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Image-Space Texture-Based Output-Coherent
Surface Flow Visualization
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Abstract—Image-space Line Integral Convolution (LIC) is a popular scheme for visualizing surface vector fields due to its simplicity and
high efficiency. To avoid inconsistencies or color blur during the user interactions, existing approaches employ surface parameterization
or 3D volume texture schemes. However, they often require expensive computation or memory cost, and cannot achieve consistent
results in terms of both the granularity and color distribution on different scales. This paper introduces a novel image-space surface
flow visualization approach that preserves the coherence during user interactions. To make the noise texture under different viewpoints
coherent, we propose to pre-compute a sequence of mipmap noise textures in a coarse-to-fine manner for consistent transition, and
map the textures onto each triangle with randomly assigned and constant texture coordinates. Further, a standard image-space LIC
is performed to generate the flow texture. The proposed approach is simple and GPU-friendly, and can be easily combined with
various texture-based flow visualization techniques. By leveraging viewpoint-dependent backward tracing and mipmap noise phase,
our method can be incorporated with the Image Based Flow Visualization (IBFV) technique for coherent visualization of unsteady flows.
We demonstrate consistent and highly efficient flow visualization on a variety of datasets.

Index Terms—Flow visualization, Mipmap, LIC, IBFV, Surface flows, Unsteady flows
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1 INTRODUCTION

Visualizing vector fields is of great importance in many

applications like engineering design, computational fluid dy-

namics, and climate research. Many approaches for vector

field visualization have been studied, among which Line Inte-

gral Convolution (LIC) [1], Image Based Flow Visualization

(IBFV) [2] and their variants are most popular. Reasons for

that include their superior capability of space-filling, and

the high efficiency when implemented on modern graphics

hardware. More importantly, such a texture-based method can

be applied to surfaces to study the flow in 3D space. This paper

concentrates on the LIC visualization of surface vector fields.

An extension on unsteady flow visualization is also provided

based on the framework of IBFV to achieve coherent texture

appearance during user interactions.

Generally speaking, existing texture-based visualization ap-

proaches for surface vector fields need to compute the flow

texture in the 2D parametric space. According to the selected

parameterization scheme, they can be classified into two cat-

egories: global surface parameterization methods and image-

space methods. The first category generates the LIC textures

in a parametric space, which covers the entire surface and

naturally preserves the texture continuity over the surface even

under user interactions. However, this scheme is difficult to

produce high quality results, especially for large-scale surfaces
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with complex geometry and topology. Alternatively, an image-

space approach generates LIC images for only the visible

portion of the surface under a given viewpoint. Specifically,

it projects the vector fields and surface geometry into the

viewing screen, and then applies 2D LIC or texture advection

in the image space. This provides higher performance than the

parameterization-dependent approaches, and is easy to imple-

ment with the aid of modern graphics hardware. However, this

scheme may suffer from artifacts of inconsistency (Figure 1)

when the viewer is rotating or zooming the model. In other

words, the LIC result is not consistent among consecutive

frames during user interactions when the noise texture is

generated independently on the image space for each frame,

or say, the noise texture on the surface is changing.

In this paper, we present a novel image-space visualization

technique for surface vector fields that addresses the texture

inconsistency problem. Our approach takes a similar pipeline

as the conventional image-space surface LIC visualization,

while modifies it with a simple texture mapping technique

and an additional pre-process stage. Concerning the first one,

we propose to fix the texture coordinates of each vertex

with a simple triangle-texture matching technique, making the

noise textures under different viewpoints coherent. In contrast,

conventional image-space approaches cannot ensure this by

mapping the entire model to the texture space. Our scheme is

feasible because convoluting a white noise with a vector field

yields a result that is not sensitive to the texture coordinates.

In this way, no surface parameterization is required, and the

underlying surface model can be arbitrarily complex and large.

Even with a consistent noise texture, the result can still

exhibit popping artifacts caused by texture aliasing. Mean-

while, the LIC streamlines may greatly vary with the zooming

operations, which makes the result unclear or flickering. Our
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Fig. 1. Two consecutive frames during the zooming-in operation. Randomly generating the noise in the image space
[3] causes popping of color as shown in (a), especially around singularities. Our method generates a consistent
streamline rendering result (b). Please see the accompanying video for a better illustration.

solution is to pre-compute a customized noise texture pyramid

that simultaneously characterizes the consistency and variance

of the noise texture. The mipmap level decision is made on-

the-fly. This scheme ensures consistent LIC results because all

noise textures have similar appearances and differ only in the

granularity. Several enhancement techniques are also proposed

to control the effects like the contrast, the density and the

length of streamlines.

For unsteady flow visualization, we extend our approach by

leveraging the framework of IBFV, whose kernel is the blend-

ing of each frame and the time-variant phase noise injected at

its subsequent frame. In particular, we employ the mipmap

noise texture as the initial phase which provides coherent

screen resolution for the pathline. It is apparent that fixing

the texture coordinates of each vertex cannot fully prevent

the pathlines from drifting on the surface while the viewpoint

is changing. This is because a frame should be properly

warped into its consecutive frame with respect to the view-

point change. Accordingly, an additional step is performed to

transform the point in one frame to its previous frame by using

the transformations from the object-space to the screen-space.

