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What is Local Consistency?

» Nearby points (neighbors) share similar properties.

» Traditional machine learning algorithms:

= k-nearest neighbor classifier

(@)
-~
o
o~
>
o
=z
o
c
=
c
©
=z
%)
c
S
R
©
o
a
o
<
o
c
©
on
£
c
—_
©
()
-
()
£
e
O
©
=
c
o
o
o
=
(%]
X
[
§
(]
wv
()
£
=
()

>
=
0
—
(]
=
c
>
on
c
©
=
(]
=
N
U
(9]
c
0
(©]
w
—
(]
e}
>
Qo
E
o
()
Y—
(e]
()
on
2
©
(9
©
()
on
c
(]
o
(©)




Local Consistency Assumption

» A lot of unlabeled data

» Local consistency

= k-nearest neighbors
= e-neighbors
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» Put edges between neighbors (nearby data points)
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» Two nodes in the graph connected by an edge share similar
properties.
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Local Consistency Assumption

» Similar properties

= Labels
= Representations

= x: f(x)

» W e R™M: weight matrix of the graph

. . yi = f(x;)
mIHEZjWU (f(xl)_f(x])) y = [yl’...,yn]T

miny’(D—-W)y L=D-W

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

miny’ Ly
s.t. ¥ Dy=1

© Deng Cai, College of Computer Science, Zhejiang University

S M. Belkin, and P. Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering, NIPS 2001.



Local Consistency and Manifold Learning
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» Manifold learning
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» We only need local consistency minZWif (f(xf) _f(xf))
Lj




» How to use the local consistency idea?
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Local Consistency Iin Semi-Supervised
Learning

» Supervised learning

m
1
f* = argmin— > 1(x;,y;,f) + 2|1’
foomeE

= Squared loss: ridge regression (regularized least
squares)

= Hinge loss: SVM

» Semi-Supervised learning (with local consistency)

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

1% :
f* = argmin_ E (X3, ¥ ) + MIIf11? +2, E Wi (FGed = £ (3 )2
i=1 Lj=1

© Deng Cai, College of Computer Science, Zhejiang University

= Laplacian least squares and Laplacian SVM.

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: a Geometric Framework for Learning from Labeled and
Unlabeled Examples, Journal of Machine Learning Research, 7(Nov):2399-2434, 2006.



Manifold Regularization

» Semi-Supervised learning (with local consistency)

1% - 2
fr= arg;nim; LGxo, i)+ AalIF112 + 22 ) Wy (PG = £(x,)

ij=1

» Laplacian least squares
a* = (XXT + A1+ L, XLXT)"1Xy

» Ridge regression (regularized least squares)
a* = (XXT + A~ 1Xy

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

© Deng Cai, College of Computer Science, Zhejiang University

SVM Laplacian SVM
2 2
1 = o gq 1 o ;n%
$§£n§= Bii “%ﬂ ‘?:g% #o B‘g U%B
Q|=e "0 % 2B B Bf Qe e % 511 > E‘n?
} 98¢ 98
-1 ; =1

-1 0 1 2 =1 0 1 2

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold Regularization: a Geometric Framework for Learning from Labeled and
Unlabeled Examples, Journal of Machine Learning Research, 7(Nov):2399-2434, 2006.



How to use the local consistency idea?

» Matrix factorization
e Non-negative matrix factorization

= Topic modeling
e Probabilistic latent semantic analysis

= Clustering
e Gaussian mixture model
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Matrix Factorization (Decomposition)

» X =[x, ,x,] ERP" 5 X = UVT

X=X=U0VUT

N

approximation left factor right factor
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Matrix Factorization (Decomposition)

X=~UyT
N

K
_X11 KXo Xy ) 1
Xo X o0 A _Vll!!"' Vln_
m K3 Koz 0 K3 ~ M -l
- : o Vg |
K %om ™" K _

X (VG| Up | 1 Voo Uy et Vo Uy

(@)
=
o
(o]
>
o
=z
o
'C
=,
c
©
=z
)
c
o
s}
©
kS,
=
Q
<
o
c
©
on
£
c
_
©
()
-
()
£
e
O
©
=
c
o
o
o
=
(%]
X
[
§
Q
(%]
()
£
=
(&)

