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Abstract

This paper presents a novel multi-body multi-view stereo
method to simultaneously recover dense depth maps and
perform segmentation with the input of a monocular image
sequence. Unlike traditional multi-view stereo approaches
that generally handle a single static scene or an object, we
show that depth estimation and segmentation can be jointly
modeled and be globally solved in an energy minimization
framework for ubiquitous scenes containing multiple inde-
pendently moving rigid objects. Our major contribution in-
cludes a new multi-body stereo model, which integrates the
color, geometry, and layer constraints for spatio-temporal
depth recovery and automatic object segmentation. A two-
pass optimization scheme is proposed to progressively up-
date the estimates. Our method is applied to a variety of
challenging examples.

1. Introduction

Both stereo-based 3D reconstruction and image/video
segmentation have been fundamental problems in computer
vision for long time, due to the critical need of high qual-
ity depth and segment estimates in many applications, e.g.,
recognition, image-based rendering, and image/video edit-
ing. However, these two problems were researched typi-
cally along different lines.

In multi-view stereo [16], which estimates depth and
3D geometry from a collection of images, simultaneous
dense 3D reconstruction and segmentation of rigid objects
that move differently is very difficult. Coarse representa-
tion with multiple rigid components [14], 3D motion seg-
mentation to separate feature trajectories of multiple mov-
ing objects [4, 21, 13], and object recognition with a train-
ing process [24, 9] were proposed to deal with dynamic or
static scenes. They however cannot solve the high-quality
dense 3D reconstruction problem, especially when moving
objects are not initially separated.

In this paper, we present a new method to simultane-
ously achieve dense depth estimation and motion segmen-

tation for multiple rigid objects undergoing different move-
ments. Our major contributions include a new multi-body
stereo representation that couples depth and segmentation
labels, and a global estimation method to minimize a uni-
fied objective function, which notably extends multi-view
stereo to scenes with several surfaces independent in mo-
tion. We also propose an adaptive-frame-selection scheme
with a depth and segment hole filling algorithm for effec-
tive occlusion handling. The objective function is solved by
an iterative optimization scheme. It first initializes labels
with a novel multi-body plane fitting algorithm, and then
iteratively refines them by incorporating the geometry and
segment coherence constraints in a statistical way among
multiple frames. Our method can yield spatio-temporally
consistent depth and segment maps.

Previous Work and Discussion

3D motion segmentation separates feature trajectories
of moving objects to recover their positions and the cor-
responding camera motion. Most of these methods adopt
the affine camera model for simplification [4, 21, 13]. A
few also aim to handle multiple perspective views [15, 12].
These approaches do not aim at high-quality dense 3D re-
construction with segmentation.

In 2D motion segmentation [1, 23, 29, 8], pixels that un-
dergo similar motion are approximately grouped, and are
separated into layers. These methods also depend on the
accuracy of motion estimation and generally decouple the
computation of motion and segmentation, which could in-
troduce the ‘chicken and egg’ problem – that is, inaccurate
motion estimate causes segmentation ambiguity, while er-
roneous segments may adversely affect motion estimation.

Rothganger et al. [14] proposed reconstructing groups
of affine-covariant scene patches with the multi-view con-
straints. It only coarsely represents a dynamic scene with
multiple rigid components. Two recent methods [24, 9] per-
formed semantic scene parsing and object recognition based
on estimated dense depth maps, or by a joint optimization
of segmentation and stereo reconstruction. These methods
require a training stage and the scene must be static. In ad-
dition, the produced coarse object segments may be with



imprecise boundaries.
If moving rigid objects are masked out, we can apply

MVS to each object independently. State-of-the-art seg-
mentation methods, such as mean shift [3], normalized
cuts [18], and weighted aggregation (SWA) [17] base their
operations on 2D image structures and do not consider rich
geometry in MVS.