Two types of artifacts that appear near the boundary or in the

high velocity region with the conventional IBFV approaches,

can be greatly alleviated by locally reverting flow direction

and applying a low-pass filter along the pathlines.

In summary, this paper presents an efficient surface LIC

visualization approach with the following contributions:

1) A parameterization-free image-space surface LIC gener-

ation scheme that works for arbitrarily complex (man-

ifold or non-manifold) and large mesh models with

O(N2) memory complexity (assuming the image is at

the size of N ×N).

2) A novel mipmap-based noise texture generation tech-

nique that is output coherent, and leads to smooth

transition of LIC streamlines and consistency in different

scales; to further improve the consistency around the

silhouette, i.e., the surface boundary, the streamlines are

extended to the back face of the surface. This mode is

quite different to conventional image-space approaches

that only employ the visible portion of the surface.

3) An extended unsteady flow visualization scheme that is

consistent in both resolution and position of the pathlines

during the viewpoint change. Methods to alleviate the

artifacts near boundaries and in high velocity regions

are proposed.

The remainder of this paper is organized as follows. We

first review related work in Section 2 and then present our

approach in Section 3, and extend it to unsteady flow visual-

ization in Section 4. Next, we show the results in Section 5.

We summarize this paper and highlight the future work in

Section 6.

2 RELATED WORK

Reviewing all work on vector field visualization is beyond the

scope of this paper. We will cover the most relevant work

here (i.e., LIC-based methods) and refer readers to [4], [5] for

a comprehensive survey.

Jark van Wijk introduced the first texture-based vector field

visualization method [6] that distributes a large number of

spots on the spatial domain, and generates an illustrative

texture, called Spot Noise. Inspired by that, Cabral and Lee-

dom [1] proposed to locally smooth an input noise texture

by convoluting the texture with a filter kernel derived from

the vector fields. The so-called LIC technique leads to a high

correlation along streamlines, and generates a dense texture

representation for vector fields. Simply speaking, both Spot

Noise and the LIC based methods employ a space-filling

scheme, and are amenable for parallelization.

Subsequently, the LIC-based vector field visualization ap-

proach has been improved in various aspects [7], [8], [9],

and been extended to surface [10], unsteady flows [11], and

3D flows [12], respectively. The efficiency of LIC is also

improved by a fast LIC approach [13], of which the speed

acceleration is gained from the minimization of the total

number of streamlines.

In particular, Forssell and Cohen [10] first applied the

LIC-based visualization approach to parametric surfaces by

transforming the vector fields into the parameter space, and

generating LIC in this parameter space. In the last step,

the LIC result is mapped back to the surface. The main

problem with this scheme is that it is often difficult to get

a global parameterization with low distortion, which is almost

impossible for non-manifold or curved (i.e., non-flat) surface

models. Alternatively, the technique proposed by Battke et

al. [14] tessellates a surface with triangles and packs trian-

gles into texture memory. A local LIC texture is computed

for each triangle based on its local Euclidean coordinates,

avoiding the global parameterization. Its main drawback is

that triangle packing demands the model to have a good

mesh quality. It should be noticed that our approach basically

takes a local parameterization means. The difference from

the parameterization-dependent methods [15] lies in that our
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approach does not fulfill the LIC in the parameterization

domain, and thus removes the requirement of low distortion

parameterization.

On the contrary, image space scheme directly generates

the screen-space and has no requirement of parameterization.

Since the work of Heidrich et al. [16], many image space

LIC algorithms were proposed on GPU, yielding excellent

performance. Many of them focus on properly visualizing the

features of the vector field. For example, Li et al. [3] accurately

represented higher-order singularities by a novel vector field

interpolation scheme. Recently, Zhang et al. [17] presented

an visualization technique for planar and surface tensor fields

based on the image based flow visualization. Palacios and

Zhang [18] advanced the image-space LIC visualization ap-

proaches to allow for interactive visualization of rotational

symmetry fields both in the plane and on surfaces.

Image based methods have also been extended to unsteady

visualization. UFLIC [11] and IBFV [2] are two classical

methods. In UFLIC, the color of a pixel is the weighted

average of randomly colorized seed particles which pass it

in a time window. IBFV is regarded as the fastest algorithm

for texture-based visualization of 2D unsteady vector fields.

