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Figure 1: Example scenes rendered using our approach on an NVIDIA GTX 680 GPU with 2GB of memory. The left image is a museum
scene, which consists of 117.1 million triangles and 32.4 million lights. The total storage sizes of geometry and lights are 14.3 GB and 3.75
GB respectively. The middle image shows an airport scene with two Boeing 777 models that has total 669.3 million (46.3 GB) triangles
and 18 million (2.1 GB) lights. The right image is a carnival scene. There are 17.1 million (1.76 GB) triangles and 256 (29.6 GB) million
lights. Our method takes 3m55s, 10m15s and 1m22s to shade the museum, the airport and the carnival scenes respectively, and requires an
additional 1m20s, 7m25s and 1m14s to build acceleration structures on these lights and geometry.

Abstract
In this paper, we present a GPU-based out-of-core rendering ap-
proach under the many-lights rendering framework. Many-lights
rendering is an efficient and scalable rendering framework for a
large number of lights. But when the data sizes of lights and ge-
ometry are both beyond the in-core memory storage size, the data
management of these two out-of-core data becomes critical. In our
approach, we formulate such a data management as a graph traver-
sal optimization problem that first builds out-of-core lights and ge-
ometry data into a graph, and then guides shading computations by
finding a shortest path to visit all vertices in the graph. Based on
the proposed data management, we develop a GPU-based out-of-
GPU-core rendering algorithm that manages data between the CPU
host memory and the GPU device memory. Two main steps are
taken in the algorithm: the out-of-core data preparation to pack data
into optimal data layouts for the many-lights rendering, and the out-
of-core shading using graph-based data management. We demon-
strate our algorithm on scenes with out-of-core detailed geometry
and out-of-core lights. Results show that our approach generates
complex global illumination effects with increased data access co-
herence and has one order of magnitude performance gain over the
CPU-based approach.
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1 Introduction

Global illumination effects, such as soft shadows and interreflec-
tions, greatly affect the quality of computer synthesized images.
These effects provide visual cues that enhance realism. Over the
past three decades, many methods have been developed to achieve
realistic, high-fidelity renderings: radiosity, ray-tracing, and many-
lights approaches are a few. When applying these methods to ex-
tremely large scenes that do not fit in memory, the data management
strategy arises as a critical problem. When these rendering methods
run on modern graphics hardware, the problem is worse due to the
limit of onboard GPU memory, and the data transfer overhead from
the CPU to the GPU.

In this paper, we focus on extending the many-lights rendering
framework to handle massive scenes with out-of-core geometry
and complex lighting. In this framework, scenes with diffuse and
low-gloss materials can be rendered by approximating direct and
indirect illumination from a large number of virtual point lights
(VPLs) [Keller 1997]. By viewing the integration of these lights
as surface sample-light interactions of the light transport matrix,
the rendering is formulated into a matrix sampling problem [Walter
et al. 2005; Walter et al. 2006; Hašan et al. 2007], where elements of
the matrix are first sampled to obtain representative lights and then
these representative lights are integrated to samples (pixels). These
two steps require different kinds of data: lights and geometry. At
first, samples and lights are utilized to obtain representative lights
and then geometry data are required in evaluating visibilities. Such
a data access pattern is different from those in previous out-of-core
rendering approaches, e.g., visualization or ray-tracing, which usu-
ally only need to manage out-of-core geometry data. When both
of lights and geometry become too large to be stored in the mem-
ory, the data management of these two kinds of data in many-lights
rendering may bring conflicts. Our results show that a simple or
naive data management in out-of-core many-lights rendering will
dominate the rendering time and result in one magnitude slower
performance. Thus, a new and dedicated data management is ne-
cessitated for out-of-core many-lights rendering to not only handle
the geometry but also lights .