With the objective to accurately extract foreground mov-
ing objects with visually plausible boundaries, bilayer seg-
mentation methods [5, 19] were proposed assuming that the
camera is mostly stationary, availing estimating or model-
ing the background color. Obviously, these methods, due to
the static camera constraint, do not suit MVS either.

Recently, Zhang et al. [26] used both the motion and
depth information to model the background scene and ex-
tracted good-quality foreground layer. The estimated dense
motion field and bilayer segmentation are iteratively re-
fined. This approach is limited to bilayer segmentation. In
addition, only the motion field for the foreground layer is
computed, which is not enough for 3D reconstruction.

2. System Overview

We first define notations used in this paper. Given a
sequence Î with n frames, i.e., Î = {It|t = 1, ..., n},
taken by a freely moving camera, our objective is to esti-
mate the disparity maps D̂ = {Dt|t = 1, ..., n} in the n
frames as well as the corresponding motion segment maps
Ŝ = {St|t = 1, ..., n}. It(x) denotes the color (or inten-
sity) of pixel x in frame t.

We denote by K the number of independently mov-
ing rigid objects. If pixel x is in the kth object, we set
St(x) = k. Denoting by zx the depth of pixel x in frame t,
by convention, disparity Dt(x) is defined as Dt(x) = 1/zx.

2.1. Multi-Body Structure-from-Motion

In a conventional static-scene sequence, only one set of
camera parameters is computed for each frame. Here, since
we have K independently moving rigid objects, they have
their own motion parameters and are viewed from different
positions. The camera parameters of object k in frame t are
denoted as Ck

t = {Kt,R
k
t ,Tk

t }, where Kt is the intrinsic
matrix, which is the same for all objects. Rk

t is the rotation
matrix, and Tk

t is the translation vector for object k.
In this paper, with the focus to solve for dense 3D

motion segmentation, the number K of rigid objects and
the relative camera motion for each object are empirically
computed by the multi-body structure-from-motion (SFM)
method [12] in a pre-process. When occasional error arises
in this automatic method due to complex structures of the
sequence or the large number of independently moving ob-
jects, we remove problematic feature tracks, and use the
semi-automatic method [2] to add a few long tracks, which
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Figure 1. Pre-processing. (a-b) The grouped feature tracks for the
two boxes in two selected frames. The tracked features in different
objects are shown as green and red crosses, respectively. The white
curves are the corresponding temporal trajectories.

are then manually grouped with respect to objects. One ex-
ample is shown in Figure 1, where features are tracked for
the two boxes. We perform structure-from-motion [28] for
each group of the feature tracks independently such that rel-
ative camera motion can be respectively estimated for the
objects. We sort the objects according to their distance to
the camera. The relative scales among different objects are
not estimated since the objects are generally not in contact
and scales do not influence the depth estimation and seg-
mentation.

After pre-processing, we estimate dense depth and seg-
mentation maps with the multi-body configuration. It is
challenging even for manual labeling of the layers that in-
clude fine details in each frame and of dense disparity val-
ues. So a robust automatic algorithm is needed.

2.2. The Framework

Table 1 gives an overview of our system. With an in-
put sequence and the estimated camera motion for the ob-
jects, we first initialize the depth and object segmentation
maps for each frame without temporal consideration. A
new multi-body plane fitting scheme is introduced. Then
we update the disparity and segmentation maps with itera-
tive optimization. Finally, a hierarchical belief propagation
algorithm is employed to densify the levels of disparity for
higher estimation precision.

1. Initialization:
1.1 Initialize depth and motion segmentation for each

frame by solving Eq. (11) (Sec. 4).
1.2 Use multi-body plane fitting to refine initializa-

tion (Sec. 4.1).
2. Iterative Optimization:

2.1 Process frames consecutively from 1 to n:
For each frame t, fix the disparities and segmen-
tation labels in other frames and refine Lt by
minimizing Eq. (1) (Sec. 4.2).

2.2 Repeat step 2.1 for two passes.
2.3 Use a hierarchical BP algorithm to increase esti-

mation accuracy.

