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Abstract. High quality online video segmentation is a very challenging
task. Among various cues to infer the segmentation, the foreground and
background color distributions are the most important. However, previ-
ous color modeling methods are error-prone when some parts of the fore-
ground and background have similar colors, to address this problem, we
propose a novel approach of Confidence-based Color Modeling (CCM).
Our approach can adaptively tune the effects of global and per-pixel
color models according to the confidence of their predictions, methods
of measuring the confidence of both type of models are developed. We
also propose an adaptive threshold method for background subtraction
that is robust against ambiguous colors. Experiments demonstrate the
effectiveness and efficiency of our method in reducing the segmentation
errors incurred by ambiguous colors.

1 Introduction

Extracting foreground object from image and video has been an active research
topic for a long time[1–6]. In recent years, high quality online video segmentation
has attracted more and more attention because of its potential applications in
teleconferencing and augmented reality, etc. In these applications high quality
segmentation that can be used for background substitution is desired.

In [3] the authors introduces an effective binocular segmentation method, but
its application is limited due to the requirement of binocular inputs. The suc-
ceeding works are all for monocular segmentation with stationary background
[4–6], which adopt color, motion and contrast as the main cues to infer segmen-
tation. These cues are combined into an optimization framework that can be
solved efficiently with max-flow/min-cut [7].

Color distribution of the foreground and background is the most important
cue, which can be represented with global and per-pixel color models. The global
model describes the global color distribution of foreground and background, and
per-pixel model represents the background color distribution at the location of
each pixel, which is in fact the background model be used for background sub-
traction [8]. As is well known, segmentation methods easy to produce inaccurate
? These two authors are corresponding authors
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(a) (b) (c) (d)

Fig. 1. The error caused by ambiguous colors. (a) input image; (b) probability map
produced by the global color model (a pair of GMMs learned according to the ground
truth of (a)), the pixels with greater intensity are more likely to be foreground; (c)
the background image. Note that the background image is incomplete (in the large
white region), and the reason is explained in section 4; (d) the result of background
subtraction. From (b)(d) one can find a lot of misclassified pixels due to ambiguous
colors (in the red rectangles).

segmentation when foreground and background have similar colors. However,
this problem gained little attention in previous works, in which it seems that
the color modeling process is always safe. Fig.1 demonstrates that both global
and per-pixel color models may introduce notable errors when ambiguous colors
present.

In previous methods, the most often adopted global color model is the Gaus-
sian Mixture Model (GMM). Generally, the global color model can be any clas-
sifier that can output probability, so besides GMM, other learning algorithms,
including k-NN and SVM, can also be used to build the global color model (if
speed is not considered). However, because there is no learning algorithm can
avoid introducing errors, the output of global color model is not always trustwor-
thy (Fig.1(b)). The same for the per-pixel color model, although many adaptive
threshold methods were proposed for background subtraction, none of them is
capable of dealing with ambiguous colors. Consequently, when the overlapped
parts of foreground and background have similar colors, foreground may be mis-
classified as background (Fig.1(d)).

When multiple types of cues are jointly considered, the impact of different
cues can be adjusted through their weights. In previous methods, however, the
weights of each type of cues are uniform for all pixels, which implies that the
predictions of color models are treated equally regardless their correctness. Since
the case of every pixel may be different, with uniform weights it would be difficult
to achieve the optimal combination of cues at every pixel. We therefore propose
to assign each pixel an individual weight based on the confidence of color models
at each pixel. In this way we can reduce the impact of incorrect predictions of
color models by assigning them lower weights.

Notice that the confidence of prediction is in general not the probability of
the predicted class because the latter can be seriously biased due to imperfect
inductive biases [9]. A common misunderstanding about the probability is that
if a color is ambiguous, a classifier would automatically assign it nearly equal
probabilities of belonging foreground and background. This is not true for most
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classifiers. Fig.1(b) shows the case of GMM. In fact, in this case most classifiers
would classify input feature to be the class whose samples occur more often,
which would definitely cause features of the other class be misclassified. In the
domain of machine learning there are already some attempts to measure the con-
fidence (or reliability) [9, 10] and to design classifiers with controlled confidence
[11]. Despite their solid theoretical foundation, they are yet not practical for our
problem due to their large computational cost.