It differs from other solutions in that it advects the color of

the previous frame into the current one, and then blends it

with a periodic noise texture. Based on this technique, two

dense texture-based methods were proposed for visualizing

unsteady vector fields on surfaces: IBFVS (Image Based Flow

Visualization for Curved Surfaces) [19] and ISA (Image-Space

Advection) [20]. Both approaches mentioned in [21] compute

the LIC in the image space by leveraging a projection-and-

advection pipeline. In this way, no parameterization of surfaces

is needed, and the entire procedure can be accelerated using

modern graphics hardware. However, without the considera-

tion of moving viewpoint, the pathline pattern drifts over the

surface instead of naturally sticking to the surface. To address

such incoherency, object space texture mapping and tracing is

required. A singe resolution object space noise texture leads

to incoherent granularity in image space of different zooming

levels, and thus we propose the strategy of using mipmap

texture in a recent work [22]. In addition, we analyze the

incoherency in IBFV and extend the coherent LIC method

in [22] for unsteady flow visualization in this paper.

Although image based methods have great advantages in

terms of efficiency, they typically suffer from inconsistencies

or color blur during user interaction because the noise texture

is often independent from the object in each frame and has

inadequate resolution. Weiskopf and Ertl [23] proposed an ex-

cellent method to address these issues: embedding the surface

in an object-space 3D solid noise texture leads to consistent

LIC result, and blending multiple noise textures in different

resolutions makes the granularity consistent. Our approach

differs from their approach in two aspects. First, our approach

achieves similar results with less memory requirements. Sec-

ond, our approach can yield similar color distribution in

different scales with better consistency, especially for LIC

visualization (see the comparison in Figure 2 concerning the

inconsistency).

��� ���

Fig. 2. The images on the right column depict the regions
in red in the left images by moving the camera closer to
the surface. Our method utilizes a set of correlated noise
textures in a mipmap texture pyramid, and yields results
with similar color distributions in different scales (upper
row). Using uncorrelated multi-resolution noise textures
(lower row) cannot achieve such consistency.

3 OUTPUT-COHERENT LIC FOR STEADY
FLOWS
We adopt LIC for steady flow visualization because it produces

better image quality than IBFV. The goal of our work is to

enable consistent visualization of vector fields on surfaces.

That is, the LIC results share similar color distribution and

granularity whenever the surface is rotated, translated or

scaled. Throughout this paper, we describe our algorithm in

terms of a triangular surface model, and it is easy to adapt for

other surface representations.

Our approach can be separated into two stages: prepro-

cessing and visualization. The pipeline (Algorithm 1) is high-

lighted in Figure 3. In the preprocessing stage, we generate

a consistent noise texture pyramid and compute the texture

coordinates for each triangle, which is the focus of our work

(Section 3.2). When the viewpoint is changed, we project the

vector field and noise texture to the image-space, and perform

the LIC integration (backward Euler method) on the image-

space with the consideration of silhouettes (Section 3.4). In the

stage of vector field projection, we use a similar scheme to

ISA [20] for a triangle mesh: for each vertex q with vector u, a

vertex shader is used to calculate the image-space coordinates

q′ and (q+u)′ of q and q+u respectively. Then, the projected

image-space vector is evaluated by normalizing (q+u)′ −q′.
Given the image-space vector field defined on each vertex, the

vector on each pixel can be interpolated in the downstream

fragment shaders.

3.1 Mapping Noise Texture to the Mesh
In previous image-space surface LIC approaches, the incon-

sistency appears because the noise texture in the image-space

is generated independently frame by frame. Our solution for

that is to attach the model with a consistent noise texture by

means of a simple texture mapping process:

1) Generate a random white noise 2D texture map. The

size of the texture is determined by the projected size of

triangles in the image-space. If it is too small, the noise

texture will wrap and influence the white noise property.
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The surface and the vector

field in color (R,G,B)

The noise texture pyramid

3D-2D projection
Texture mapping

Projected 2D vector field

 in color (R,G)
2D noise texture

Consistent LIC

Fig. 3. The pipeline of applying our approach to LIC
visualization.

Input : A triangle mesh with a vector field on it

Output: Interactive visualization result

preprocessing stage:
Generate a consistent noise texture pyramid.

visualization stage:
for each frame do

Project the vector field to the image-space.

Generate texture coordinates in a geometry shader.

Map the noise texture.

Perform the LIC in the image-space.
end

Algorithm 1: The pipeline of applying our approach to

LIC visualization.

2) Generate texture coordinates for each triangle by ran-

domly projecting it into the texture space with the same

scale. To avoid unnecessary memory cost, the texture

coordinates can be generated on-the-fly in geometry

shader. For each triangle with vertex positions qi, i =
1,2,3, we construct a local 2D frame by two orthogonal

directions u = (q2−q1)/‖q2−q1‖ and v = n×u, where

n is the unit normal of the triangle. Then the texture

coordinates for the ith vertex can be generated as:

R(θ)
(

uT

vT

)
qi (1)

where R(θ) stands for a 2D rotation in a “random” angle

θ . In our implementation, θ is set to ‖q1 + q2 + q3‖,

so that θ is a constant value for a triangle during the

visualization.

This process can be re-

garded as a simple lo-

cal (per triangle) pa-

rameterization, and has

no requirement on the

continuity and distortion

of the parameterization.