>
=
(%]
—
o
=
=
)
on
C
©
=
o
=
N
U
O
c
=
(O]
(2]
_
3]
)
>
o
S
S
O
Y
S}
[
on
O
°
O
'
O
on
c
3]
a
©)




Singular Value Decomposition

» For an arbitrary matrix X there exists a factorization (Singular
Value Decomposition = SVD) as follows:

X=UXV! ¢ pnxm

R

= (i) UeRmk Y e Rkxk y e pmxk

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

- i) UU=1 V'V =1 colmne
o . Singular
(i) 3 = dlag(al, co ,O'k)a Oi 2 Oi+1 values
(ordered)

© Deng Cai, College of Computer Science, Zhejiang University

* (iv) k = rank(X)

C. Eckart, G. Young, The approximation of a matrix by another of lower rank. Psychometrika, 1, 211-218, 1936.



Latent Semantic Analysis (Indexing)

» The LSA via SVD can be summarized as follows:

foruments I || L5aterm
) ,
| , X = I : _3 vectors
|
=

|
terms LSA document
vectors

» Document similarity <I,I>
. 1
q = Ek Viq

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

© Deng Cai, College of Computer Science, Zhejiang University

» Folding-in queries

M. Berry, S. Dumais, and G. O'Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37(4):573-595,
1995.



Non-negative Matrix Factorization

> X~ X=UVT min||X — UVT||?
uij = 0, vij =

» The Euclidean distance ||X — UVT||? is nonincreasing under the
update rules

(XV)ik (XTU)]k

e (WVTV) i Hike Pk S (VUTU) ik

u

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

» Can we incorporate the local consistency idea?

© Deng Cai, College of Computer Science, Zhejiang University

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, NIPS 13, pp. 556-562, 2001.



Locally Consistent NMF
X=Uyt

If x; and x;
are
neighbors - - - - -

X. u | Hvdu, [+ -4 vy

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

» Neighbor: prior knowledge, label information, p-nearest neighbors ...

© Deng Cai, College of Computer Science, Zhejiang University

D. Cai, X. He, J. Han, and T. Huang, Graph regularized Non-negative Matrix Factorization for Data Representation. |IEEE
Transactions on Pattern Analysis and Machine Intelligence, to appear.



X U |+ MU, |+ -+ § U,

X. U | +\V U, |+ - [ U,

minZ Wi (f(x) - f (xj))z minz Z Wy (v = vi)”
j

kK 1)

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

min Tr(VTLV)

© Deng Cai, College of Computer Science, Zhejiang University

D. Cai, X. He, J. Han, and T. Huang, Graph regularized Non-negative Matrix Factorization for Data Representation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, to appear.
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Objective Function

NMF:  min|lX — UVT||?
o (XV)ix | e XTU) ik |
KTV T WU g

GNMF:  min||X — UVT||?+ATr(VTLV)

Graph regularized NMF

e XTUA AWV
WYty e T (vuTU + ADY) i K

u

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

© Deng Cai, College of Computer Science, Zhejiang University

D. Cai, X. He, J. Han, and T. Huang, Graph regularized Non-negative Matrix Factorization for Data Representation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, to appear.



Clustering Results

; @ NME GNME ,

. 4 | 81.0£142 | 93.5£10.1 K NMF CNME
5 6 | 743+10.1 | 92.4+6.1 5 | 955+10.2 | 98.5+2.8
8 | 69.3x86 | 84.0+9.6 10 | 83.6+122 | 91.4+7.6
8 10| 69.4+7.6 | 84.4+4.9 15 | 79.9411.7 | 93.442.7
E 121 69.0+6.3 | 81.0x8.3 20 | 763456 | 91.24+2.6
E 14 | 67.6+5.6 | 79.2+5.2 25 | 75.0445 | 88.642.1
: 16 | 66.0+60 | 76.8+4.1 20 19 88 6

; 18 | 628437 | 76.043.0 v 0 550
20 60.5 75.3

: Avg 689 82.5 TDT2

5 COIL20

» Please check our papers for more details.
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» http://www.zjucadcg.cn/dengcai/GNMF/index.html




How to use the local consistency idea?

