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Abstract—Compared to still image editing, content-based video editing faces the additional challenges of maintaining the

spatiotemporal consistency with respect to geometry. This brings up difficulties of seamlessly modifying video content, for instance,

inserting or removing an object. In this paper, we present a new video editing system for creating spatiotemporally consistent and

visually appealing refilming effects. Unlike the typical filming practice, our system requires no labor-intensive construction of 3D

models/surfaces mimicking the real scene. Instead, it is based on an unsupervised inference of view-dependent depth maps for all

video frames. We provide interactive tools requiring only a small amount of user input to perform elementary video content editing,

such as separating video layers, completing background scene, and extracting moving objects. These tools can be utilized to produce

a variety of visual effects in our system, including but not limited to video composition, “predator” effect, bullet-time, depth-of-field, and

fog synthesis. Some of the effects can be achieved in real time.

Index Terms—Video editing, refilming, depth estimation, composition, background completion, layer separation.

Ç

1 INTRODUCTION

THE wide availability of portable video capturing devices
allows home users to access the image/video contents

in daily life. This can be evidenced by the fact that more and
more home videos are shared and broadcasted over the
Internet. Nevertheless, compared to the advancement of the
image editing algorithms (e.g., inpainting, segmentation,
and matting), the development of the content-based video
editing is still left far behind in terms of the diversity,
practicability, and user-friendliness. A major difficulty
comes from the multiframe nature of a video that requires
high temporal consistency over frames. Unfortunately, such
consistency is widely known as challenging to maintain due
to the difficulty in acquiring the accurate geometry.

In the film industry, the typical solution to creating a
visually plausible video editing result is to use specially
designed equipments and set up a user-controlled environ-
ment. The typical configurations include blue screen back-
ground and motion capture. To enable the modification of
video content, 3D models are usually constructed, rendered
with carefully tuned lighting, and overlaid onto the video.
All these procedures involve manual intervention by skilled
professionals. Attempts have been made recently by van
den Hengel et al. [1] to design a more user-friendly video
editing system for interactively constructing 3D models.
However, creating a 3D model with sufficient geometry
details, e.g., a tree with many leaves, is still intractable, as a
large number of fine objects need to be modeled from
sparse feature points.

In this paper, we propose a new system for editing
casual videos without explicitly reconstructing 3D geome-
try models. The input single or multiple video clips are
allowed to be taken by a handheld moving camera. Our
system contributes in the following respective areas: We
describe an efficient level-expansion algorithm to increase
the precision of the depth estimates obtained from the
algorithm of Zhang et al. [2]. The output from this step is a
set of temporally consistent dense depth maps that are
accurate enough to maintain sharp object boundaries. Based
on these depth estimates, we introduce a few elementary
video editing tools, allowing the user to locally modify the
object color and structures.

The first tool is for inferring the missing depth and color of
the background pixels through an information propagation
process over the video frames. Then, we introduce a robust
moving object (sprite) extraction method taking account of
both the depth and the color information. The depth of the
extracted sprite is also inferred and represented by a 3D
plane. Finally, we describe a method to naturally separate the
static background into fine layers. With these tools, a
spectrum of special effects, such as depth-of-field, fog
synthesis, view interpolation (e.g., bullet-time effect), “pre-
dator” effect (camouflaging effect), and video composition,
can be created. Fig. 1 shows a set of these refilming effect
examples. Our semiautomatic depth estimation in the system
does not make visual effect generation in a frame-by-frame
manner, and thus, reduces the possible user interactions. It
benefits not only professionals, but also novice home users to
produce visually appealing effects without requiring sig-
nificant cost and manpower.

2 RELATED WORK

In video editing, several interactive image/video segmenta-
tion/matting techniques [3], [4], [5], [6], [7], [8], [9], [10], [11]
have been developed. Most of them only use the color
information or require special camera configurations. In
video matching, Sand and Teller [12] proposed to produce
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spatiotemporal alignment between two videos following
spatially similar camera trajectories. The 2D motion
information is used in this method to align video frames.
This method is not applicable to a single video input. Given
two video sequences of different scenes acquired with
moving cameras, Xiao et al. [13] proposed seamlessly
transferring a static 3D object from one sequence to the
other. However, they did not discuss the problem of
registering moving objects.