The main contribution of this paper can be summarized in three aspects.
First, we demonstrate that traditional segmentation model based on uniform
weights is error-pone in dealing with ambiguous colors, and then present an
confidence-based segmentation model. Second, we propose efficient methods to
measure the confidence of both global and per-pixels color models. Third, we
introduce an adaptive threshold approach for background subtraction which is
shown to be robust against ambiguous colors. Our work focuses on the problems
caused by ambiguous colors, which have been noted for a long time but have not
been solved yet.

The rest of this paper is organized as follows. Section 2 introduces our
confidence-based segmentation model. Section 3 presents the proposed global
(section 3.1) and per-pixel (section 3.2) color models capable of measuring confi-
dence and estimating adaptive thresholds, as well as the method to determine the
weights of each pixel (section 3.3). Section 4 presents our experimental results,
and compares the proposed method with previous video segmentation methods.
Finally, we conclude our method in section 5.

2 Confidence-based Segmentation Model

Let z = (z1, · · · , zi, · · · , zN ) be an array of pixel color that represents the in-
put image, α = (α1, · · · , αi, · · · , αN ) be the corresponding segmentation result,
where αi ∈ {0, 1} is the state of the i-th pixel. The segmentation α then can be
obtained by minimizing the following energy function:

E(α) =
∑

i

ω̇iE1(αi) + λ
∑

(i,j)∈E
E2(αi, αj) (1)

where E1 is the data term measuring the cost under the assumption that the
state of the i-th pixel is αi, E2 is the smooth term encoding our prior knowledge
about the segmentation, and λ is a free parameter used to trade-off between the
data and smooth terms. ω̇i is a weighting function encoding the confidence of
data terms (in previous methods ω̇i ≡ 1).

The smooth terms E2 are not dependent on the color distributions, and we
will focus on the data terms E1 and the weighting function ω̇i. E1 is typically
computed as the negative log of the foreground color model p(zi|F ) and the
background color model p(zi|B):

E1(αi) =
{− log p(zi|F ) if αi = 1
− log p(zi|B) if αi = 0 (2)
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Without loss of generality, p(zi|F ) and p(zi|B) can be assumed to be normalized,
that is, p(zi|F ) + p(zi|B) = 1, by giving either of them we can determine both.
For clarity we use p(zi) to denote the normalized (foreground) color model:

p(zi) =
p(zi|F )

p(zi|F ) + p(zi|B)
(3)

The color model can be used to describe the global color distribution of the
foreground and background. Since the background is stationary, the background
color at the location of each pixel can also be described with a distribution
function. Therefore, we define p(zi) as the combination of the global and per-
pixel color models:

p(zi) = ω̈ip∗(zi) + (1− ω̈i)pi(zi) (4)

where p∗(zi) is the normalized global color model, and pi(zi) is the normalized
per-pixel color model regarding the i-th pixel. ω̈i is a weighting function to
balance their effects.

The above model is an extension of the segmentation model used in [4]. The
main difference is that in [4], ω̇i ≡ 1 and ω̈i ≡ c are uniform to all pixels, while
in our model they may take different value at different pixels. By computing ω̇i

and ω̈i according to the confidence of corresponding terms, we can emphasize
the impact of reliable cues while suppressing the impact of unreliable cues which
may lead to incorrect segmentation, in this way the errors introduced by color
modeling process can be greatly reduced.

3 Confidence-based Color Modeling (CCM)

3.1 Global Color Model

We adopt Gaussian Mixture Model (GMM) to represent the global color distri-
bution:

p∗(zi|F ) =
KF∑

k=1

πF
k N(zi|µF

k , ΣF
k ) (5)

where (πF
k , µF

k , ΣF
k ) are the parameters of the k-th component, and KF is the

number of Gaussian components. p∗(zi|F ) is the global foreground color model.
The global background color model p∗(zi|B) is defined similarly. p∗(zi|F ) and
p∗(zi|B) can be trained from the foreground and background training color set
SF and SB , respectively. After that the normalized global color model p∗(zi)
can be computed easily by equation (3). The probability map in Fig.1(b) is in
fact the visualization of p∗(zi) acquired in this way.

