €1C. We now make the following observations.

~T ~
Observation 1 With the weight matrixS defined in (5), we havé, Lf, = ffoT =
>, nio?, whereL =D — S.

To see this, definé; = D; — S; = I, — S;, wherel; is then; x n; identity matrix. We
have

[ c

frLe, = (f)"Lif = (f)" (I - f11T fi = ancov fif) Zna2
=1

=1 i=1
Note that, since’” L1 = 1" Lu = 0, Yu € R", the value of © Lf, remains unchanged by
. . ~T ~
subtracting a constant vectet (1) fromf,.. This shows that,. Lf, = fTTLfr =>, nio?

Observation 2With the weight matrixS defined in (5), we hang?r = no?.

To see this, by the definition &f, we haveD = I. Thus, this is a immediate result from
equation (3).



Observatlon 3 With the weight matrixS defined in (5), we havé_;_, n;(u; — p)? =
f,, Df, — fT Lf,.

To see this, notice

> ni(pi = p)® =Y (nap? = 2mipip + nip?)
i=1 i=1

= z(: ; nifii)> Q,uzc:nluz—l—,uzz:nz = Z ((fl)Tlle2> —2np? 4 np’
i=1 """

_ i ,z‘_i 2 _ 4T T/ 44T
= ) _fisifl ~(np)? =751, fr(nll ),

=1
= ffI-95f -1

This completes the proof.
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We therefore get the following relationship between thelaeipn score and Fisher score:

Theorem 1 Let F,. denote the Fisher score of theth feature. With the weight matrig

defined in (5), we havé, = 177

Proof From observations 1,2,3, we see that

~T ~T ~T ~T
F o= Z?:l nz(,uz — [L)z N fr Dfr — fr Lfr B 1 1
' 25:1 niUiQ ?fL?f L,
_ 1
Thus,L, = et |

4 Experimental Results

Several experiments were carried out to demonstrate tlogeeifly and effectiveness of our
algorithm. Our algorithm is a unsupervised filter methodiledlmost all the existing filter
methods are supervised. Therefore, we compared our dgovilith data variance which
can be performed in unsupervised fashion.

4.1 UCI Iris Data

Iris dataset, popularly used for testing clustering andsifecation algorithms, is taken from
UCI ML repository. It contains 3 classes of 50 instances gadtiere each class refers to
a type of Iris plant. Each instance is characterized by features, i.e. sepal length, sepal
width, petal length, and petal width. One class is lineadgasable from the other two,
but the other two are not linearly separable from each otBet. of the four features it is
known that the features F3 (petal length) and F4 (petal Wigith more important for the
underlying clusters.

The class correlation for each feature is 0.7826, -0.419490 and 0.9565. We also used
leave-one-out strategy to do classification by using eadiesfeature. We simply used the
nearest neighbor classifier. The classification error fatate four features are 0.41, 0.52,
0.12 and 0.12, respectively. Our analysis indicates thatrfé3-4 are better than F1 and F2
in the sense of discrimination. In figure 1, we present a 2dDalfization of the Iris data.

We compared three methods, i.e. Variance, Fisher score aplddian Score for feature
selection. All of them are filter methods which are independe any learning tasks.
However, Fisher score is supervised, while the other twaaseipervised.
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Figure 1: 2-D visualization of the Iris data.

By using variance, the four features are sorted as F3, F1FFE4] aplacian score (with
k > 15) sorts these four features as F3, F4, F1, F2. Laplacian gadgtte3 < k < 15)
sorts these four features as F4, F3, F1, F2. With a lgkgere see more global structure
of the data set. Therefore, the feature F3 is ranked abovénEd the variance of F3 is
greater than that of F4. By using Fisher score, the four featare sorted as F3, F4, F1,
F2. This indicates that Laplacian score (unsupervisedpaeti the same result as Fisher
score (supervised).

4.2 Face Clustering on PIE

In this section, we apply our feature selection algorithrfate clustering. By using Lapla-
cian score, we select a subset of features which are the rsefildor discrimination.
Clustering is then performed in such a subspace.

4.2.1 Data Preparation

The CMU PIE face database is used in this experiment. It em€8 subjects with 41,368
face images as a whole. Preprocessing to locate the faceapphisd. Original images
were normalized (in scale and orientation) such that thegyes were aligned at the same
position. Then, the facial areas were cropped into the finalges for matching. The size
of each cropped image # x 32 pixels, with 256 grey levels per pixel. Thus, each image
is represented by a 1024-dimensional vector. No furtheprpeessing is done. In this
experiment, we fixed the pose and expression. Thus, for adghc, we got 24 images
under different lighting conditions.

For each given numbad, k classes were randomly selected from the face database. This
process was repeated 20 times (excepkfer 68) and the average performance was com-
puted. For each test (givénclasses), two algorithms, i.e. feature selection usingmae

and Laplacian score are used to select the features. Thedlgaweas then performed in the
selected feature subspace. Again, the K-means was regdatiesles with different initial-
izations and the best result in terms of the objective famctif K-means was recorded.