Recovering the camera motion is essential for video
editing. This can be achieved using the structure-from-
motion (SFM) techniques. The state-of-the-art SFM algo-
rithms can automatically recover sparse 3D points and
camera position for a large class of camera motions [14],
[15], [16]. Our system employs the SFM method of Zhang et al.
[16]. For content-based video editing, using SFM to compute a
sparse set of 3D points is not sufficient as it does not resolve
the geometrical relation of the scene. van den Hengel et al. [1]
introduced an interactive approach to build 3D models from a
video. However, for complex natural scenes (e.g., a tree with
many leaves), such an interactive reconstruction becomes
labor intensive and may not even be tractable.

Given an input of multiple images, dense depth maps can
be estimated by multiview stereo algorithms [17], [18], [19],
[20], [21]. However, these methods compute the depth map
for each frame independently and may not preserve temporal

consistency. Kang and Szeliski [22] addressed this problem

by simultaneously optimizing a set of depth maps at multiple

key frames, by adding a temporal smoothness term. Most

recently, Zhang et al. [2] proposed a bundle optimization

method to reconstruct temporally consistent video depth

maps. In our system, we improve this method by dramati-

cally increasing the depth precision without introducing

much computational overhead. Bhat et al. [23] introduced an

image video framework for automatically enhancing videos

using several high-resolution photographs. This method is

also limited to only handling the videos of static scenes.

3 CREATING DEPTH VIDEO

Fig. 2 illustrates an overview of our system. The input can be a
single or multiple video clips. Our system automatically
recovers the camera parameters and the complementing
depth video. With these view-dependent per-frame depth
maps, we are able to interactively perform sprite extraction,
layer separation, and background completion. Finally, in the
refilming module, various visual effects can be created using
these extracted sprites, separated layers, and backgrounds,
without explicit 3D model/surface reconstruction.

We employ a multiview stereo algorithm to compute the

depth map for each frame, in order to generate a high-quality

depth video. We improve the method of Zhang et al. [2] which
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Fig. 1. (a) The snapshots of the input videos. (b) Image frames show a set of exemplar refilming effects from our system.

Fig. 2. The overview of our system.
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includes a bundle optimization and incorporates the geo-
metric coherence constraint to overcome the vulnerability of
the depth estimation to image noises, occlusion, and other
problems. Our improvement lies in a depth-level expansion
algorithm to increase the depth precision without introdu-
cing much computational overhead. The recovered depth
maps are not only temporally consistent, but also accurate to
retain the sharp discontinuous object boundaries. Such
quality is especially important for generating visually
plausible refilmed videos. In what follows, we first briefly
describe the bundle optimization algorithm.

3.1 Bundle Optimization

Consider a video sequence with n frames, Î ¼ fItjt ¼ 1;
. . . ; ng; the objective of depth recovery is to obtain a set of
disparity maps D̂ ¼ fDtjt ¼ 1; . . . ; ng: ItðxÞ represents the
color (or intensity) of pixel x in It. It is a three-vector in a
color image or a scalar in a gray-scale image. The disparity
value DtðxÞ is defined as the inverse of depth zx, i.e.,
DtðxÞ ¼ 1=zx. For simplicity sake, the terms “depth” and
“disparity” are used interchangeably.

The depth video estimation is based on a bundle
optimization model with the energy defined as

EðD̂; ÎÞ ¼
Xn

t¼1

ðEdðDt; Î; D̂nDtÞ þ EsðDtÞÞ; ð1Þ

where the data term Ed measures how well the disparity D̂
fits the given sequence Î, and the smoothness term Es
encodes the spatial smoothness. We minimize EðD̂; ÎÞ to
estimate the video depth maps.

The data term Ed is defined as

EdðDt; Î; D̂nDtÞ ¼
X

x

1� uðxÞ � Lðx; DtðxÞÞ; ð2Þ

where the normalization factor is written as

uðxÞ ¼ 1=max
DtðxÞ

Lðx; DtðxÞÞ:

Lðx; DtðxÞÞ is the disparity likelihood term proposed in [2],
counting in both the color and the geometry constraints.

The smoothness term is defined as

EsðDtÞ ¼
X

x

X

y2NðxtÞ
� �minfjDtðxÞ �DtðyÞj; �g; ð3Þ

where NðxÞ denotes the set of neighbors of pixel xt; � is a
smoothness weight, and � determines the upper limit of
the cost. In all our experiments, � ¼ 5=ðdmax � dminÞ; � ¼
0:05 � ðdmax � dminÞ, as ½dmin; dmax� is the range of disparity.