» Matrix factorization
e Non-negative matrix factorization

= Topic modeling
e Probabilistic latent semantic analysis

= Clustering
e Gaussian mixture model
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What is Topic Modeling

Text Topic models
Collection (Multinomial distributions)
/term 0.16

Probabilistic : rel(_evance 0.08
] ::> Topic Modeling weight ~ 0.07
feedback 0.04

o
~—
o
~N
>
(®)
=z
)
c
=
c
©
=z
)
=
=
-
©
=
a
(a8
<
o
=
©
on
b=
=
—_
©
)
—
)
=
e
O
©
=
=
o
a
o
<
(2]
4
—
=
(0]
(%2}
Q
b=
e
o

= Opinion mining,
= Many more ...

;%n ~web 0.21
£ search 0.10
» Powerful tool for text mining : link 0.08
3 graph  0.05
: = Topic discovery, ...

; = Summarization,

S




Language Model Paradigm in IR

» Probabilistic relevance model

= Random variables

R;€40,1} : relevance of document d
g C > : query, set of words

= Bayes’ rule

probability of generating a prior probability of relevance for
query q to ask for relevant d  document d (e.g. quality, popularity)

S

Pty = 1y = P =D P =1
/4

probability that document d
is relevant for query q

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

© Deng Cai, College of Computer Science, Zhejiang University

J. Ponte and W.B. Croft, A Language Model Approach to Information Retrieval, ACM SIGIR, 1998.



Language Model Paradigm

P(Ry=1|q) < P(q|Rg=1) P(Rg=1)

2) (D

» First contribution: prior probability of relevance

@ = simplest case: uniform (drops out for ranking)

= popularity: document usage statistics (e.g. library circulation
records, download or access statistics, hyperlink structure)

» Second contribution: query likelihood

@ = query terms q are treated as a sample drawn from an
(unknown) relevant document

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

© Deng Cai, College of Computer Science, Zhejiang University



Query Likelihood

. P(q|Rq = 1) = P(q|d)

[ q: (Wlf'"’WCI)

» Independent Assumption
P(q|d) = lyeqP(w|d)

P(w|d)?
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Naive Approach

number of occurrences
of term w in document d

n(d, w

P w|d)

/
o (d, w

Lero frequency problem: terms
not occurring in a document get
zero probability
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Maximum Likelihood Estimation
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Estimation Problem

(i.i.d) sample

A//f \
document estimation

» Crucial question: In which way can the document collection be
utilized to improve probability estimates?

s d: 4 > P(w|d;)
28 ¢ :
TE : learning from other
93 |' : documents in a
m: : collection ?
g8 other
5% documents -
o




Probabilistic Latent Semantic Analysis

Documents Terms

P(w|z; )
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Model fitting
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Praa(wld) =Y

z

L(wl|z;0)P(z|d; 7)

T. Hofmann, Probabilistic Latent Semantic Analysis, UAI 1999.



PLSA via Likelihood Maximization

» Log-Likelihood

[(0,m;N) = Z n(d, w) log(z P(w|z;0)P(z|d;))

» Goal: Find model parameters that maximize the log-likelihood, i.e.
maximize the average predictive probability for observed word
occurrences (non-convex optimization problem)
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Expectation Maximization Algorithm

» E step: posterior probability of latent variables (“concepts”)

P(z|d; m)P(w|z; 0) Probability that the occurence

of term w in document d can be
Zz’ P(Z,|d; W)P(wlzl; 9) “explained” by concept z

—F P(z|d, w) =

» M step: parameter estimation based on “completed” statistics

~oe of Computzrscience. 7heiiznz Univisgity

=m"P(w|z;t9) x Zn(d,w)P(z|d, w), P(z|d;m) « Zn (d, w)P(z|d, w)
d

~

© Deng C~* Tc*
Chinese Norkshgp or *.acnine Learning and Applications, Nanjing, Nov. 2010

A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of
Royal Statistical Society B, vol. 39, no. 1, pp. 1-38, 1977



Local Consistency ?