To reduce the overall I/O overhead, we formulate the data man-
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agement in out-of-core many-lights rendering as a graph traversal
problem. First, the light transport matrix is partitioned into sub-
matrices and geometry data is packed into blocks, each of which
can be loaded into in-core memory at once. Then, we define graph
vertices by pairing submatrices with their potentially intersected ge-
ometry blocks. The edge weight from one graph vertex to another
is defined as the I/O cost to replace the corresponding in-core data.
Therefore, the optimal loading order of lights and geometry can be
derived from a specific route optimization on the graph that finds
the shortest path to visit all vertices in the graph once, naming the
traveling salesman problem (TSP)1. While TSP is a NP-hard prob-
lem, local or approximation algorithms are applied in this paper to
guide the graph traversal.

Based on such a graph-based data management, we present an out-
of-core rendering algorithm. It consists of two main steps. First,
we solve for the optimal data layout. Second, we perform out-of-
core shading using graph-based data management. To validate the
algorithm and take advantage of GPU capabilities, we parallelize
these computations and implement a GPU-based out-of-GPU-core
solution that manages data between the CPU host memory and the
GPU device memory. Unless mentioned otherwise, out-of-core in
our context means out of device memory. Results demonstrate that
our approach is capable of generating complex global illumination
effects in scenes with out-of-core geometry and complex lighting,
and of reducing render times and increasing data access coherence.
The main contributions of this work are as follows:

• We formulate the out-of-core data management in many-
lights rendering into a graph traversal problem, and propose
different route optimization methods to obtain optimal render-
ing performance.

• We propose specific matrix adaptive partition and mesh pack-
ing methods to obtain optimal data layouts for the out-of-core
many-lights rendering problem.

• We present the first GPU-based out-of-core rendering ap-
proach for the many-lights rendering problem and achieve
high performance.

2 Related work

Many-Lights Problem and Virtual Lights Approximation. In-
stant radiosity [Keller 1997] generates a number of virtual point
lights (VPLs) from light sources. It replaces the computation of
indirect diffuse illumination by direct diffuse illumination from
these virtual point lights. This basic idea was then formulated as
the many-lights problem and inspired a series of works. Walter et
al. [2005] proposed the Lightcuts method that uses a hierarchy on
lights to reduce the pixel-light computation cost from linear to sub-
linear. This was extended to multidimensional Lightcuts [Walter
et al. 2006] for computing high dimensional rendering integrations,
such as volume scattering, depth of field or motion blur. The latest
work was to apply such a scalable framework to capture light trans-
ports in bidirectional ray paths [Walter et al. 2012]. An alternative
formulation of the many-lights problem is the matrix representa-
tion, where each row represents an individual sample shaded by
each of lights, while each column represents each of samples lit by
an individual light [Hašan et al. 2007]. The final image is computed
by summing each row in the matrix. Based on the observation that
the matrix is low rank, Hasan et al. [2007] presented a matrix sam-
pling method that samples a small number of rows and columns
from the full matrix and uses these sparse samples to reconstruct

1In our problem, we do not require the path back to the origin point. But,
it also can be formulated into the TSP by creating a dummy point whose
distances to every other point is 0.

the final image. This was then improved by using matrix slice sam-
pling [Ou and Pellacini 2011]. The point-based representation of
lights also appeals to the film industry. The point-based global il-
lumination method (PBGI) [Christensen 2008] and its out-of-core
version [Kontkanen et al. 2011] have been used in film production.
Besides these offline rendering approaches, Ritschel et al. [2009]
computed global illumination by rasterizing point-based lights on
thousands of tiny micro-buffers and achieved interactive rendering
rates. Recently, these point-based approximations have been ex-
tended to lines. Virtual ray lights (VRL) [Novák et al. 2012] is
an efficient rendering method for participating media. For more
information of many-light rendering, we refer readers to a recent
survey [Carsten Dachsbacher 2013].