To minimize EðD̂; ÎÞ, and accordingly, estimate the
optimal disparity values, we uniformly quantize the
disparity into discrete values. We use the method proposed
in [2] to first initialize the disparity maps, and then refine
them by minimizing the energy in (1) using an efficient
loopy belief propagation (BP) [24]. Each pass starts from
frame 1. To reduce the computational complexity, when
disparity map t is being refined, the depth estimates of all
other frames are fixed. In this case, (1) is simplified to

EtðDtÞ ¼ EdðDtÞ þ EsðDtÞ; ð4Þ

as all EdðDt0 Þ and EsðDt0 Þ, where t0 6¼ t, have fixed energy.
The data term EdðDtÞ associates frame t with about
40 neighboring frames in energy computation according
to its definition. Depth maps are sequentially refined until
frame n has been processed. In our experiments, two passes
of optimization on the whole video are usually sufficient.

3.2 Depth-Level Expansion

In the above depth estimation, we use BP to minimize the
energy in (4). The computational complexity is linear to the
number of labels, i.e., the number of depth levels. Hence,
accurate depth estimation using a large number of levels
implies large memory consumption. Here, we propose a
level-expansion method to densify the levels of depth. It is
a coarse-to-fine approach to significantly refine the inferred
depth without introducing expensive computation. Kang
et al. [25] proposed a hierarchical graph cut algorithm to
accelerate the global optimization for multiview stereo. The
complexity of each level is quadratic to the number of
labels. In contrast, our depth-level expansion is based on a
two-pass BP algorithm, where, in each pass, the computa-
tional complexity is linear to the number of labels. Another
reason that we choose BP is that the distribution of the data
costs in our bundle optimization model is usually dis-
tinctive, which makes BP converge very quickly (10 itera-
tions are sufficient in our experiments).

To minimize EtðDtÞ for all t, we first quantize all
disparities into 51 levels, where the kth level

d0
k ¼ dmin þ

k

50
� ðdmax � dminÞ; k ¼ 0; . . . ; 50:

Then, we apply BP to minimize the energy (4) and refine the
depth maps. We denote the estimated disparity value for
pixel x as d0

x, where d0
x ¼ d0

k. Fig. 4 illustrates this idea.
Afterward, we construct finer disparity levels for pixel x

only in range ½d0
k�1; d

0
kþ1� except the extremal values at k ¼ 0

and k ¼ 50. It is done by quantizing the depths in ½d0
k�1; d

0
kþ1�

into another 21 levels, where the new ith level is

d1
i ¼ d0

k þ
i

20
�
�
d0
kþ1 � d0

k�1

�
; i ¼ 0; . . . ; 20:

The optimization method described in Section 3.1 is then
used again to refine the depth values. Only two passes of BP
can efficiently compute the depth with hundreds of levels.

We demonstrate one of our inferred video depth maps in
Fig. 3d. Readers are also referred to our supplementary
video1 for inspecting the quality of the inferred depth maps.
Compared to the single-pass BP with depth levels of 501, our
two-pass approach consumes only 10 percent memory space
and runs seven times faster. The quality of the inferred depths
is comparable. Fig. 3 shows a comparison. Due to the
limitation of memory, we are only able to run the one-pass
BP with 201 disparity levels (instead of 501 disparity levels)
for comparison. Fig. 3b is the result of a single-pass BP with
51 disparity levels. Fig. 3c shows the result of a single-pass BP
with 201 disparity levels. Fig. 3d is the result of our two-pass
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1. The supplementary video can be found from the following site:
http://www.cad.zju.edu.cn/home/gfzhang/projects/refilming/ and also
can be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2009.47.
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BP with 201 disparity levels (the first pass with 51 disparity

levels and the second pass with 9 disparity levels). The total

number of iterations is 10. There is nearly no visual difference

between (c) and (d), and the average quantitative difference is

0:00214ðdmax � dminÞ. Only 0.16 percent of the pixels are with

disparity difference larger than 1
50 ðdmax � dminÞ. If our first-

pass BP runs with more labels, the difference could be further

reduced.