Nevertheless, the global color model obtained in the above way provides bare
probability without confidence measurement. The confidence of p∗(zi) depends
on both the quantity of ambiguous colors around zi and the accuracy of GMM.
Specifically, if in color space, zi falls in the region of many ambiguous colors , or
the color distribution in the neighborhood of zi cannot be accurately described
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(a) (b) (c) (d)

Fig. 2. Probability and confidence map. The input image is the same as in Fig.1.
(a) detected misclassified pixels (the gray pixels); (b) confidence map of the global
color model (visualized in Fig.1(b)), greater intensity implies higher confidence; (c)
probability map produced with our per-pixel color model; (d) confidence map of (c).

with GMM, p∗(zi) should be of low confidence. However, these two conditions
are hard to be evaluated in practice, here we propose a simple, yet effective
method to measure the confidence.

Note that the training data sets SF and SB can be used to validate the
learned global color model. A color s is misclassified by the learned model if
s is a foreground sample (s ∈ SF ) but p(s|B) > p(s|F ), or s is a background
sample (s ∈ SB) but p(s|F ) > p(s|B). Let SU denote the set of all misclassified
colors in SF and SB , then we can train an additional GMM p∗(zi|U) from SU .
p∗(zi|U) is the probability of zi be misclassified, larger p∗(zi|U) implies lower
confidence of p∗(zi). If p∗(zi|U) is larger than both p∗(zi|F ) and p∗(zi|B), zi

can be considered to be misclassified. Fig.2(a) illustrates the misclassified pixels
detected in this way, which shows that our method successfully found out most
misclassified pixels. Now we can compute the confidence of p∗(zi) as:

C( p∗(zi) ) = 1− p∗(zi|U)
p∗(zi|F ) + p∗(zi|B) + p∗(zi|U)

(6)

where C( · ) is the confidence function. Fig.2(b) visualizes the confidence of p∗(zi).
One can find that the confidence of pixels vary a lot, and the pixels of ambiguous
colors are assigned much lower confidence.

3.2 Per-pixel Color Model

Per-pixel color model is in fact the background model, the maintenance of which
has been studied much [8, 12, 13]. We don’t plan to survey all of these methods
due to space limitation; instead, we suppose that the background model at each
pixel has available as a Gaussian distribution N(zi|µi, Σi). The mean µi can be
regarded as the background color at the location of the i-th pixel.

Given the background model, background subtraction can be accomplished
by thresholding the difference of the current pixel color and corresponding back-
ground color. Specifically, the i-th pixel is regarded as background if ‖ zi−µi ‖<
Ti; otherwise it is regarded as foreground, where Ti is the threshold function.
A popular way of computing Ti is to make it vary according to the covariance
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matrix:
Ti = ρ

√
tr(Σi) (7)

where ρ is a scale factor, and tr(Σi) is the trace of the covariance matrix Σi.
This method can make Ti adaptive to system noise, but it does not consider am-
biguous colors. When the overlapped parts of foreground and background have
similar colors, the thresholds computed in this way may cause foreground pixels
misclassified, as demonstrated in Fig.1(d). In order to solve this problem, the
threshold function must take both noise and ambiguous colors into consideration.

Since the foreground object may move to anywhere, a background pixel can
be occluded by any part of the foreground. To find out the safe threshold for
background subtraction, we need to know the minimum distance di from the
background color mean µi to all the foreground colors:

di = min{‖ µi − µF
k ‖ |k = 1, · · · ,KF } (8)

where µF
k is the mean of the k-th Gaussian component of the global foreground

color model. We need not to check every foreground color samples to find out
the minimum distance, which is not only costly but also sensitive to noise. After
getting di we can define two threshold functions TB

i and TF
i :

TB
i = min(di/2, Ti) TF

i = max(di, Ti) (9)

and then the normalized per-pixel color model can be computed as:

pi(zi) =





0 if ‖ zi − µi ‖< TB
i

1 if ‖ zi − µi ‖> TF
i

‖zi−µi‖−T B
i

T F
i −T B

i
otherwise

(10)

if µi is close to some foreground colors, di and TB
i would be small, which prevents

foreground pixels from being misclassified as background; on the contrary, if µi

is far from all foreground colors, di and TF
i would be large, which can suppress

noise better than Ti. Fig.2(c) is the probability map produced by this method.
Although it still contains some errors, it looks much better than that shown in
Fig.1(d), which is produced with the threshold function Ti as in (7).