In this paper, our motivation is to handle massive scenes with com-
plex lighting efficiently in the many-lights framework, where nei-
ther lights nor geometry data fit inside in-core memory. Such a
motivation bears some similarity with the out-of-core PBGI [Kon-
tkanen et al. 2011]. However, the surfels approximation and in-
accurate visibility tests used in PBGI ease the challenges in data
management and have less flexibility to tradeoff between quality
and performance. To our knowledge, our work is the first one to
address optimal data management both on out-of-core VPLs and
geometry under the many-lights rendering framework and solve it
in an error-driven fashion.

Out-of-core Rendering. Rendering massive models has long been
a very challenging problem. Data management is the very first is-
sue in handling massive models, where the out-of-core memory ac-
cess can become a serious bottleneck in terms of rendering speed.
A variety of out-of-core algorithms [Vitter 2001] have been devel-
oped to handle general computational problems by minimizing the
I/O overhead. For more specific applications, e.g. visualization
and rendering, methods were proposed to utilize more knowledge
of scenes and computational patterns. Dietrich et al. [2007] and
Gobbetti et al. [2008] provided good overviews and surveys on
out-of-core rendering techniques and strategies. Frank and Kauf-
man [2009] proposed an out-of-core volume visualization method
that also uses the graph to manage the out-of-core workload. How-
ever, their problem was formulated and solved differently in differ-
ent applications with ours.

For out-of-core global illumination rendering, the computations for
global lighting effects, such as shadows and inter-reflections, ag-
gravate the challenges of data management. To efficiently compute
these effects, out-of-core path tracing has attracted much attention.
The main challenge in data management of methods based on path
tracing is that hit points of paths are unknown before the tracing.
This requires the data management to be based on some predic-
tion heuristics. However, predictions are not always correct. This
motivates many approaches to improve cache coherence so as to
improve the performance. Beam [Heckbert and Hanrahan 1984]
or packet ray tracing methods [Wald et al. 2001] exploit the co-
herence of rays. Ray reordering approaches reduce memory band-
width by improving the ray traversal orders [Aila and Laine 2009],
such as Z-curves, scheduling grids or coarse ray sampling. Instead
of improving data coherence from rays, alternative methods [Yoon
and Lindstrom 2007] have been developed to compact geometry or
form acceleration hierarchies in special patterns in order to reduce
the I/O overhead. Compared with these methods, our method ad-
dresses a great challenge of two kinds of data: lights and geometry.
Furthermore, in many-light rendering, because all lights positions
are available before visibility tests, we no longer need to predict,
and instead focus on scheduling the optimal order of the data ac-
cess.

Out-of-core radiosity is another important technique to achieve
global illumination effects on massive models. Teller et al. [1994]
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Figure 2: Algorithm overview. (a) The light transport matrix A is divided into (b) submatrices, B1, B2, etc. (c) There are some floating
occluders between lights and surface samples in submatrices, B1 and B2. The geometry of these occluders are packed into mesh blocks Q1,
Q2 and Q3. Rendering of submatrices, B1 and B2, require loading submatrices and mesh blocks into device memory. (d) To manage the I/O
of these data, we formulate the data management into a graph traversal problem and find the optimal path with minimal I/O cost. (e) From
the optimal path, data are loaded and computed in in-core memory accordingly. The I/O and computation order is shown as numbers.

presented a spatial partition and ordering method to schedule the in-
termediate results for later, memory-coherent shading. Meneveaux
et al. [1998] also utilized the knowledge of scenes in radiosity com-
putation and provided an efficient memory management based on
the precomputed visible order of scene nodes. The many-lights ren-
dering framework inherits some aspects of these advantages in the
radiosity method. However, compared with their work of only us-
ing scheduling geometry for shading computation, our approach
employs two kinds of out-of-core data, lights and geometry, thus
it requires different data management.

GPU-based Global Illumination Rendering. With the rapid de-
velopment of graphics hardware, many methods focus on adapting
CPU-based algorithm to the GPU. Recently, many GPU-based or
GPU-friendly global illumination algorithms and systems [Zhou
et al. 2008; Wang et al. 2009; Parker et al. 2010; Hachisuka et al.
2008; Kaplanyan and Dachsbacher 2013] have been presented to
utilize the parallel computational power. Some of these works also
target out-of-core data, e.g. the PantaRay system [Pantaleoni et al.
2010]. Compared with them, our method is the first GPU-based
approach for the out-of-core many-lights rendering problem.