» Put edges between neighbors (nearby data points);

» Two nodes in the graph connected by an edge share similar
properties.
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» Network data
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= Co-author network, facebook, webpage




Text Collections with Network Structure

Blog articles + friend network ¢ . seographic network
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= |iterature +
coauthor/citation network

= Email + sender/receiver

Web page + network
hyperlink structure .- ...
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Importance of Topic Modeling on
Network

Information Retrieval +
Data Mining +
Machine Learning, ...

Computer — Or
Science - i'L
) Domain Review +
Literature Algorithm +
Evaluation, ...
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Inturtions

» People working on the same topic belong to the same
“topical community”

» Good community: coherent topic + well connected

» A topic is semantically coherent if people working on
this topic also collaborate a lot

> ¢ Intuition: my topics are
) similar to my neighbors

.
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'-.-::_4‘-’ / More likely to be an IR person
IR £}/ or a compiler person?
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Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

© Deng Cai, College of Computer Science, Zhejiang University

Social Network Context for Topic
Modeling

e.g. coauthor network

. » Context = author
» Coauthor = similar contexts

£ » Intuition: | work on similar
Dt =@ @ @ topics to my neighbors

006 Lo . - . B
0.04 e v; |
0.02 o |
A
S X

Smoothed Topic
distributions -
P(6;|author)

D. Cai, X. Wang, and X. He, Probabilistic Dyadic Data Analysis with Local and Global Consistency, ICML’'09.
Q. Mei, D. Cai, D. Zhang, and C. Zhai, Topic Modeling with Network Regularization, WWW’08.



Objective Function
[(0,7;N) anwlog ZPw|zt9 (z|d;m))

2
min > Wi (f() = £(x))) £ = F(d) = P(zld))
Lj

P(z|d;
D (P(Z|di)||P(Z|df)) - ZP(Z"“) long:d;
~ ]
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z ; (0 (P@IdDIIP(z1d)) + D (P(ald))IIPGld) )

© Deng Cai, College of Computer Science, Zhejiang University

D. Cai, X. Wang, and X. He, Probabilistic Dyadic Data Analysis with Local and Global Consistency, ICML’09.



Parameter Estimation via EM

» E step: posterior probability of latent variables (“concepts”)

P(w;|z)P(z|d;
P(zk|di,wj) = ,\.(u’ )Pz |di) Same as PLSA
1=1 P(wjl|z1)P(z1|d;)

» M step: parameter estimation based on “completed” statistics

N
N n(d;, w;)P(zi|d;, w;
P(w;|z;) = 2=t {1( i Wi) Plzxldi, w;) Same as PLSA

7 M N
Z 1 ‘n(di-. Wy, )P(:A di’ ’lL‘m)

m=1 =

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

P(z |d,)="

© Deng Cai, College of Computer Science, Zhejiang University

D. Cai, X. Wang, and X. He, Probabilistic Dyadic Data Analysis with Local and Global Consistency, ICML’09.
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© Deng Cai, College of Computer Science, Zhejiang University

P(z.1d,) |
P(z,1d,)

 P(z]dy) |

n(d,)

IfA=0

=(Q+AL)

n(dy)

1

2
2

M
j=1
M

j=1

M
j=1

Parameter Estimation via EM

» M step: parameter estimation based on “completed” statistics

h

n(dl,wj)P(zk|d1,wj)
n(dz,Wj)P(zk |d2,wj)

n(dN,Wj)P(zk|dN,wj)

L=D-W,
Graph Laplacian

P(z |d.) :Z:E/':ln(di,wj )P(zk |di’Wj)/n(di) Same as PLSA

D. Cai, X. Wang, and X. He, Probabilistic Dyadic Data Analysis with Local and Global Consistency, ICML’09.



Experiments

» Bibliography data and coauthor

networks

= DBLP: text = titles; network = coauthors

= Four conferences (expect 4 topics):
SIGIR, KDD, NIPS, WWW
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© Deng Cai, College of Computer Science, Zhejiang University
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term 0.02
guestion  0.02
protein 0.01
training  o0.01
weighting o.01
multiple  o.01
recognition o.01
relations  o.01

library 0.01

41:>

Topical Communities with PLSA

peer 0.02
patterns o.01
mining o0.01
clusters o.01
stream 0.01

frequent o.01

(& 0.01
page o001
gene 001

?