Table 1. Our Framework



3. Multi-Body Stereo Model
For each pixel, our goal is not only to estimate its actual

disparity value, but to determine the object segment it be-
longs to as well. To this end, for object k, we first determine
its maximum and minimum depth values of the recovered
3D points corresponding to the tracked features in multi-
body structure-from-motion, and denote them as zk

max and
zk
min. The range of disparities is thus [dk

min, dk
max] where

dk
min = smin/zk

max, dk
max = smax/z

k
min.

The two scale factors smin < 1 and smax > 1. The disparity
range is then evenly partitioned into mk levels with interval
∆d, such that the ith level is expressed as

dk
i = (i − 1)∆d + dk

min,

where i = 1, ...,mk. Now each pixel x has two key vari-
ables to be estimated: one is its disparity value d and the
other is the segment index k. Separately computing these
two sets of variables, as aforementioned, is not optimal and
easily accumulates errors.

We alternatively propose an expanded labeling set that
jointly considers these two variables for each pixel, and de-
fine it as

L = {d1
1, d

1
2, ..., d

1
m1

, ..., dK
1 , dK

2 , ..., dK
mK

}.

The cardinality of the set |L| =
∑K

k=1
mk. In L, each label

(denoted as Li for the ith label) naturally encodes a segment
index and the actual disparity value. If a pixel is labeled as
Li after computation, we can easily determine its segment
index S(Li) as

S(Li) = h s.t. 1 ≤ i −

h−1
∑

j=1

mj ≤ mh.

Its disparity value D(Li) is accordingly

D(Li) = dh

i−
∑h−1

j=1
mj

.

For example, Lm1+3 means that this pixel belongs to 2nd
object, and the disparity value is d2

3.
Thanks to this compact representation, instead of esti-

mating Dt and St separately, we now can estimate a joint
label map Lt for each frame t with the consideration of nec-
essary color and geometry constraints.

3.1. Objective Function

To compute the label maps L for all frames, we define
the energy in the input sequence as

E(L; Î) =
n

∑

t=1

(Ed(Lt) + Es(Lt)), (1)
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Figure 2. Multi-view geometry. Given disparity D(l), pixel xt is
mapped to its actual 3D position, and then reprojected to frame t′.
The projected pixel in frame t′ is denoted as x′. Ideally, when we
reproject x′ from frame t′ back to t, the projected pixel xt′→t

t

should be identical to xt. In practice, due to matching errors,
xt′→t

t and xt are possibly different points.

where the data term Ed measures how well labeling L fits
the observation Î , and the term Es encodes spatial labeling
smoothness. We elaborate these terms below followed by
description of optimization and system initialization, and
by the discussion of other implementation issues.

3.2. Data Term
Our data term takes the intensity, disparity, and layer

consistency information into consideration. The likelihood
that one pixel xt in It is labeled as l ∈ L is defined as

P (xt, l) =
1

|φv(xt)| + |φo(xt)|
(

∑

t′∈φo(xt)

po(xt, l, Lt′,t) +

∑

t′∈φv(xt)

pc(xt, l, It, It′) · pv(xt, l, Lt′)), (2)

where φv(xt) and φo(xt) are two sets of the selected
neighboring frames for xt, and po(xt, l, Lt′,t) is a label-
ing prior, all of which will be elaborated in Section 3.3.
1/(|φv(xt)| + |φo(xt)|) is used for energy normalization.
pc(xt, l, It, It′) measures the color similarity between pixel
xt and the projected x′ in frame t′, same as the one in [27]:

pc(xt, l, It, It′) =
σc

σc + ||It(xt) − It′(x′)||
, (3)

where σc controls the shape of the differentiable robust
function. It′(x

′) is the color of pixel x′. With the estimated
camera parameters and disparity D(l) of pixel xt, the loca-
tion of the projected pixel x′ can be expressed as

x
′h ∼ Kt′R

>

t′RtK
−1
t x

h
t + D(l)Kt′R

>

t′ (Tt − Tt′), (4)

where the superscript h indicates the homogeneous coordi-
nate of the vector. The 2D point x′ is computed by dividing
x′h with the third homogeneous coordinate.
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Figure 3. The projected labeling prior with hole filling. (a) The
31st frame. (b) The 36th frame. (c) The projected labeling prior
L31,36. The red pixels are those receiving no projection during the
3D warping. (d) Label inference for pixel xt from the four nearest
visible neighbors horizontally and vertically.