3 Algorithm Overview

The many-lights rendering problem has been formulated in matrix
form [Hašan et al. 2007], where matrixA of sizeM×N represents
the light transport from N lights to M surface samples. The shad-
ing of one surface sample is calculated by summing one column as

Lm =

N∑
n=1

Amn (1)

where Lm is the outgoing radiance of sample m and Amn is the
contribution of light n to samplem, which can be decomposed into

Amn =MmnGmnVmnIn (2)

where Mmn, Gmn, Vmn and In are terms of the material, geome-
try, visibility and intensity of light n respectively.

In this formulation, the computation of Lm can be mainly split into
two steps: the matrix sampling and the shading. These two steps re-
quire three different kinds of data: surface samples, lights and scene
geometry. At the first step, surface samples and lights are used in
Eq. (1) to choose best representative lights for each sample. Then,
at the second step, geometry is loaded in evaluating visibilities of
sample-light rays in Eq. (2). These two different computation steps

with different data make the computational patterns unfriendly to
the data access patterns, especially in the case of rendering scenes
with out-of-core data sizes of lights and geometry. We denote the
I/O costs of loading the l-th data block of lights and k-th data block
of geometry as tl and tk respectively. Thus, the overall goal of out-
of-core data management to load these two kinds of data in many-
lights rendering is represented as

min
nl,nk

∑
l

nltl +
∑
k

nktk (3)

where nl and nk are the number of times that the algorithm loads
the l-th light block and k-th geometry block respectively. From
Eq. (3), the optimal data management is to minimize nl as well as
nk. However, due to the computational correlation of lights and
geometry, there is a conflict in minimizing both of them at the same
time. When a light block is loaded in in-core memory, the best
data management strategy for that block is to take all computation
with surface samples as well as all visibility tests before unloading
it. However, these visibility tests may increase nk, the I/O number
on geometry blocks. On the other hand, when a geometry block is
loaded, it prefers to test visibilities with as many sample-light rays
as possible, which will incur high a nl.

3.1 Graph-based Out-of-core Many-lights Rendering

To optimize Eq. (3), in this paper, we formulate the out-of-core
data management of these two kinds of data, lights and geome-
try, into a graph traversal optimization problem. The optimized
traversal route is used to guide the many-lights rendering. Fig. 2
gives a basic illustration. First, the computation on the whole light
transport matrix, Fig. 2(a), is divided into smaller submatrices, Bl,
Fig. 2(b), where each submatrix contains contributions from a por-
tion of lights to some surface samples. The rendering in each sub-
matrix requires different geometry blocks to be loaded into in-core
memory for visibility tests, Fig. 2(c). We composite submatrices,
Bl, with potentially intersected geometry blocks, Qm, to make up
a graph, which is named the submatrix-geometry graph, Fig. 2(d).
We use ulm = {Bl, Qm} to denote the graph vertex. The edge
from one vertex to another, e.g. uip to ujq , is defined by a cost
function to swap data of these two graph vertices. Note that accord-
ing to different block sizes, the edge is directional because the I/O
overheads of swapping uip with ujq and ujq with uip might be dif-
ferent. The conservative visibility tests between all surface samples
and lights require every vertex in the graph to be traversed. Thus,
the optimal data management of the minimal I/O overhead, Eq. (3),
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Figure 3: Our algorithm is split up into two main steps: out-of-core
data preparation (described in Section 4), and out-of-core shading
using our graph-based data management (described in Section 5).

is converted into a graph traversal optimization, the traveling sales-
man problem, that finds a shortest path to visit every vertex in the
graph once. Once we have the optimal path, the red one shown in
Fig. 2(d), lights and geometry data are loaded and computed ac-
cordingly to shade the final image, Fig. 2(e). In the shading com-
putation, in each submatrix, representative lights are chosen from a
light tree by a modified relative error bound from Lightcuts [Walter
et al. 2005] and contribute to each surface sample.