The confidence of the probability pi(zi) is dependent on both its magnitude
and the reliability of the background model N(zi|µi, Σi) , so we compute it as:

C( pi(zi) ) =
√

e−βtr(Σi) ∗ |2pi(zi)− 1| (11)

where β is chosen to be (2 < tr(Σi) >)−1, in which < · > denotes the expectation
over all pixels. The background model becomes unreliable if it is polluted by
foreground colors, in which case tr(Σi) is large and pi(zi) would be assigned lower
confidence. |2pi(zi) − 1| would be 0 if pi(zi) = 0.5, which implies zi has equal
probability to be both foreground and background. Fig.2(d) is the confidence
map computed in this way.
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(a) (b) (c) (d)

Fig. 3. Segmentation results. (a) the combined probability map of global and per-pixel
color models; (b) foreground obtained with both confidence and adaptive thresholds;
(c) foreground obtained without using confidence (ω̇ ≡ 1, ω̈ ≡ 0.5); (d) foreground
obtained without using adaptive thresholds (T F

i = T B
i = Ti).

3.3 Optimal Combination

Once the confidence of the global and per-pixel color models is known, we can
combine them according to the confidence so that the color model with higher
confidence can take greater effect. Since the two confidence functions C( p∗(zi) )
and C( pi(zi) ) are both in the range of [0, 1], they do not need to be re-scaled,
and the weighting functions ω̇i and ω̈i can be simply computed as:

ω̇i =
1
2
(C( p∗(zi) ) + C( pi(zi) )) (12)

ω̈i =
C( p∗(zi) )

C( p∗(zi) ) + C( pi(zi) )
(13)

ω̇i can be regarded as the confidence of the combined color model p(zi). If both
global and per-pixel color models at pixel zi are of low confidence, ω̇i would be
small, and the corresponding data term is assigned low weights, then smooth
term would dominate the state of the corresponding pixel. Fig.3(a) shows the
combined probability map.

4 Experimental results

In experiments we adopt the video segmentation data set from Microsoft I2I
project3. The test environment is a computer with 2.2GHz CPU and 4G RAM.
The algorithm is implemented in C++.

Implementation details: The data terms E1 are computed with the pro-
posed method, and the smooth terms E2 are computed in the same way of [4].
Since the background image is not provided in the data set, we have to accu-
mulate it in online phase. At the start the background model of all pixels are
invalid, after segmenting a frame, the acquired background pixels are used to fill
the hole of the background image, and other parts of the background image are
also updated as in [4]. Henceforth, the background image we use is incomplete,
as shown in Fig.1(c).
3 http://research.microsoft.com/vision/cambridge/i2i/DSWeb.htm
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VK 56 JM MS

Fig. 4. Visual comparison with BC [4]. Top: input frames; Middle: foreground obtained
with BC; Bottom: foreground obtained with our method.

The global color model is trained in the initialization phase. In [4] the pro-
gram is initialized with the background image. [5] proposes an automatic initial-
ization method, but it needs labeled videos to train the motion model. Since the
background image is not available in our case, we simply initialize our program
with the ground truth of the first frame. In practice the initialization method
can be chosen freely according to the available information.

The segmentation result is finally obtained by minimizing equation (1) with
min-cut [7], then the object boundary is smoothed to suppress flicking.

Computational cost: Our system can achieve a speed of 10 ∼ 12 fps for
input image sequence of size 320 × 240. Most computational cost is spent on
minimizing the energy equation. To measure the confidence and to compute the
adaptive thresholds bring only a little more cost, which is about 12ms in the
case of KU = KF = 10 (lookup table is used to accelerate the computation of
the exponential function in GMM).

Effect of CCM: Fig.3 demonstrates the effectiveness of the proposed color
modeling method. The input image is hard to be precisely segmented due to
the large area of ambiguous colors. Fig.3(c) is the foreground obtained with
uniform weights, in which the desktop is mis-segmented as foreground due to the
error introduced by the global color model (Fig.1(b)). Fig.3(d) is the foreground
obtained without using adaptive threshold. Since the shoulder of the person
appears nearly the same as the desktop, it is misclassified as a part of background
by the per-pixel color model (Fig.1(c)). By using both nonuniform weights and
adaptive thresholds, our method can generate much better segmentation result
(Fig.3(b)).
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input&GT #130 #140 #150 #160

Fig. 5. Visual comparison with TM [5]. The first column is the input image and the
ground truth of the frame #130.