Satisfying results are yielded because the texture image

contains only white noise. The texture coordinates of

each triangle remain the same during interaction as well

as the noise textures. This means that each triangle will

be constantly mapped to the same portion of the texture

at each frame, yielding consistent output.

3) Perform texture mapping with the given texture coordi-

nates and generate texture noise in image space.

The described technique leads to consistent noise in the

image-space when the viewpoint is changed. Because no

global parameterization is required, it is naturally suitable for

complex (manifold or non-manifold) and large-sized models.

Compared to [23] that uses 3D solid texture with the O(N3)
complexity, our approach uses only 2D texture images and re-

quires less memory consumption at the complexity of O(N2).

3.2 Generating Consistent Noise Texture Pyramid
Even though the noise is consistent, the LIC result will

still present popping artifacts caused by the texture aliasing,

especially when the model is zoomed in (please see the

accompanying video). In addition, the streamlines will become

thicker (Figure 4 (b)) than desired (Figure 4 (c)) when the

model is zoomed in. In this result, a 256×256 texture image

is used.

3.2.1 Automatic mipmap generation
A straightforward solution would be using the mipmap tech-

nique (the automatic-generated texture pyramid) provided in

standard graphics libraries like OpenGL. The texture pyramid

is composed of a sequence of noise textures, of which the

nth ∈ [nmin,nmax] image has the resolution of 2n × 2n. In this

way, the popping artifacts can be alleviated during the zooming

operation, and the resolution of streamlines is appropriate as

long as the zooming factor dose not exceed the finest level

in the pyramid. However, this scheme may fail because the

contrast of the LIC streamlines decreases greatly when the

model is zoomed out. This problem also exists where the

projected surface part is largely sheared, yielding over-blurred

results (see Figures 5 and 6).

Let us briefly analyze the process of automatic mipmap

generation. Both the random colors ([18]) and gray-level noise

([23]) can be used to generate the LIC result. Our approach
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(a)

(b)

(c)

Fig. 4. (a) A LIC result for the Moai model. When the
model is zoomed in, the result (b) with the noise texture
used in (a) presents color blur, while the result (c) with
a noise texture selected from the pre-computed texture
pyramid presents pleasing effect.

employs the random colors by generating white noise for each

channel of RGB independently. When computing the image

in the (n− 1)th level from the nth level, the value of each

RGB channel In−1(x,y) ∈ [0,1] at (x,y) in the (n−1)th level

is derived from the corresponding four pixels in the nth level:

In−1(x,y) =

∑
Δx,Δy∈{0,1}

In(2x+Δx,2y+Δy)

4
(2)

According to Equation 2, the variance of the (n−1)th level

is smaller than that of the nth level. As a result, the (n−1)th

level is more blurred than the nth level (see the first row

of Figures 5 and 6). This explains the reason of the blurred

effect when the model is zoomed out, that is, the continuous

diminution of the variance of higher level textures. In other

words, the automatic mipmap generation mode recursively

employs low-pass filtering and generates the textures from fine

to coarse. To ensure that each texture in the mipmap has an

adequate variance, a fine texture that contains spot noises in

different resolutions/frequencies is needed. However, this task

is difficult.

3.2.2 Customized noise texture pyramid
To address the aforementioned problem, two requirements

should be met: the maps of the adjacent levels have adequate

correlation to make the result consistent and popping-free, and

meanwhile, the variance of the map at each level is stable to

avoid blurred effect.

For the first goal, the noise texture pyramid should be

generated from coarse to fine instead of using a fine-to-coarse

process as in standard mipmap generation techniques. Such

a coarse-to-fine strategy is also used to generate stroke-based

Fig. 5. From left to right, the images show a small
portion of the texture image in the pyramid in the order
of resolution gradually decreasing. The first row shows
automatic-generated noise mipmap. As the resolution
decreases, the maps become blurred. The second row
shows the customized maps without the scaling operation
in Equation 3. It can be seen that the noise maps have
color blocks. The maps in the last row are generated using
our algorithm (Equation 4).

texture in [24] for preserving the stroke resolution in different

scales. Beginning from the coarsest map at the resolution of

1×1, a finer map can be successively generated by means of

the following rule:

In+1(2x+Δx,2y+Δy) = In(x,y)+σ(2γΔx,Δy−1),Δx,Δy∈ {0,1} (3)

where γΔx,Δy is a random number uniformly distributed be-

tween [0,1], and σ ∈ R is an adjustable number to tune the

variance.

Applying Equation 3 can produce a consistent texture pyra-

mid. However, the value will be out of [0,1] when In(x,y)
is close to 0 or 1. Clamping it into [0,1] yields obvious

color blocks as shown in the second row of Figures 5 and

6. These block artifacts are actually caused by inappropriate

local variances.