3.2 Algorithm Steps

We split up our many-lights rendering algorithm into two steps:
out-of-core data preparation and out-of-core shading using graph-
based data management. The purpose of the preparation step is to
pack and organize data into an improved data layout for the graph
representation and the shading. In the shading step, the graph is
traversed and optimal routes are exploited for the many-lights ren-
dering. The steps of our algorithm are shown in Fig. 3. We first
briefly introduce these steps and then provide details of each step in
following sections.

1. In data preparation, unorganized surface samples, lights and
geometry represented in meshes are first constructed into hi-
erarchies. Then, the whole matrix is adaptively partitioned
into submatrices. Finally, mesh data are packed into blocks
according to these partitioned submatrices.

2. At shading, the submatrix-geometry graph is constructed and
traversed to find the shortest path visiting all vertices. The
submatrix and mesh data of these vertices on the path are
sequentially loaded into in-core memory and visibility tests
are performed. All contributions from visible representative
lights are integrated into surface samples to generate the final
image.

4 Out-of-core Data Preparation

This section describes our data preparation step. First, we intro-
duce the hierarchy construction method to organize out-of-core in-
put data, i.e., surface samples, lights and meshes. Then, we present
a new matrix partition algorithm that divides the matrix into sub-
matrices. Finally, we describe the mesh packing process to prepare
mesh data into blocks for the out-of-core data management. Af-

ter the data preparation step, data are specifically organized for the
graph representation, graph traversal and graph-based shading.

4.1 Constructing Hierarchies

For different kinds of data (surface samples, lights and meshes),
different hierarchies are constructed. For out-of-core lights and
meshes, data are organized into two-level hierarchies. At the lower
level, lights and meshes are grouped into chunks with approxi-
mately equal sizes, and within each chunk a local hierarchy is con-
structed and maintained. The low-level hierarchies are stored and
loaded in-core or out-of-core with the chunk data. At the higher
level, a global hierarchy is built on chunks. The high-level hierar-
chy is constructed among chunks and always kept in in-core mem-
ory.

For lights, point KD-trees [Zhou et al. 2008] are used for both lev-
els. For meshes, at the higher level, we use the Hierarchical Lin-
ear Bounding Volume Hierarchy (HLBVH) [Pantaleoni and Luebke
2010]. At the lower level, we use the Split Bounding Volume Hi-
erarchy (SBVH) [Stich et al. 2009]. The SBVH is able to provide
tighter bounding volumes and is more efficient in intersection tests.
But it requires multiple references to geometry, which is unsuitable
for the high-level hierarchy. The construction of these two-level
hierarchies takes three steps. First, elements of these two kinds
of data, point lights or triangles, are sorted according to their spa-
tial Morton code [Pantaleoni and Luebke 2010]. Next, we partition
these sorted elements into chunks and build low-level hierarchies
within each chunk. After the construction of low-level hierarchies,
each chunk with its hierarchy is streamed out to the host memory.
Only the bounding boxes of chunks are used to construct high-level
hierarchies.

For surface samples, due to a relatively small data size, we store
all surface samples in-core and use a clustering algorithm to con-
struct the hierarchy. Specifically, a bottom-up clustering scheme is
employed. The error metric utilized in the clustering is based on a
screen-based irradiance caching approach [Wang et al. 2009] that
measures geometry variations between surface samples,

ε = α ||xi − xk||+
√

2− 2(~ni · ~nk) (4)

where xi is a surface sample to be classified, xk is the center posi-
tion of a cluster Ck, and ~n denotes a surface normal. α is a weight-
ing factor that determines the relative importance of position and
normal incurred changes.