visual 0.02
analog o0.02

neurons 0.02

vlsi 0.01
motion  o0.01
chip 0.01
natural 0.1
cortex 0.01
spike 0.01

?

interface 0.02
towards o0.02
browsing 0.02
xml 0.01
generation 0.01
design 0.01
engine 0.01
service  0.01

social 0.01

?

Noisy
community
assignment




© Deng Cai, College of Computer Science, Zhejiang University
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retrieval 0.13
information 0.05
document o0.03
query 0.03
text 0.03
search 0.03
evaluation o0.02
user 0.02

relevance 0.02

Information

mining o011
data 0.06
discovery 0.03
databases o0.02
rules 0.02
association 0.02
patterns  0.02
frequent o.01

streams 0.01

Retrieval

neural 0.06
learning o0.02
networks 0.02
recognition 0.02
analog  o.01
vlsi 0.01
neurons  0.01
gaussian  0.01

network 0.01

web 0.05
services 0.03
semantic 0.03

Services 0.03

peer 0.02
ontologies 0.02
rdf 0.02

management 0.01

ontology o.01

Data mining Machine

learning

Web

Topical Communities with NetPLSA

Coherent
community
assignment

40 Q. Mei, D. Cai, D. Zhang, and C. Zhai, Topic Modeling with Network Regularization, WWW’08.
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i neural 0.6
learning o0.02

networks 0.02

recognition 0.02
analog  oo01
vlsi 0.01
neurons 0.1
gaussian  0.01

network 0.01

© Deng Cai, College of Computer Science, Zhejiang University

visual 002 peer 0.02
analog 0.02 patterns o0.01
neurons 0.02 mining o0.01
visi 0.01 clusters o0.01
motion  o0.01 stream 0.1
chip 0.01 frequent o.01
natural  0.01 e 0.01
cortex  o.01 page 0.01
spike 0.01 gene 0.01

Semantics of
community:

Semantics of
community:

“machine
learning (NIPS)”

“Data Mining
(KDD) ”

41 Q. Mei, D. Cai, D. Zhang, and C. Zhai, Topic Modeling with Network Regularization, WWW’08.

mining  o0.11
data 0.06
discovery 0.03
databases o0.02

rules 0.02

association 0.02
patterns  0.02
frequent o.01

streams  0.01



For More Detials

» Please check our papers

» http://www.zjucadcg.cn/dengcai/LapPLSA/index.html

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010

© Deng Cai, College of Computer Science, Zhejiang University

D. Cai, X. Wang, and X. He, Probabilistic Dyadic Data Analysis with Local and Global Consistency, ICML’'09.
42 Q. Mei, D. Cai, D. Zhang, and C. Zhai, Topic Modeling with Network Regularization, WWW’08.



How to use the local consistency idea?

» Matrix factorization
e Non-negative matrix factorization

= Topic modeling
e Probabilistic latent semantic analysis

= Clustering
e Gaussian mixture model
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Gaussian Mixture Model

Gaussian Mixture Model (GMM) is one of the most popular
clustering methods which can be viewed as a linear combination
of different Gaussian components.
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Gaussian Mixture Model

» Multivariate Gaussian

= u: mean of the distribution
= ¥: covariance of the distribution

1 1 _

B p(x) =N(p L) =—"7—7€xp {—E(x—M)TZ 1(x—u)}
2t (2m)2|Z[2

i3 = Maximum likelihood estimation

( 1%

Aon L™

St o _ 1 ~ T

5 Z=—Z(xi—ﬂ)(xi—ﬂ)

> n

g \ i=1




Gaussian Mixture Model

» Linear combination of Gaussians

= Assumption: K Gaussians, each has a contribution of
;. to the data points

( K

p(x;0) = Z 1. Di (X; O)

k=1

k
0= {7T1,"',7TK, 91,”.,91{},2 Ty = 1’77'-]{ € [0’15
k=1

\ pi (X 01) = NV (x; g, )