Thus, a better solution would take both the correlation and

variance into account, which is essentially an optimization

problem. We design a simple and efficient scheme: In(x,y)
is linearly mapped from [0,1] into [η ,1−η ],η ∈ [0,0.5], and

then add four random numbers ξΔx,Δy to generate In+1(2x+
Δx,2y+Δy) in the (n+1)th level. This can be expressed as:

In+1(2x+Δx,2y+Δy) =

((1−2η)In(x,y)+η)+ξΔx,Δy := I′n(x,y)+ξΔx,Δy
(4)

To ensure In+1(2x+Δx,2y+Δy) ∈ [0,1], ξΔx,Δy should be

in [−I′n(x,y),1 − I′n(x,y)]. The difference between the mean

of four values In+1(2x + Δx,2y + Δy) and In(x,y) is η(1 −
2In(x,y))+α , where α stands for the mean of the four random

numbers ξΔx,Δy. Setting α = η(2In(x,y)−1) will increase the

correlation, but will decrease the variance especially when

In(x,y) is close to 0 or 1. Thus we choose to generate
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Fig. 7. The sequence of the mipmap texture images (from 16×16 to 2048×2048). The arrows point to the relatively
dark regions.

Fig. 6. From left to right, the model is zoomed out. The
first row shows the results at different resolutions with
the automatic-generated mipmap. The results become
blurred when the model is zoomed out (from left to right).
The second row shows the results by employing Equa-
tion 3, where big color blocks appear when the model is
zoomed in (from right to left). The last row presents the
best quality with Equation 4.

four random numbers with the zero expectation, and use the

following equation to compute the required random numbers

in the range of [−I′n(x,y),1− I′n(x,y)] with zero expectation:

ξΔx,Δy = power

(
γΔx,Δy,

1− I′n(x,y)
I′n(x,y)

)
− I′n(x,y) (5)

Finally it turns out that the values of the four pixels in level

n+1 are:

In+1(2x+Δx,2y+Δy) = power

(
γΔx,Δy,

1− I′n(x,y)
I′n(x,y)

)
(6)

In other words, four random numbers in the range [0,1] with

expectation I′n(x,y).
Note that η should be small to ensure high correlation, but a

small η will yield small variance, i.e., blurred or low contrast

result. Experimental results (e.g., Figures 5, 6 and 7) indicate

that 0.25 is a good choice. In all coherent results, a mipmap

texture pyramid from 1×1 to 2048×2048 is used.

3.3 Addressing Surface Silhouettes
For image-space surface LIC approaches, special care must be

taken on the object-space geometric discontinuities around the

surface boundaries, i.e., the silhouette in the image-space. The

reason is that the integration of a streamline in the image-space

stops at the silhouette while in the object-space its counterpart

will continue onto the back face of the surface.

The silhouette is composed of points that meet the following

condition [20]:

|zi+1 − zi|> ε|pi+1 − pi| (7)

where ε is an adjustable threshold. pi+1 and pi are two

consecutive points along the integral path in the image-space,

and zi+1 and zi are their depth values in the object-space.

Traditional methods [19], [20], [21] solve the issue by

blending a silhouette mask over the image to diminish the

artificial continuity on the silhouette. Feeding fake noise value

in the invisible part of the integration path are also adopted

in some methods [3], [19], [23]. Such treatment may lead to

popping artifacts near the silhouette between two consecutive

frames. To achieve constant gray value (or color) for a pixel

for coherent LIC visualization, the integration path (a segment

of streamline) and the noise in the path should be the same for

different viewpoints, even if the pixel is near the silhouette.

We adopt the idea of object-space LIC integration, and

propose a two-stage scheme to drive the integration of the

streamlines onto the back face of the model. First, the front

and back faces of the underlying surface are extracted by

rendering the surface twice, i.e., with the back-face culling

and front-face culling operations respectively. In this process,

the projected vector field and the noise texture in the image-

space that correspond to both faces are generated. Second,

the conventional LIC is performed in the image space for the

front face part. When the integration of a certain streamline

meets the silhouette, its value is computed by considering the

back-face parts of the vector field and the noise texture.

4 OUTPUT-COHERENT IBFV FOR UNSTEADY
FLOWS

Although LIC is a successful technique for steady flow visual-

ization, it cannot be directly applied to unsteady flows because

the generated streamlines lack temporal coherence among

frames. IBFV overcomes this issue by replacing the stream-

lines with pathlines. However, traditional IBFV approaches

may lead to incoherency when the viewpoint is changing. As

mentioned in [21], using ISA and IBFV takes a short time to

achieve a stable visualization when the viewpoint is changed.
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In addition, the results may be incoherent between different

viewpoints even when the individual frames can properly

depict the flow. Before introducing our solution, here we first

briefly review the framework of IBFV.

IBFV is a 2D flow visualization method that generates a

new frame by blending the previous frame with a time-variant

noise texture. In the kth frame (at time kΔt), the position of

a 2D point p on the object is denoted as pk. The point pk−1

moves to pk = pk−1+v(pk−1;k−1)Δt by the 2D unsteady flow

v. Then the color of the point in the kth frame is evaluated as:

F(pk;k) = (1−α)F(pk−1;k−1)+αG(pk;k) (8)

where F(pk;k) and G(pk;k) stand for color and the injected

noise at pk in the kth frame respectively. A typical scheme for

noise injection with period M is:

G(pk;k) = g(φp;k) = w((k/M+φp) mod 1), (9)

where φp is the phase of p at the first frame, and is typically

a uniformly distributed white noise over the object. w(t) = 1

for 0 < t < 1/2 and 0 elsewhere.