4.2 Partitioning the Matrix Adaptively

The basic principle of matrix sampling in previous methods [Wal-
ter et al. 2006; Hašan et al. 2007; Ou and Pellacini 2011] is to find
representative lights so as to reduce the rendering computation. In
our method, we need to partition the matrix into submatrices satis-
fying our data management requirements. First, we need to divide
the matrix into small parts so that each one can fully fit into de-
vice memory. Second, our graph-based data management prefers
spatially coherent partitions on lights and surface samples to con-
centrate the computation of visibility tests. Finally, since the graph
is made up of submatrices and their potentially intersected meshes,
the sizes of submatrices should be appropriate for the graph repre-
sentation and data management. Too many submatrices bring more
challenges in computing optimal data management while too few
submatrices will result in large I/O overhead. Thus, to satisfy these
requirements, we adapt the simultaneous traversal in [Walter et al.
2006] to traverse hierarchies of both lights and surface samples but
with different traversal metrics.
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In traversing these hierarchies, one important computation is to find
potentially intersected mesh chunks for surface samples and lights
in one submatrix. In order to find these mesh chunks quickly, we
use bounding volumes to bound actual sample-light rays generated
by these surface samples and lights. Specifically, we compute two
bounding spheres that bound surface samples and lights respec-
tively. The envelope bounding the space between these two spheres
forms a shaft. A 2D example is shown in Fig. 2(c). The green and
the red regions are two such shafts. If the bounding box of one mesh
chunk potentially intersects one shaft, we regard it as a potentially
intersected mesh chunk to these surface samples and lights. The in-
tersection tests between the shaft and the bounding box can be car-
ried out efficiently using distance queries between the median axis
of the shaft and the bounding boxes in the mesh hierarchy [Schnei-
der and Eberly 2002]. If the distance to one bounding box is larger
than the distance to the median axis, there is no intersection. Oth-
erwise, they are intersected.

The simultaneous traversal is carried out in a top-down scheme.
Given one parent light node and one parent sample node in the hi-
erarchies, we split parent nodes into child nodes and pair each child
node with the other parent node to generate candidate submatri-
ces. For each candidate submatrix, we compute the bounding shaft
and use the bounding shaft to find all potentially intersected mesh
chunks from the high-level mesh hierarchy. The split of the par-
ent node that produces a larger difference of potentially intersected
mesh chunks is chosen as the next traversal direction. Recursive
traversals will later be carried out on child nodes of the parent that
is not split this time. Once the number of potentially intersected
mesh chunks of both of the two splits are the same, we stop the
traversal and output two nodes. For each submatrix, we maintain a
bit array to indicate the intersection status of all mesh chunks. If one
mesh chunk is potentially intersected, the corresponding bit is set
to 1 or otherwise 0. By bit operations, we can easily find whether
these two submatrices have the same potentially intersected mesh
chunks or how different these potentially intersected mesh chunks
of two submatrices are. Once all traversal on both hierarchies stop,
outputted pairs are organized into submatrices.

We conduct the simultaneous traversal in a parallel manner for im-
plementation on the GPU. In order to fully utilize parallel stream-
ing processors, traversals are organized into batches. We start with
a lower level of nodes for both hierarchies. Initial pairs of nodes
are put into an active list. In each batch, node pairs in the active
list are processed in parallel. To make sure that the active list does
not grow too quickly, each time we only process nmax pairs and
traverse hierarchies in a depth-first fashion by always processing
the latest pairs generated from the last batch. Please refer to the
supplementary document for more implementation details.

4.3 Packing Data

After obtaining all submatrices, we pack light and mesh chunks into
blocks according to the partition of the matrix. Each block is one
I/O unit in the shading step and is used to construct the graph. From
our simultaneous traversal, lights in one submatrix are from a sub-
tree of one light hierarchy node. Thus, we pack each light subtree

into one block and further use the light subtree to compute lightcuts
in shading. For mesh data, we reuse these bit arrays that indicate
the intersection status between submatrices and mesh chunks in the
aforementioned matrix partition process. For each pair of mesh
chunks, we compare the intersection status with submatrices. If the
status of several mesh chunks are exactly the same and the total size
of these mesh chunks can be loaded into device memory at once, we
combine these mesh chunks into one mesh block.