3.3 Evaluation with Middlebury Stereo Images

For quantitative evaluation, we test our method on the

“Cones” example (Middlebury stereo vision Webpage:

http://vision.middlebury.edu/stereo/) where ground

truth data are given. The results are shown in Fig. 5 with

statistics given in Table 1.
The “Cones” example contains nine images. In disparity

initialization, for each image, we employ the method in [2]

to initialize its disparity map, making use of all other eight

images (as shown in Figs. 5d, 5e, and 5f). The segmentation

errors cause a few visual artifacts around the discontinuous

object boundaries. Then, we perform bundle optimization

for two passes. In each pass, we refine disparity map t
while fixing the others. This process takes for each frame
about 15 seconds, where 2 seconds are spent on running BP
(with a Quad-core Xeon 2.66 GHz CPU). We have tested
with a similar procedure using the �-�-swap graph cuts
and found that several minutes are required to produce a
comparable result.

After bundle optimization, the disparities are improved
and their maps become more consistent with each other.
Figs. 5j, 5k, and 5l show the close-up comparisons where the
final results have much less artifacts around the discontin-
uous boundaries. We also performed the quantitative
evaluation (the ground truth map of the second image is
publicly available) and show the statistics in Table 1. It
demonstrates that the disparity errors are reduced after the
final bundle optimization.

4 LAYER SEPARATION AND COMPLETION

Once the dense depth maps are available, we perform layer
separation and background completion to prepare for the
visual effect generation in the following refilming module.
We provide users with interactive tools to locally modify the
video content in a temporally consistent manner. For these
operations, users only need to process one or a few frames,
while the effect is propagated to the rest of the video.

4.1 Sprite Extraction and Background Completion

We first describe how to use the inferred depth to estimate
the background and to extract the sprites (moving objects)
from the input video. Object segmentation/extraction is one
of the most popular tools in image editing [26], [27]. It is
also essential in many video applications, such as object
removal and view interpolation. Its major challenge is how
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Fig. 3. Depth-level expansion. (a) One frame from the input video. (b) The estimated disparity map with 51 disparity levels in a single BP pass. The

banding artifact due to aliasing is noticeable. (c) The estimated disparity map with 201 disparity levels in a single BP pass. (d) The estimated disparity

map with our two-pass BP. The results of (c) and (d) are quite comparable in quality.

Fig. 4. Depth-level expansion. (a) We first estimate a coarse-level

disparity value d0
x between dmin and dmax. (b) The refined disparity d1

x is

obtained by splitting a coarse level to many fine levels around d0
x .
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to obtain a sharp and clear boundary that is temporally
consistent over the frames. In our depth-inferred video,
these moving objects usually do not receive valid depth
information because they violate the multiview geometry
constraint [14]. However, similar to the video matting
method of Chuang et al. [4], our sprite extraction can benefit
from background completion, which makes the matting
solver robust.

In particular, we estimate the missing background pixels
by projecting the neighboring views (frames) to the current
frame, given the dense depth maps. In order to avoid ghosting
artifacts and the loss of high-frequency details, we employ the
method proposed in [23] to reconstruct consistent view-
dependent backgrounds for all frames. This background
completion method is not only applicable to object extraction,
but is also usable for creating “predator” effect and view
interpolation to be described in the next section.

After the background is completed, we create an object
trimap (a mask containing three regions, indicating the
foreground, background, and unknown pixels) for each
frame and extract the moving objects by applying the video
matting method [4] with the estimated background. For
illustration, in Fig. 6a, we show an input frame containing a
walking man. The background is completed in (b). The
matting result in (c) is generated using the color information
from both (a) and (b).

4.2 Sprite Representation

To make an inserted video sprite appear natural in another
video, we typically require more than just the sprite matte
and color. One example is that if we naı̈vely (that is,
through directly copying and pasting) composite the sprite
of a walking man to a target video, the sprite may look like
floating in the new scene, due to the difference of the two
camera motions. Therefore, in order to achieve seamless
insertion, the depth, scale, and position of the sprite relative
to the camera must be recorded during extraction and be
accounted during insertion.

Nonetheless, moving objects usually do not satisfy the
rigid color constancy constraint, and hence, their depth
values cannot be estimated by multiview stereo algorithms.
In experiments, we found that a coarse depth estimation
for the extracted sprite is usually sufficient with regard to
the purpose of video composition. For instance, the depth
of the walking man in Fig. 6 can simply be represented by
a 3D plane.