Unlike LIC, the causes of incoherency in IBFV are improper

advection and periodical noise injection. As such, we propose

the following solution, whose pipeline is listed in Algorithm 2.

Input : A triangle mesh with N frames of vector field

on it.

Output: Interactive visualization result

preprocessing stage:
Generate a consistent noise texture pyramid as the phase

noise.

visualization stage:
k ← 1

for k < N +1 do
Get the object-space to image-space transformation

Tk−1 of previous frames. If k = 1, Tk−1 ← Tk.

Render buffer Q(·;k).
Generate texture coordinates in the geometry shader.

for Each pixel (Fragment Shader) do
Back trace the previous point according to (11).

Inject noise to the warped image of previous

frame according to (13) and (14).
end
k ← k+1

end
Algorithm 2: The pipeline of applying our approach to

IBFV visualization.

4.1 Viewpoint Dependent Backward Tracing
Several methods [19], [21] have been proposed to extend the

standard IBFV to handle curved surface with the assumption

of fixed viewpoint. This makes the location of pk fully

determined by the velocity in the image-space. When the

viewpoint changes, pk and pk−1 may not correspond to the

same particle advected by the flow. In other words, two points

are not on a pathline. Thus, using pk−1 to fetch the color in the

previous frame will lead to serious artifacts, such as pathline

drifting, artificial flow, and even high frequency noise (see the

top row of Figure 8).

To solve this issue, we trace the image-space projection

of a particle q of the flow q̇ by considering the moving

viewpoint. At the kth frame, we fill two three-channel buffers

q(·;k) and v(·;k) with values of the object-space coordinates

of the surface and the underlying flow respectively. Given an

image-space point pk, we can efficiently fetch its object-space

coordinates and the associated flow by means of q(pk;k) and

v(pk;k). The particle position in the previous frame can be

evaluated by the backward Euler technique:

qk−1 = q(pk;k)− v(pk;k)Δt. (10)

The proper image-space position pk−1 is determined as:⎛
⎝p′k−1

z′k−1

hp

⎞
⎠= Tk−1

(
qk−1

1

)
, pk−1 = p′k−1/hp (11)

where Tk−1 is the transformation from the object space to

the image space in the previous frame. To accelerate the

process, we can fill a single buffer Q(·;k) with the values

of Q(pk;k) = q(pk;k)− v(pk;k)Δt so that a single texture

lookup is adequate to get qk−1. This scheme produces coherent

pathlines during the user interaction, as shown in Figure 8 and

the accompanying video.

Although only pk−1 is required to fetch F(pk−1;k−1) with

Equation 8, z′k−1/hp should also be used to check whether

pk and pk−1 are associated with the same particle on the

model. In each frame, we render the screen depth into a buffer

z. If |z′k−1/hp − z(pk−1;k − 1)| is larger than a user-defined

threshold, qk−1 is regarded as invisible in the previous frame,

i.e., the position of pk−1 is out of the screen or occupied

by other parts of the model. This degeneracy often occurs

on the screen border or silhouette. A simple treatment is to

set F(pk−1;k − 1) to be black. But this will cause severe

illuminance loss (left of Figure 9). Another option is to set

F(pk−1;k−1) = F(pk;k−1) by assuming that the flow field

is zero locally, as used in [2]. However, this introduces artifacts

near the boundary (middle of Figure 9). Instead, we propose to

reverse the flow field locally and trace the opposite direction.

This scheme improves the possibility that a bright pixel is

fetched and the average illuminance is maintained. Moreover,

the artifacts are alleviated because the reversed pathline is

unlikely to cross the boundary, as shown in the right of Figure

9.

4.2 The Mipmap Noise Injection
In conventional IBFV approaches, noise is periodically in-

jected to each pixel according to its associated phase. Similar

to LIC, the phase should be associated with the object-space

model for coherency. Mapping a simple noisy phase texture

onto the model leads to incoherent screen resolution. Thus,

we build a mipmap texture for the noisy phase texture φp.

To ensure that the noises are evenly injected onto the model,

the phase should be uniformly distributed between 0 and 1.

Applying a linear or anisotropic filter to the phase texture
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(a) Linear (b) Nearest (c) Ours

Fig. 10. The mipmap noise is used to achieve coherent screen resolution. (a) The linear filter distorts the distribution
of the phase noise, and thus leads to incoherent noise intensity and time-variant illuminance. (b) The nearest filter
avoids the issue, but yields popping and discontinuous artifacts. (c) Our method interpolates the output noise and
produces pleasing results.