5 Out-of-core Shading using Graph-based
Data Management

In this section, we introduce our out-of-core shading using the
graph-based data management. At first, we describe the graph made
up by submatrices and mesh blocks. Then, we present three differ-
ent graph traversal solutions to obtain the optimal data management
of lights and meshes. Finally, we describe our modifications on
the Lightcuts method [Walter et al. 2005] to compute representative
lights and the final integration.

5.1 Building the Graph

After all submatrices are generated and mesh blocks are packed, we
use them to construct the submatrix-geometry graph. In the graph,
vertices are paired by submatrices with their potentially intersected
mesh blocks. The edge weight from one vertex, uij , to another
vertex, ulm, is defined by a cost function to replace ulm by uij in
device memory. It is computed as

w(uij , ulm) = t(uij , ulm) = t(Bi, Bl) + t(Qj , Qm) (5)

where light blocks, Bl, and mesh blocks Qm are required to be
loaded in to replace Bi and Qj .

The submatrix-geometry graph is a complete graph, where every
two vertices are connected by an edge, because any vertices in the
device memory can be replaced by any other vertices. To reduce
the storage size of the complete graph, we store it in a compact
form that only edges between vertices that share one data block are
recorded and stored. Other edges are computed at runtime. The ra-
tionale is that the I/O cost to replace one vertex with another by only
loading one light block or mesh block is less than that to load both
of them. Thus, these edges between vertices that share one data
block have low weights, and have a high probability to be traversed
in graph traversal optimization. In this way, the storage size is re-
duced by only storing low weight edges but still retains efficiency
in graph traversal optimization.

Fig. 4 illustrates the storage layout of the graph. Graph vertices are
stored in two data arrays with two index arrays: the submatrix data
array stores graph vertices in the order of submatrix indices and the
mesh data array in the order of mesh block indices. Index arrays are
used to record the start addresses of each submatrix or mesh block
in data arrays.

5.2 Traversing the Graph

The data management of lights and geometry is formulated into a
TSP that finds the shortest path to visit all vertices in the graph
once. Compared to the standard TSP problem, our formulation in-
troduces new challenges. First, because the device memory buffer
size is usually larger than the packed data block size, to maximize
the computational power, we need to load more than one data block
in the device memory buffer for computations. This will make the
edge weight non-deterministic. Here is an example. If vertices, u12

and u13 in Fig. 2, are loaded in the device memory, the cost function



of t(u12, u23) is no longer t(B1, B2) + t(Q2, Q3) but t(B1, B2),
because Q3 block has already been loaded in device memory. In
these cases, the edge weight does not only depend on two vertices,
but is associated with all vertices currently in the device memory
buffer. Based on the classification in [Ghiani et al. 2003], our prob-
lem can be classified into a static but non-deterministic route opti-
mization problem. Second, since the time of graph traversal opti-
mization counts towards the total rendering time, we cannot spend a
large amount of time on the optimization even if we would be able
to compute a best route. A fast optimization is required to avoid
canceling the benefits gained from optimal data management.

To solve the specific graph traversal problem in our method, we
present three solutions. The first solution is an approach based on
the minimum spanning tree (MST) that first generates a MST and
then uses the MST to build a route. The MST is a good approxima-
tion for a static and deterministic TSP, because the cost of MST is
at most twice of the most optimal route. The second solution is a
local nearest neighbors search algorithm with online update of edge
weights. The third one is an ant colony graph optimization solution
that utilizes the parallel computational power provided by the GPU.