In our system, we use a plane perpendicular to the
ground to approximate the video sprite in each frame. The
position and orientation of the 3D plane are identified by
two anchor points (as illustrated by the green dots in
Fig. 6a). Moreover, if the 3D plane is known to be orthogonal
to the camera viewing direction, one anchor point is
sufficient. The anchor points are obtained by asking the
user to click at the contact points between the sprite and the
ground (feet of the man in Fig. 6e). Since the depth of the
static background is available, the depth values at the
contact points are then looked up from the background and
are used to compute the position and orientation of the 3D
plane. The user only operates on key frames, and the 3D
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TABLE 1
Error Statistics on the “Cones” Example

Fig. 5. “Cone” example. (a), (b), and (c) The second, fourth, and sixth
image of “Cone” sequence. (d), (e), and (f) The initial disparity maps for
(a), (b), and (c), respectively. (g), (h), and (i) The disparity maps after
bundle optimization. (j), (k), and (l) The close-ups.

Fig. 6. Video sprite extraction with background completion. (a) One frame from an input video in which we want to extract the man. (b) The completed

background by reprojecting pixels from other frames. (c) The extracted sprite. (d) The automatically computed background depth map. (e) To

determine the position of the sprite plane, we only need two clicks at the contact points between the person and the ground.
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sprite plane in other frames can be linearly interpolated
from two embracing key frames.

4.3 Layer Separation for Static Scene

As the inferred depth only represents a partial geometry, in
order to achieve practical video content editing, it is
sometimes necessary to explicitly separate the static scene
(with inferred depth) into layers, e.g., simulating the scene
occlusion. There is no need to perform layer separation,
respectively, for each frame. Instead, our system allows the
user to operate in a sparse number of key frames, and
propagates the layer information to the rest of the video.

By treating the depth as an additional color channel,
we perform a bilayer segmentation using the method of
Rother et al. [5] to iteratively separate the static objects in
different layers. The process is briefly illustrated in the
left- and rightmost columns of Fig. 7. Then, we develop a
novel method to automatically propagate the cut out
information from the key frames to all others. This
information can be used to reliably form a trimap with a
narrow unknown region for each frame. Note that
automatic propagation of one trimap to other frames by
optical flow is usually difficult and unreliable [4].

Our cut out propagation is based on a geometry

projection process and is illustrated in Fig. 7. First, the user

selects key frames Ik0; Ik1; � � � ; Ikn with every interval of

about 50 frames and cuts the object out. Using depth

information, we then project the object cut out masks

Mkið0 � i � nÞ, to other in-between frames and make each

of them receive two object-mask projections. The masks only

contain binary values where the object pixel is labeled 1 and

nonobject pixel is labeled 0. Suppose frame j ðki < j < kiþ1Þ
receives two mask projections M 0

ki
and M 0

kiþ1
. We compare

the projected valuesM 0kiðxÞ andM 0
kiþ1
ðxÞ for each pixel x and

label it as unknown if M 0
ki
ðxÞ 6¼M 0

kiþ1
ðxÞ. Otherwise, the

pixel with M 0
ki
ðxÞ ¼M 0

kiþ1
ðxÞ ¼ 0 is defined as background

while the pixel with M 0
ki
ðxÞ ¼M 0

kiþ1
ðxÞ ¼ 1 is regarded as

foreground. Thus, a trimap for frame j is formed with the

estimated foreground, background, and unknown regions.

The unknown regions are usually very narrow along the

layer boundary due to the high accuracy of our depth

estimation. In experiments, the method can generate

50 trimaps per second. A working example is illustrated in

the middle column of Fig. 7. Finally, we apply the border

matting [5] to further refine the binary segmentation.

5 APPLICATIONS

With the above tools and the depth-inferred video(s),
various visual effects can be created in our system that
are temporally and spatially consistent. As the video results
are dynamic in nature, readers are referred to our
supplementary video (which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TVCG.2009.47) that gives a better presentation
of the results.

5.1 User Interface

We first briefly describe the design of our user interface. It is
to facilitate navigating the sprite library and flexibly
inserting the selected sprite into a target video. A set of
interactive object editing (such as transforming and cloning
sprites) and shadow synthesis tools are also provided.

A screenshot of our UI is shown in Fig. 8. The top row
icons are for the masking/matting, object clone, transfor-
mation, and shadow synthesis tasks. The right panel
displays the object/sprite instances. It is allowed to select
the desired sprite, and insert it into the current video.
Our system then automatically aligns the contact points
utilizing the depth information. The object transformation
tools enable adjusting the position, orientation, and scale
of the sprite. The left panel lists the command buttons for
generating visual effects.
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Fig. 7. Bilayer separation. Starting from the embracing key frames (frames on the left and right columns), the depth maps are separated into two

layers as indicated in the object masks. Then, the masks are projected onto the in-between frames to automatically generate the corresponding

trimaps by identifying the difference between the two projected masks. Pixels receiving consistent mask values are labeled as either foreground or

background, while the inconclusive pixels are labeled as unknowns (colored in green).
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5.2 Video Composition

During the insertion of a video sprite into a target
background video, we need to ensure the consistency of
the camera motion, color tone, and lighting. Figs. 9 and 10
show two composition examples.