Fig. 8. The consecutive two frames during the in-
teractive visualization of the unsteady flow. The arrow
shows the moving direction of the viewpoint. Results with
conventional approaches (top row) show incoherence and
pathlines with serious artifacts. Our results (bottom row)
exhibit better quality.

will distort the uniform distribution in φp because they cannot

properly deal with the phase in a circle topology. A typical

artifact appears when the average illuminance varies. One

possible solution is to use the nearest filter. However, it

may make the pathlines popping and modify their granularity

abruptly when the viewpoint is changed.

We introduce an interpolation scheme to address this prob-

Fig. 9. On the boundary regions of the screen, special
cares need to be taken. Simple treatment of setting to
black (left) causes illuminance loss. Assuming zero flow
field leads to artifacts (middle). Reversing the velocity field
alleviates these problems (right).

lem. For pk, we calculate the noise to be injected as:

G(pk;k) = (1− τ)g(φ l
p;k)+ τg(φ l+1

p ;k) (12)

where τ is the coefficient to interpolate two values at pk
in two neighboring textures (the lth and (l + 1)th levels) of

the mipmap textures. This simple technique yields satisfying

results, as shown in Figure 10.

To compute the appropriate mipmap level τ , we create an

auxiliary mipmap texture which has the same size as the noise

texture and employs a linear interpolation filter between the

mipmap levels and texels. In this way, τ can be simply fetched

by means of a single texture lookup from the auxiliary texture.

In regions of high flow velocity, particles may pass several

pixels in the screen-space within a single timestep. This

will cause severe artifacts (periodic patterns), especially when

the model is zoomed in. To tackle this problem, conven-

tional IBFV approaches clamp the flow velocity by a certain

threshold. Alternatively, we propose to perform a LIC-like

convolution between pk and pk−1 which acts as a low-pass

filter to remove high frequency patterns. The pathline of the

current timestep is uniformly sampled, and the averaged noise

value is injected on these sample points. This process can be

written as:

F(pk;k) = (1−α)F(pk−1;k−1)+αGavg. (13)

Gavg =
1

N

N

∑
i

G((1− i
N
)pk−1 +

i
N

pk;k). (14)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



9

In our experiments, N is set to be 5. The improvement over

conventional ways is displayed in Figure 11.

Fig. 11. (Left) When the model is zoomed, the flow
velocity in the screen is large, and high frequency periodic
patterns appear along the pathline. By performing a low-
pass filter along the pathline, our method eliminates the
artifacts (right).

5 RESULTS AND DISCUSSIONS

The primary advantage of our approach is that it is simple and

efficient, and achieves comparable quality as the flow charts

approach [15] and interactive performance. The results shown

in the figures and video demonstration verify the efficiency

and robustness. The vector fields on the Moai, Bunny, Buddha,

Fish and CAD models are generated with the methods of [17],

[25]. The other datasets are from real-world simulations. The

Cooling-jacket dataset [26] is produced by Robert S. Laramee;

the unsteady flow on the plane is produced by Tino Weinkauf

[27] using the Free Software Gerris Flow Solver [28]. The

unsteady flows on the Bunny and Kitty models are produced

with a fluid simulation method [29].

Fig. 12. Our result for a complex CAD model. Note that
a consistent LIC visualization is very helpful to locate and
check the singularities on the model.

One important advantage of our approach is that it is

parameterization-free, and works for arbitrary mesh models.

Fig. 14. LIC visualization for the Cooling Jacket dataset.

Figure 12 shows a quite challenging case. The model is

composed of many triangular patches. A low-distortion global

parameterization is intractable even if the patches are merged

into a single manifold mesh. Conventional parameter space

LIC approaches can hardly handle this case, while our ap-

proach achieves consistent visualization that allows the user

to easily locate and view interesting singularities. Without the

requirement of parameterization, our method can also handle

large-scale models which have a complex surface topology.

The dataset shown in Figure 14 contains 227K faces and many

holes, posing great challenges for the parameter-space methods

like [15].

The visualization effects about the resolution, the contrast,

and the length of streamlines can be easily configured with

our method. By modulating the parameter of the LOD bias,

the noise density used for LIC is modified, and consequently

the streamline resolution is changed (see Figure 15).

Several methods have been proposed to avoid contrast loss
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(a) (b)

��� ���

��� ���

Fig. 13. Two consecutive LIC frames for the Bunny model. Our result (b) is more consistent than that of [3] (a). Please
see the accompanying video for a better illustration.

caused by image blending [18], [30]. Following the idea of

[18], we increase the image variance and fix the mean for

contrast enhancing, and modulate the saturation (Figure 16).

In LIC, the streamline length is adjustable and influences the

results, as shown in Figure 17. There are two ways to measure

the streamline length. If the streamline length is measured

in the image space, the length scales well with the model

zooming. Although a degree of almost invisible inconsistency

may appear, a scale-dependent LIC is achieved. In contrast,

measuring the length in object space increases the consistency,

but loses the property of adaptive granularity. In practice, the

user can choose a appropriate way for different purposes,

e.g., varying the streamline length according to the vector

magnitude.