pv(xt, l, Lt′) is a geometry and segment coherence term
measuring whether or not pixel xt and the projected cor-
respondence x′ are in the same object segment, and how
consistent they are in terms of multi-view geometry. We
define pv(·) as

pv(xt, l, Lt′) =

{

0, S(l) 6= S(l′)
pg(xt,D(l),D(l′)), S(l) = S(l′)

(5)

where l′ ∈ L is the current label of x′. Eq. (5) shows if
l and l′ have different segment indices, the two pixels are
not corresponding in the two frames and should be discon-
nected. Otherwise, we use pg defined below to measure the
geometric coherence between xt and x′ [27]:

pg(xt,D(l),D(l′)) = exp(−
||xt − xt′→t

t ||2

2σ2
d

), (6)

where xt′→t
t is the corresponding point in frame t by pro-

jecting x′ from frame t′ to t with its disparity estimate
D(l′). An illustration is provided in Figure 2. The standard
deviation σd is set to 3 in our experiments.

To fit the energy minimization framework, our data term
Ed is finally written as

Ed(Lt) =
∑

xt∈It

1 − P (xt, Lt(xt)). (7)

3.3. Adaptive Frame Selection with Labeling Prior

The date term in Eq. (2) involves variables φv(·) and
φo(·), and the prior po(·). They are defined with a novel
frame-selection scheme based on an observation. That is,
rather than summing the matching cost over all frames, a
better strategy for multiview geometry enforcement is to
only pick frames where corresponding pixels exist (or are
visible).

We introduce an effective method to search for frames
that contain non-occluded matching pixels for each refer-
ence pixel xt. Given the initial label maps or their estimates
from the previous iteration, we use the 3D warping tech-
nique [10] to warp Lt′ to the reference frame t. One ex-
ample is shown in Figure 3. The label map warped from

frame t′ to t is denoted as Lt′,t, as shown in (c). If a pixel
xt does not receive any label projection from frame t′, the
value of Lt′,t(xt) is regarded as missing, which implies that
the corresponding pixel of xt in frame t′ is occluded.

We use this criterion to select visible and invisible frames
for each pixel and denote by φv(xt) and φo(xt) respectively
the set of frames where correspondences of xt are visible
and are occluded. Practically, we at most collect N1 frames
for φv(xt). N1 is set to 16 ∼ 20 in our experiments. If
the total number of frames in φv(xt) cannot even reach a
lower limit N2, which is generally set to 5, we add a few
neighboring frames to φo(xt) so that |φo(xt)|+ |φv(xt)| =
N2.

Note that occluded pixels have no matching costs. So if
a pixel is occluded in all neighboring frames, its true dis-
parity cannot be inferred directly. Why do we still collect
frames to form φo(xt)? It is because we found although
accurate inter-frame matching is not achievable, there is a
simple means to coarsely infer the disparities and object la-
bels even in the extreme no-visible-correspondence situa-
tion using disparity neighbors.