Geometry registration with occlusion resolving. As the
camera motions of the source and target videos can be
substantially different, we need to compensate them in
order to achieve a harmonic alignment. We first register the
coordinate systems between the source and target videos
using the camera parameters and denote the perspective
transformation between the two coordinate systems as a
4� 4 matrix PA. So, any time when the user modifies the
object position, orientation, and size in the target video, the
original PA is multiplied by a corresponding 3D rotation,
translation, or scaling matrix. These matrix multiplications
guarantee that the sprite is correctly aligned to the new
scene without causing the drift artifacts. We also resolve the
potential occlusion between the sprite and the separated
layers in the target video, by simply sorting the depth in
layers and rendering them in a far-to-near order. The
registration can be done in real time, and hence, facilitates
the interactive modifications.

Color tone adjustment. Color tone compatibility be-
tween the inserted sprites and the target background video
is also important to make the composition result realistic. In
our system, we employ the method in [28] to adjust the
chromaticity and intensity of the video sprites.

Shadow synthesis. Shadow is an important visual cue
for creating the vivid impression of realism. Without it, the
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Fig. 8. User interface. The top editing toolbar provides tools to
seamlessly insert sprites into the target editing video. The side panel
on the right shows the sprite instances. The left panel lists the command
buttons for generating different visual effects.

Fig. 9. Object insertion. The top row shows the original frames from a video captured by a handheld camera. The bottom row shows the
corresponding frames after inserting a performing elephant. Note how its position and scale are accurately aligned by our system. The occlusion of
the elephant by the audience is also correctly resolved by object extraction and layer separation.

Fig. 10. Shadow synthesis. (a) The vector of the directional sunlight can be determined by the red and green points indicated by the user. Their 3D
coordinates can be retrieved from the depth map. (b) Synthetic shadow cast. Comparison of the composition results (c) with and (d) without
shadowing.
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inserted sprite usually looks unnatural. The shadow
extracted from a source video may not be useful for our
video composition due to the possible variation of the
background geometry and light direction. Moreover, pre-
vious work in shadow extraction either requires controlled
lighting conditions [29], or makes restrictive assumptions
about the camera, lighting, and shadow properties [30].

Our system synthesizes the shadow taking account of the

depth estimates. The target video shown in Fig. 10a is
captured by a moving camera where the scene depths are

recovered. Our system only requires the minimal user
interaction to specify the lighting direction in one frame

through just two clicks, as shown by the red and green
points in Fig. 10a. Then, the direction of the sunlight is

constructed by connecting the 3D point (red dot) to its
projection on the ground (green dot). The walking person in

Fig. 10b is also extracted from a video captured by a moving
camera and is represented as a view-dependent 3D plane,

which is similar to that illustrated in Fig. 6. Since the
sunlight direction is estimated with the anchored 3D plane,

the shadow can be synthesized by projecting the sprite onto
the ground as shown in Fig. 10b. To improve the realism,

we attenuate the shadow intensity to simulate the indirect
illumination and Gaussian-blur the shadow boundary to

create the penumbra. Figs. 10c and 10d compare the
inserted walking man with and without shadowing.

5.3 Depth-of-Field

Depth-of-field is a common trick for emphasizing the object
of interest in filming and photography practices. Producing

a depth-of-field effect in video usually requires special and
expensive equipments [31]. In our system, such depth-of-

field can be easily obtained and modified even after video

acquisition. The estimated depth provides us with sufficient
information to refocus the input video.

In our implementation, we employ the ray-tracing-based
method proposed in [31] to focus on different objects. We
can freely control the focus plane, as well as the width of the
depth-of-field by adjusting the size of out-of-focus blur
circle. Fig. 12 illustrates how we change the focus toward
the walking girl and the street lamp. Note that this example
contains moving objects, whose depths cannot be directly
recovered by multiview stereo method. Fortunately, mov-
ing objects do not harm our depth estimation for the visible
background pixels. The moving pixels are regarded as
temporal “noise” as they are inconsistent among frames and
do not satisfy the multiview geometry constraint. We show
an illustration in Fig. 11. Though the estimated depths of the
moving objects are not accurate, it does not affect the depth
estimate of other background pixels in our system, as
shown in Fig. 11b.