4.2.2 Evaluation Metrics

The clustering result is evaluated by comparing the obthiakel of each data point with
that provided by the data corpus. Two metrics, the accuracy)(and the normalized
mutual information metricX/ I) are used to measure the clustering performance [6]. Given
a data poink;, letr; ands; be the obtained cluster label and the label provided by ttee da
corpus, respectively. ThaC' is defined as follows:

40 = S 05 map(r) ©

n

wheren is the total number of data points ang, i) is the delta function that equals one
if x = y and equals zero otherwise, and map(s the permutation mapping function that
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Figure 2: Clustering performance versus number of features

maps each cluster labe] to the equivalent label from the data corpus. The best magppin
can be found by using the Kuhn-Munkres algorithm [5].

Let C denote the set of clusters obtained from the ground truth(énebtained from our
algorithm. Their mutual information metrie/ I(C, C') is defined as follows:

MI(C,C)y= Y ple,d)) - logy—s
c,yeC,c;EC’

()

wherep(c;) andp(c}) are the probabilities that a data point arbitrarily selédtem the
corpus belongs to the clustersandc}, respectively, ang(c;, c;) is the joint probability
that the arbitrarily selected data point belongs to thetetsg; as well aSC;- at the same
time. In our experiments, we use the normalized mutual médion M I as follows:

— MI(C,C")

MI(C,C') = : 8

() = ax(H(0), H(CY) ®)

where H(C') and H(C") are the entropies of' andC’, respectively. It is easy to check
that M 1(C,C") ranges from 0 to 1M1 = 1 if the two sets of clusters are identical, and
M1 = 0 if the two sets are independent.

4.2.3 Results

We compared Laplacian score with data variance for clugjeriNote that, we did not
compare with Fisher score because it is supervised anddbEdormation is not available
in the clustering experiments. Several tests were perforwieh different numbers of
clusters (k=5, 10, 30, 68). In all the tests, the number ofestaneighbors in our algorithm
is taken to be 5. The experimental results are shown in FigRrand Table 1. As can
be seen, in all these cases, our algorithm performs mucbrkibtin using variance for
feature selection. The clustering performance varies thighhumber of features. The best
performance is obtained at very low dimensionality (lesentB00). This indicates that
feature selection is capable of enhancing clustering padace. In Figure 3, we show the
selected features in the image domain for each test (k=50,8), using our algorithm,
data variance and Fisher score. The brightness of the pidisates their importance.
That is, the more bright the pixel is, the more important. As be seen, Laplacian score
provides better approximation to Fisher score than datmnvee. Both Laplacian score
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Figure 3: Selected features in the image domaig; 5, 10, 30, 68. The brightness of the
pixels indicates their importance.

Table 1: Clustering performance comparisohss(the number of clusters)

Accuracy
k Feature Number[ 20 50 100 200 300 500 1024
5 Laplacian Score| 0.727 | 0.806 | 0.831 | 0.849 | 0.837 | 0.644 | 0.479
Variance 0.683 | 0.698 | 0.602 | 0.503 | 0.482 | 0.464 | 0.479
10 | Laplacian Score| 0.685 | 0.743 | 0.787 | 0.772 | 0.711 | 0.585 | 0.403
Variance 0.494 | 0.500 | 0.456 | 0.418 | 0.392 | 0.392 | 0.403
30 | Laplacian Score| 0.591 | 0.623 | 0.671 | 0.650 | 0.588 | 0.485 | 0.358
Variance 0.399 | 0.393 | 0.390 | 0.365 | 0.346 | 0.340 | 0.358
68 | Laplacian Score| 0.479 | 0.554 | 0.587 | 0.608 | 0.553 | 0.465 | 0.332
Variance 0.328 | 0.362 | 0.334 | 0.316 | 0.311 | 0.312 | 0.332
Mutual Information
k Feature Number[ 20 50 100 200 300 500 1024
5 Laplacian Score| 0.807 | 0.866 | 0.861 | 0.862 0.85 0.652 | 0.484
Variance 0.662 | 0.697 | 0.609 | 0.526 | 0.495 | 0.482 | 0.484
10 Laplacian Score| 0.811 | 0.849 | 0.865 | 0.842 | 0.796 | 0.705 | 0.538
Variance 0.609 | 0.632 0.6 0.563 | 0.538 | 0.529 | 0.538
30 Laplacian Score| 0.807 | 0.826 | 0.849 | 0.831 | 0.803 | 0.735 | 0.624
Variance 0.646 | 0.649 | 0.649 | 0.624 | 0.611 | 0.608 | 0.624
68 Laplacian Score| 0.778 0.83 0.833 | 0.843 | 0.814 0.76 0.662
Variance 0.639 | 0.686 | 0.661 | 0.651 | 0.642 | 0.643 | 0.662

and Fisher score have the brightest pixels in the area of y@e, @10se, mouth, and face
contour. This indicates that even though our algorithm supervised, it can discover the
most discriminative features to some extent.

5 Conclusions

In this paper, we propose a new filter method for feature seleevhich is independent
to any learning tasks. It can be performed in either supedvie unsupervised fashion.
The new algorithm is based on the observation that local géwnstructure is crucial
for discrimination. Experiments on Iris data set and PlEefdata set demonstrate the
effectiveness of our algorithm.
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