Based on the fact that occluded pixels generally have
small disparity values, we apply an easy but effective al-
gorithm for label map inpainting. For each missing pixel x
in the projected Lt′,t, we search horizontally and vertically
for four nearest neighbors that receive labels, and select the
one, denoted as x∗, with the minimum label index, as shown
in Figure 3(d). The confidence to set Lt′,t(x) = Lt′,t(x

∗) is
dependant of the distance between x and x∗, which is high
when the two pixels are close. We use a spatial Gaussian
falloff to model the confidence

wo(x) = e
−

||x−x
∗||2

2σ2
w , (8)

where σw = 10 empirically.
Label map hole filling does not have very high accuracy,

but works pretty well when visible correspondences are not
enough in estimating a reliable data cost. The labeling prior
making use of this piece of information is defined as

po(xt, l, Lt′,t) = λo · wo(xt)
β

β + |l − Lt′,t(xt)|
, (9)

where λo is the weight, and β controls the shape of the dif-
ferential cost. The formulation of po requires that Lt(xt) is
similar to Lt′,t(xt) with high confidence wo(x).

In [11, 22], the depth/disparity maps of neighboring
views are projected to the reference for depth/disparity fu-
sion. The accuracy of the fused depth depends on the ac-
curacy of the projected depth maps. In comparison, we use
the projected label maps as a prior to avail selecting visi-
ble frames and stabilizing the ill-posed likelihood estima-
tion for occluded pixels with hole filling.

This strategy is very useful for pixels near discontinuous
boundaries where occlusion commonly arises, and in the
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Figure 4. Result comparison using and without using the adaptive frame selection and labeling prior. (a) The first frame of the sequence.
(b-c) Two estimated label maps, using and without using the adaptive frame selection scheme and the labeling prior. (d)-(e) Close-ups of
(b) and (c).

meantime does not affect depth estimation for other visible
pixels. Figure 4(b) and (c) (close-ups in (d) and (e)) show
two results using and without using our adaptive frame se-
lection scheme and the labeling prior. The comparison
shows that our method remarkably improves segmentation
and disparity estimation along the moving head, which con-
sistently occludes the background and was very difficult to
handle conventionally.

3.4. Smoothness Term

Since our label encodes disparity and segment jointly,
the spatial smoothness of these two sets of variables can be
maintained by only enforcing the label index smoothness,
which yields a simple form

Es(Lt) = λs

∑

xt

∑

yt∈N(xt)

ρ(Lt(xt), Lt(yt)), (10)

where N(xt) is the set of neighbors of pixel xt, and λs is a
smoothness weight. ρ(·) is a robust function defined as

ρ(Lt(xt), Lt(yt)) = min{|Lt(xt) − Lt(yt)|, η},

where |Lt(xt) − Lt(yt)| measures the distance of indices
between Lt(xt) and Lt(yt), and η truncates very large val-
ues to preserve discontinuity. This simple smoothness form
can be efficiently solved by belief propagation [6] (the com-
plexity is linear to the number of labels), and is enough even
for the challenging examples shown in the paper.

4. Solving the Objective Function
In the first place, the label maps of the whole sequence

are unknown. So the energy defined in (1) cannot be di-
rectly solved. We introduce a system initialization step to
separately estimate a label map for each frame by removing
the geometric coherence constraint pv(·). Labeling prior
po(·) is also omitted, simplifying the likelihood in (2) to

Pinit(xt, Lt(xt)) =
1

|φ′(xt)|

∑

t′∈φ′(xt)

pc(xt, Lt(xt), It, It′),

where φ′(xt) contains the selected frames. Without the la-
bel maps in the beginning, we resort to the temporal selec-
tion method of Kang and Szeliski [7] to pick frames where
the corresponding pixels of xt are visible.

Algorithm 1 Multi-Body Plane Fitting

1. Use mean shift to produce color segments ŝ = {si|i =
1, 2, ..., Ns} in It.

2. for each segment si in It do
for k = 1, ...., K do

Estimate the plane parameters for si by minimizing
(11). The output includes the parameters [ak

i , bk
i , ck

i ]
and the total cost E′k(ak

i , bk
i , ck

i ).
end for
Find the optimal plane parameters [aj

i , b
j
i , c

j
i ], where

j = arg mink Ek
t (ak

i , bk
i , ck

i ).
end for

3. If E
′j
t < E′

t, update dxt = aix+biy+ci and set S(xt) := j

for any pixel xt ∈ si.