% 0.5 1
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Gaussian Mixture Model

» The process of generating a data point

= first pick one of the components with probability

= then draw a sample x; from that component
distribution

» Each data point is generated by one of kK components

Chinese Workshop on Machine Learning and Applications, Nanjing, Nov. 2010
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Gaussian Mixture Model

» The log-likelihood function:

N N K
logl_[p(x(i); Q)= z log Z N (xW; g, )
i=1 i=1

k=1

» Using EM algorithm:

3 i, p(x,z; 6)
“9)=ZZQ(Z R Te0)

=1 z(i)
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Qi (Z](:)) =p (chi)lx(i); @)
T[kN(x(i);ﬂk»zk)
N TN (xW; g, 2)

M » M-step:
2 % = Take the derivative of the complete log likelihood to obtain
ik estimates for my, uy, 2 directly
Zf iz1 Q' (Zl(cl))
N3 T =
‘ Mo
§§" M x®qi (ZI({:))
i¢ M =7Sm i (,0
28 i=1 @' (Zk )
53 . . T .
i L (x® = ) (2O = ) Q' (21
%E i = M nif,D
5 i=10 (zk )
: (D)

» Do the iterations until convergence, then Q! (zk ) can be
used for clustering




Objective Function

Nanjing, Nov. 2010

minz Wi; (f(xi) — f(xj))z flxp) = Plz|xg)
i,j

P i
D (P(lel)HP(leJ)) — z P(lei) lOgPEz:i;
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Zhejiang Univers

Workshop on Machine Learn

R =— ;Zw (p (P(z|xl-)||P(z|xj))+D(P(zlxj)I|P(lei>))2

K

N
Zlog an]\f(x(i);uk,zk) +AR
i=1

k=1

ng Cai, College of Computer Science,
Chinese

© De

J. Liu, D. Cai, and X. He, Gaussian Mixture Model with Local Consistency, AAAI’10.



EM Equations

= TN (X | g, Z
E E-step: P((;k |xi): - k ( i |,Uk k)
< 2 N (x| 45, %))
3; M-step:
22 _ T
gg - Si,k — (Xi _/uk)(xi _:uk)
2 P 1%) N
Eg 7T, == N, :ZP(Ck | %)
%’% N =1
N N
> %P, %) | 42 (Pe 1) =P(e, %)) (% X)W,
P2 _ =l I
&3 a N, 2N,
Bl N N
g Z P(C, [ X:)S; }“Z (P(Ck | %)= P(C| Xj))(si,k B SLk)WiJ
§n Yy = i=1 __ i
c ‘ N, 2N,

original GMM part



Experiment

7/ Real Data sets :
-The Yale face image database.

-The Waveform model described in “The Elements of Statistical
Learning” .

-The Vowels data set which has steady state vowels of British English.
-The Libras movement data set containing hand movement pictures.
-The Control Charts data set consisting control charts.

-The Cloud data set is a simple 2 classes problem.

-The Breast Cancer Wisconsin data set computed from a digitized
image of a fine needle aspirate (FNA) of a breast mass. They describe
characteristics of the cell nuclei present in the image.
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Yale 54.3
Libras 50.8
Chart 70.0
Cloud 100.0
Breast 95.5
Vowel 36.6
Waveform 75.3

Clustering Results

29.1

35.8
56.8
96.2
94.7
31.9
76.3

51.5
44.1
61.5
74.4
85.4
29.0
51.9

54.6
48.6
58.8
61.5
88.9
29.1

52.3

165
800
990
360
600
2048
569

4096
21
10
90
60

30

11
15



The Take-home Messages

» Local consistency is a very useful idea.
» It is very simple.

= Nearby points (neighbors) share similar properties.
2
L,j

» It can be put everywhere (with a lot of unlabeled data)

= The key: how to optimize the regularized objective
function.
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Thanks!
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