JM MS AC VK 50 54 56

CCM 0.13 1.40 0.47 0.68 1.12 0.39 0.33
BC 0.16 2.44 0.56 1.12 1.43 0.52 0.68
TM 0.12 2.59 0.52 - - - -

Table 1. The error rates (%) of CCM, BC [4] and TM [5].

Comparison with other methods: Fig.4 provides some visual compar-
isons of our method with “Background Cut” (BC, [4]). Since the background
image is not available, our implementation of BC is not exactly the same as
described in [4]. The only difference between our implementation of BC and our
method exists in the modeling of color distributions, i.e. the computation of E1

and its weights, so the comparison between them is fair.
Fig.5 is the comparison with [5] (TM), which involves Temporal and Motion

priors as its cues. The results of TM are extracted from the published video, so
fair comparison is not guaranteed. Tab.1 lists the error rates of CCM, BC and
TM. Notice that the ground truth is available only every 5 or 10 frames, so not
every frame are evaluated and the error rates may not capture all errors.

In fact, the implementation of our method in this experiment is a version of
BC boosted with the proposed color modeling method. Since our color modeling
method is independent of how the program is initialized and how other energy
terms are computed, it can also be used to boost the performance of any other
video segmentation methods that adopt color distribution as segmentation cues.

5 Conclusions

In this paper we propose a confidence-based color modeling method to improve
the robustness of online video segmentation against ambiguous colors. A new
confidence-based segmentation model is presented, which assigns energy terms
nonuniform weights based on their confidence. We developed methods for mea-
suring the confidence of both global and per-pixel color models, and for com-
puting adaptive thresholds for background subtraction. The confidence is then
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used to determine the weights of color models and energy terms at each pixel in
order for the optimal combination of cues.

Experiments show that the proposed method can greatly enhance the seg-
mentation result, especially for frames with large amount of ambiguous colors
present. Our method to measure the confidence is very fast, and brings only a
little more computational cost.

The limitation of our work is that it accounts for only ambiguous colors.
Besides this, the change of lighting conditions, shadowing and camera shaking,
etc. can also lead to errors in the color modeling process. Our future work is to
address these problems in the confidence-based framework.
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References

1. Chuang, Y.Y., Curless, B., Salesin, D.H., Szeliski, R.: A bayesian approach to
digital matting. In: Proceedings of CVPR. (2001) 264–271

2. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction
using iterated graph cuts. ACM Transactions on Graphics 23 (2004) 309–314

3. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmen-
tation of binocular stereo video. In: Proceedings of CVPR. (2005) 407–414

4. Sun, J., Zhang, W., Tang, X., Shum, H.Y.: Background cut. In: Proceedings of
ECCV. (2006) 628–641

5. Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live
video. In: Proceedings of CVPR. (2006) 53–60

6. Yin, P., Criminisi, A., Winn, J., Essa, I.: Tree-based classifiers for bilayer video
segmentation. In: Proceedings of CVPR. (2007)

7. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minimization in vision. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 26 (2004) 359–374

8. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time
tracking. In: Proceedings of CVPR. Volume 2. (1999) 252–259

9. Kukar, M., Kononenko, I.: Reliable classifications with machine learning. In:
International Conference on Machine Learning (ICML). (2002) 219–231

10. Nouretdinov, I., Melluish, T., Vovk, V.: Ridge regression confidence machine. In:
International Conference on Machine Learning (ICML). (2000) 385–392

11. Li, M., Sethi, I.K.: Svm-based classifier design with controlled confidence. In:
International Conference on Pattern Recognition (ICPR). (2004) 164–167

12. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallfower: Principles and prac-
tice of background maintenance. In: International Conference on Computer Vision.
(1999) 255–261

13. Mahadevan, V., Vasconcelos, N.: Background subtraction in highly dynamic scenes.
In: Proceedings of CVPR. (2008)