To assign reasonable depth values to the moving object,
we first roughly mask the foreground out and estimate the
occluded background colors and depths by projecting
neighboring views to the current frame according to the
recovered depth information. The completed background
image and depth map are shown in Figs. 11c and 11d,
respectively. The estimated background helps matte fore-
ground out. The moving objects are represented by view-
dependent 3D planes with assigned depths, as shown in
Fig. 11e. Finally, we put the moving objects back to get the
refined depth map (Fig. 11f).

5.4 “Predator” Effect

Fig. 13 demonstrates the “predator” effect (camouflaging
effect) on a video taken by a handheld camera. It is produced
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Fig. 11. Depth recovery with moving objects. (a) One frame from the input video. (b) The estimated depth map without matting out the moving

objects. Although the depths of the moving object are not accurate, they do not affect nearby background depth estimation. (c) The completed

background image by depth projection. (d) The completed background depth map. (e) The extracted moving objects. (f) The final depth map.
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using our provided tools through a few steps. It should be
noted that only separating the foreground layer may not be
sufficient for creating the “predator” effect. It is because the
occluded background has to be shown behind the transparent
characters. So, we first recover the video depth maps. Then,
we extract the object (the actor in this example) and complete
the video background using the technique described in
Section 4.1. One frame of the completed background is shown
in Fig. 13b. Finally, we camouflage the actor by blending the
input frames with the completed background frames
(Fig. 13c). To simulate the “predator” effect, we add refractive
and wavy distortion to the blending region (Fig. 13d).

5.5 Bullet-Time Effect

Bullet-time effect refers to the effect of freezing an object
(e.g., pouring water) and, meanwhile, changing the camera
viewpoint. A representative example is in movie The Matrix.
To create this effect, a dense video camera array or a sparse
camera array with the view interpolation technique [18] is
usually required.

In our system, a limited bullet-time effect can be created
with a single video input. Fig. 14 shows a jumping and
kicking person frozen in space. The input video is taken by

a handheld moving camera. To generate this visual effect,

after recovering the depth for the background, we first

remove the man by using a background completion tool

(Section 4.1). One such frame is shown in Fig. 14d. The

corresponding depth map is shown in Fig. 14e. Then, we set

a point on the sprite as a center for camera rotation, and

create the virtual camera viewpoints around it. Using depth

assignments for the background and sprite (represented as

a view-dependent 3D plane), the synthesized views from

the virtual cameras can naturally be interpolated from the

nearest input frames.

5.6 Fog Synthesis

Fig. 15 makes use of the depth-inferred video to create the
fogging effect. We use a simple fog model introduced in [32]
to compute the attenuated intensity for each pixel

Ic ¼ Io � e��z þ Ifog � ð1� e��zÞ;

where Ifog is the color of fog, Io is the original pixel color. �

is the scattering coefficient of the atmosphere, and z is the

depth value. By adjusting the value of �, we can modify the

fog density.
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Fig. 12. Depth-of-field. (a) Two frames from an input video. (b) The recovered depth maps. (c) The result of changing the depth-of-field.

Fig. 13. “Predator” effect. (a) One original frame. (b) The recovered background image. (c) The actor becomes transparent. (d) The actor is

camouflaged with the “predator” effect.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on October 7, 2009 at 06:26 from IEEE Xplore.  Restrictions apply. 



6 DISCUSSION

To demonstrate the versatility of our system, we have chosen
several natural videos of different sceneries for visual effect
generation. Most videos are taken by a handheld camera.
With our system, the user can flexibly generate the described
visual effects, including video composition, depth-of-field,
“predator” effect, bullet time, and fog synthesis.

Note that accurate depth maps are required to generate
realistic refilming effects for several applications. Exces-
sively coarse depth maps may lead to unpleasing visual
artifacts, such as drifting, blurriness, and distortions, in
video composition and view interpolation. Background
completion also demands very accurate depths in order to
correctly complete the missing background. Contrary to
these applications, a certain class of refilming effects, such
as depth-of-field and fogging, has relatively lower precision
requirement for disparities.