The initial objective function is correspondingly modi-
fied to

E
′(L; Î) =

n
∑

t=1

∑

xt∈It

(1 − Pinit(xt, Lt(xt)) +

λs

∑

yt∈N(xt)

ρ(Lt(xt), Lt(yt))). (11)

Since the labels of different frames are not correlated in
this form, we solve for Lt for each frame t separately by
loopy belief propagation (BP) [6]. One resulted label map
is shown in Figure 5(b). It is however erroneous especially
in textureless regions.

4.1. Multi-Body Plane Fitting

To handle textureless regions and make the following re-
finement easier, we also incorporate color segmentation in
the initialization step. The color segments are computed by
the mean-shift method [3]. Then we model each color seg-
ment si as a 3D plane with parameters [ai, bi, ci] such that
dxt

= aix + biy + ci for each pixel xt = [x, y] ∈ si.
With the new configuration that the scene contains mul-

tiple moving objects, traditional plane fitting methods (e.g.,
[20]) cannot be used. Here, we introduce a multi-body al-
gorithm, sketched in Algorithm 1. For each color segment
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Figure 5. Intermediate results. (a) One frame from a sequence. (b) Initial label estimate without plane fitting. (c) The obtained color
segments by Mean Shift method [3]. (d) The label map after plane fitting. (e) The refined label map after the first-pass optimization. (f)
The refined label map after the two-pass optimization. (g) The box and background segments. (h) The reconstructed 3D surface of the box
without disparity level expansion. (i) The final 3D surface after disparity level expansion.

si, we first assign it to the 1st object. So the camera param-
eters are set to C1

t = {Kt,R
1
t ,T

1
t}. By taking all pixels

in si into Eq. (11) while fixing the labels in all other color
segments, we compute the best plane parameters [a1

i , b
1
i , c

1
i ]

using the method of [27]. The correspondingly minimized
total cost in si is denoted as E′k(a1

i , b
1
i , c

1
i ).

Afterwards, we assign si to object 2, and repeat the
above process to compute E′k(a2

i , b
2
i , c

2
i ). It continues un-

til [aK
i , bK

i , cK
i ] are estimated. With the K sets of possible

plane parameters, si suits best the object with the minimum
total energy, that is, j = arg mink Ek

t (ak
i , bk

i , ck
i ).

Note that assigning j to fit a plane does not necessarily
yield a better result than the initial label map. We thus com-
pare E′j

t with the initially computed cost E ′

t expressed in
(11) for all pixels in si. E′j

t < E′

t means plane fitting yields
a lower-energy configuration. So the pixels in si need to
be updated to dxt

= aix + biy + ci and S(xt) = j. On
the contrary, if E′j

t > E′

t, it is very likely that the segment
spans multiple layers or is simply inappropriate to model
the surface by a 3D plane. We do not risk updating labels
in this case. Figure 5(d) demonstrates the effectiveness of
this step. The initially erroneous estimates are dramatically
improved, especially in textureless regions.

4.2. Iterative Spatio-Temporal Optimization

Although plane fitting is useful for frame-wise depth es-
timation and segmentation, due to the lack of explicit tem-
poral coherence constraint, the independently estimated la-
bels are not consistent, as illustrated in Figure 5(d) and our
supplementary video 1. The initial labels are occasionally
wrong in some frames, which can be corrected in multiple
frames in an outlier-rejection fashion making use of the ge-

1The supplementary video can be downloaded from the corresponding
project website under http://www.cad.zju.edu.cn/home/gfzhang/

ometry coherence term pv(·) in Eq. (5).
Considering a pixel x in frame t and denoting its cor-

responding pixel as x′ in frame t′, if both labels Lt′(x
′)

and Lt(x) are correct and satisfy the color coherence con-
straint, pv(xt, l, Lt′) in (5) and pc(xt, l, It, It′) in (3) will
output large values. In contrast, outliers generally cannot
satisfy all constraints simultaneously, yielding very small
pc(·)pv(·) in the likelihood (2).