In fact, all aforementioned enhancements can be incorpo-

rated into our approach without sacrificing the interactivity of

the vector field visualization (see the accompanying video).

This verifies the advantages of the image-space surface LIC

over the object-space surface LIC schemes.

(a) (b)

Fig. 15. Results with different resolutions. The triangles
are mapped onto the noise texture with a higher resolu-
tion noise texture in the pyramid for (a), yielding thinner
streamlines than those in (b).

Our method can be easily integrated into other LIC algo-

rithms. As a demonstration, we apply the noise map scheme

into the LIC method [18] to visualize rotational symmetry

fields [31], [32], [33] (see Figure 18).

Figure 19 shows the extension of our method on unsteady

(a) (b)

Fig. 16. Result comparison on the elephant model
without (a) and with streamline contrast enhancement (b).
This modulation leads to a balance between the details
and contrast.

(a) (b)

Fig. 17. The LIC streamline length on the Fertility model
used in (b) is longer than that of (a).

flow visualization. During the user interaction, the pathlines

appear coherent in terms of both the distribution and the screen

resolution.

Like most surface flow visualization techniques, the main

computation cost of each frame consists of three parts:

1) The basic model rendering process including sending

triangles into the GPU, occlusion culling and lighting.
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(a) (b)

Fig. 18. Our method is compatible with other LIC
algorithms. (a) shows the result of applying our method to
visualize rotational symmetry fields [18]. Compared with
(b) that uses a set of uncorrelated images in the texture
pyramid, our method achieves better color consistency in
different scales.

Fig. 19. Our IBFV extension provides coherent expe-
rience when the viewpoint is changed. The sub-figures
show several frames during a user interaction. Please see
the accompanying video for a better demonstration.

2) Specific computation on the mesh, such as projecting

the flow field onto the image space, evaluating texture

coordinates for each triangular face.

3) Image-space computation, such as the LIC integration,

tracing and blending for IBFV.

The cost of the first two parts is dependent on the size of the

underlying model. View frustum culling and visibility culling

are typical methods for speedup, and can be integrated into

our approach.

We focus on the cost beyond a basic mesh rendering,

especially the additional cost over conventional image-space

LIC and IBFV approaches. The noise texture pyramid can be

pre-computed and reused for all models. Another difference

lies in the way of computing the texture coordinates of each

triangle, which is generated by geometrical shaders with little

cost. In the visualization stage, our approach projects the

underlying vector field and the noise texture to the image space

twice to handle the silhouette. This is still fast because every

operation can be implemented on the GPU.

We measure the performance on a desktop PC with Intel i7-

2600K CPU and Nvidia GTX 560Ti GPU. The performance

is dependent on the screen resolution, the integral length in

LIC visualization and the subdivision of the backward tracing

algorithm 500 × 500 1000 × 1000
Basic surface rendering 7.8 8.5

2D vector field and noise 8.2 9.1
LIC without back face culling 1.1 1.9

LIC with back face culling 1.8 3.2
Contrast adjustment 0.7 1.2

TABLE 1
LIC Performance measurement in milliseconds on the

Cooling Jacket model (227868 triangles) in two different
resolutions. The term of “2D vector field and noise”

includes sending triangles into GPU, generating texture
coordinates and triangle rasterization.

model # tri algorithm 500 × 500 1000 × 1000
Kitty 31126 IBFV 2.9 3.3

Complex CAD 66158 LIC 4.1 5.2
Bunny 65542 IBFV 4.8 6.0

Cooling Jacket 227868 LIC 11.9 14.2

TABLE 2
Performance measurement in milliseconds with two

different resolutions.

in the IBFV extension. Table 1 and Table 2 show that our

method achieves high frame rates for various configurations,

and requires little cost for the basic surface rendering.

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a novel image-space surface flow visual-

ization technique that achieves consistent and smooth results

for both steady and unsteady flows. The key idea is to leverage

a consistent 2D noise texture pyramid that works for arbitrary

models and can be pre-computed with the computational and

memory complexity of O(N2). Our approach not only provides

smooth transition and consistent screen resolution, but also

leads to similar color distribution in different scales. The

GPU-based implementation compares favorably with existing

solutions in terms of performance and quality, and allows

the user to interactively study a surface flow at an arbitrary

resolution.

Concerning the future work, we would like to first apply the

presented technique to the visualization of integral surfaces

(e.g., the stream-surfaces [34]) or streamline visualization.

Although our approach works fine for most models, popping

artifacts can be still visible for some complicated models (e.g.,

the model shown in Figure 20). We believe that a depth peeling

process that is capable of extracting more than two surface

layers (the front and back faces) can be used to address this

problem.

In our implementation, 10 mipmap levels are employed.

This configuration can still yield popping artifacts in some

extreme situations, e.g., when the viewpoint is very far away

from or very close to the surface. It is interesting to explore

new techniques to construct the texture images on-the-fly with

respect to the current scale.
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Fig. 20. Results for the Buddha model. The complex
wrinkles still yield popping artifacts.
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