6.1 Running Time

Our system can be divided into a few unsupervised
operations and phases requiring simple user interactions.
The former includes recovering camera parameters with a
depth video. With multithread programming, it takes about
2 minutes to process one frame (640� 480 pixels) using a
Quad-core Xeon 2.66 GHz CPU.

The static layer separation process is fast, which

typically takes less than 5 minutes to process hundreds of

frames. The time spent on background completion depends

on the frame resolution and the size of missing region. It

typically takes about 20 seconds to process a frame with

640� 480 pixels. The time for sprite extraction and layer

separation depends on the number of objects to process and

the complexity of the object boundary. With the estimated

background, moving object extraction typically takes about

30 seconds (including user interaction) to extract one

moving object per frame. Besides the computation, what

the user inputs is no more than a few clicks and sketching.

Thus, its usage is not tedious.
Table 2 lists the statistics of the average time spent in

creating different visual effects by several novice users with

just a few practices and a short learning curve. As most

computation is spent on the preprocessing of layer

separation and completion, the visual effects can be created

rapidly. Especially, if there is no moving object in the scene,

the fogging and depth-of-field effects can be created

immediately after the automatic depth recovery. With

necessary preprocessing, video composition, fog synthesis,

and the “predator” effect can be produced in real time.
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Fig. 14. Bullet-time effect. (a), (b), and (c) Three frames from an input video. (d) and (e) The object-removed color frame and depth map after

background completion for the frame in (b). (f) The separated video sprite. (g), (h), and (i) The frozen kicking man viewed from two different angles.

Fig. 15. Fog synthesis. (a) and (b) One frame with recovered depth map. (c) and (d) With the estimated depths, we add fog to the scene with different

densities.
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6.2 Limitations and Future Work

In our experimental results, we have demonstrated that the
depth recovery method can handle well a large class of
camera motions. However, similar to other multiview stereo
algorithms, if there is not sufficient camera movement, the
recovered depths could be defective. This problem has been
observed and widely studied in multiview geometry [14].
Fortunately, this problem does not affect significantly the
object insertion and removal, because small camera motion
only results in less accurate depth estimation, but does not
cause the drift artifacts.

Another limitation of our depth recovery is that, if the
scene contains extremely textureless regions, there may exist
inherent ambiguity for depth inference. For these regions
(such as the clear blue sky), our system does not guarantee to
produce correct depth initialization even with color segmen-
tation, which could further affect the succeeding bundle
optimization. As shown in Fig. 16, the near-constant color in
the background sky can be assigned with different depth
values, all of which happen to satisfy photoconsistency
constraint. So, without prior knowledge, inferring correct
depth values in these regions is extremely difficult. Part of our
future work is along the direction of solving this problem.

The quality of SFM or depth maps affects the finally
produced refilming effects. It would be desirable if, given
an input video, the system automatically tells whether the
estimates are sufficiently good or not. However, automati-
cally evaluating SFM is challenging and the possible
solutions include visually inspecting the recovered 3D
structure, as well as the camera trajectory, and inserting a
virtual object to see if it drifts. For the inferred depth maps,
the quality could possibly be measured by the degree of
temporal consistency.

For video composition, if the illumination in the source
and the target videos are substantially different, even using
color adjustment, unrealistic results may still be produced.

We plan to investigate building an accurate model for sprites
such that the illumination information can be estimated.

Finally, for video composition, since we only have partially
approximated geometry information, i.e., the simplified
view-dependent 3D planes, for the moving object, our system
requires that different views of the moving object between the
source and target videos are not too large to avoid unnatural
object insertion. For example, if the source camera is panning
whereas the target camera rotates, distortion of the inserted
sprite may be produced. Our bullet-time effect also has a
similar limitation. Note that the layer representing sprite does
not cause any problem in producing the “predator”, fog
synthesis, and depth-of-field effects, even if the camera or
object moves along a complex trajectory.

7 CONCLUSIONS

We have presented a comprehensive and semiautomatic
video editing system that allows for creating visually
plausible refilming effects. The cornerstone of our system
is a robust video depth estimation method to automatically
produce temporally consistent and highly accurate depth.
Using this information, background completion, sprite
extraction, and layer separation are achieved with only a
small amount of user interaction mostly on sparse key
frames. Our system also contributes a set of convenient
tools allowing the user to flexibly create convincing visual
effects, including composition, “predator” effect, view
interpolation, depth-of-field, and fog synthesis, avoiding
challenging 3D modeling and refitment.
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