Based on the analysis, we use all terms in the data func-
tion (i.e. Eq. (7)) and progressively update the estimates by
minimizing the energy (1). We process the frames sequen-
tially starting from the first one. In optimizing label map
Lt, we fix the estimates in other frames, which makes Eq.
(1) be expressed as

Et(Lt) = Ed(Lt) + Es(Lt). (12)

It is minimized by belief propagation. While processing one
frame in the middle or at the back of the sequence, due to
the refined labels in all frames before it, pv(·) can be very
reliable since it utilizes updated information. We adopt two
passes of optimization to let all frames be processed with
nearly even neighborhood information.

Figure 5(e) and (f) show the label maps after the first-
and second-pass optimization. The first-pass optimization
already corrects most of the problematic estimates. Our
supplementary video can better demonstrate the temporal
consistency. The obtained labels are finally decomposed
into disparities and object segment indices.

Due to the use of discrete optimization, the disparities
are with limited levels, as demonstrated in Figure 5(h). We
densify them by a hierarchical belief propagation method
[25]. In this process, the computed object segments are
fixed. Figure 5(i) shows the reconstructed mesh after dis-
parity level expansion.
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Figure 6. Three-body sequence. (a) Two selected frames. (b) The
estimated label maps. (c) The estimated object masks.

5. Experimental Results

We took a few video clips by a handheld consumer dig-
ital camera. The frame resolution is 960 × 540 (pixels).
Most of the parameters in our system are fixed. Specifically,
λs = 5/|L|, η = 0.03|L|, λo = 0.3, σc = 10, σd = 2, and
β = 0.02|L|. The number of the disparity levels mk for
each object is generally set to 51 ∼ 101. Given 243 labels,
our system takes about 10 minutes to process one frame (in-
cluding initialization and the two-pass optimization) on a
desktop computer with a 4-core Intel Xeon 2.66 GHz CPU.

Figure 6 shows a three-body example containing two
persons turning around. The full sequence is included in the
video. It is very challenging for accurate depth estimation
and motion segmentation because occlusion arises very of-
ten and there exist large textureless regions. Our computed
label maps are shown in (b), which are accurate even along
boundaries. Figure 6(c) shows our high-quality object seg-
ments.

Another “Boxes” example is shown in Figure 7. The
front box occludes the background and another moving box,
making occlusion complex. Our method can faithfully es-
timate the respective depth maps and produce accurate seg-
mentation. The example in Figure 8 contains three toy cars
moving on the ground. Their depth and object segments are
computed. Figure 9 demonstrates a moving car example.
Strong reflection of the car surface can be noticed. The cast
shadow on the road brings additional difficulties. Even with
these challenges, our results are still visually compelling,
except for some regions that violate the color constancy
constraint in multi-view geometry – for example, the win-
dow and specular reflection surface. The extracted car has
an accurate boundary.

 

(a) (b)

Figure 7. “Boxes” example. (a) One frame from the input se-
quence. (b) The estimated label map.

(a) (b) (c)

Figure 8. “Toy” example. (a) Two selected frames. (b) The esti-
mated object mask images. (c) The estimated label maps.
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(b)
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Figure 9. Challenging “Car” example. (a) Two frames from the
input sequence. (b) The estimated label maps. (c) The extracted
car images.

6. Conclusions

In this paper, we have presented a novel multi-body
stereo method for constructing high-quality depth maps and
for segmentation of several moving rigid objects from an
input monocular image sequence. The new multi-body
stereo label representation couples depth and segmentation
indices, making it possible to employ optimization to si-
multaneously compute these two sets of variables. A multi-
body plane fitting method is introduced to improve initial
estimates in textureless regions, together with disparity hole
filling to offer additional matching information for occluded



pixels.
Currently, our method can only handle independently

moving rigid objects. Nonrigid objects in this system will
still be classified as rigid ones. Handling them properly will
be our future work.
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