MST-based graph traversal. The MST is built by Prim’s algo-
rithm [PRIM 1957] that starts with a set containing a randomly se-
lected vertex, and then iteratively inserts new vertices with the least
weight edge one at a time, until the set spans all vertices. In the
construction of the MST, the edge weights are regarded as static.
Once we have the MST, we traverse the MST in a depth-first order
to obtain a path to visit all vertices in the graph. These vertices on
the path are sequentially loaded into in-core memory to compute
the shading.

Local graph traversal. We employ a local optimization heuristic,
nearest neighbors (NN), to guide the graph traversal [Johnson and
McGeoch 1995]. Under such a heuristic, a feasible path is always
constructed by taking the decision that is mostly advantageous at
each step. Initially, we choose a set of vertices as active vertices to
fill the in-core memory buffer, {uij}. Then, for these active ver-
tices, the NN traversal strategy is always to select the next nearest
as-yet-unvisited vertices.

Ant colony-based graph traversal. Ant colony optimiza-
tion [Dorigo and Stüzle 2010] is a population-based method and
has been widely used in many combinatorial optimization prob-
lems, such as TSP. In this paper, the optimization is executed in
iterations. At the beginning of each iteration, a number of artifi-
cial ants are generated in parallel to select vertices to be visited
according to a function based on pheromone stored at the edges.
Pheromone is accumulated from other ants and previous iterations.
At the end of an iteration, graph edges are parallelized to collect
pheromone values generated by the ants. These pheromone values
are used to bias ants in subsequent iterations and guide ants to uti-
lize the best paths previously constructed and find new paths. In
order to avoid taking a long time in optimization, we approximate
the optimal route by several suboptimal routes by dividing the en-
tire graph into subgraphs, then using ants to traverse each subgraph
independently, and finally connecting routes in each subgraph. We
use clustering to divide graphs into spatially coherent graphs and
the number of vertices in each cluster is set to approximately 5000
in our method.

More implementation details on these graph traversal strategies are
provided in the supplementary document.

5.3 Computing Lightcuts and Integration

After we have the optimized graph traversal path, we load the light
and mesh data of graph vertices in device memory to compute these

representative lights in each submatrix and integrate their contribu-
tions for individual surface samples. For each surface sample in one
submatrix, we take a top-down light hierarchy traversal scheme like
that in [Walter et al. 2005] to compute representative lights. For
each traversed light node, the maximum error bound is computed
as that in [Walter et al. 2005], where the visibility term is one. If
the error bound is less than the relative error threshold, no traver-
sal will be performed in the subtree, and this light node is chosen
as a representative light. Otherwise, the traversal continues down
the light hierarchy. However, different from the original Lightcuts
method that sequentially refines a coarse cut to final one, the cut in
our method is refined in parallel in each submatrix and computed
relatively independently among submatrices. Thus, the way to es-
timate the total radiance for the relative error criterion in Lightcuts
cannot be applied in our method. To solve this difficulty, we make
two modifications. First, our method starts by computing a coarse
estimation from the high-level light hierarchy to obtain a coarse es-
timate of total radiance. The estimate of total radiance is not update
until one submatrix is fully processed. Second, in processing one
submatrix, we use an estimate of relative error as the relative error
threshold to drive the cut refinement. The estimate of relative error,
er , for a surface sample in submatrix, i, is defined as

er = r
Ii
Iall

L̃sample +
La

10
, (6)

where r is a constant (2% in our experiments), Ii is the total cluster
intensity of the light subtree in submatrix i, Iall is the total intensity
of all lights, L̃sample is the currently estimated total radiance for
the sample and La is the perceptual term like that in [Walter et al.
2006]. The rationale behind Eq. (6) is that before we actually sam-
ple lights in the light subtree of one submatrix, we assume that the
error produced in this light subtree of the total error is proportional
to the light subtree intensity of the total intensity. By applying these
two modifications, we are able to construct cuts for each submatrix
in parallel and process submatrices in an independent order.

After all representative lights are chosen, sample-light rays are gen-
erated and stored in a sample-light rays cache for further visibility
tests. We parallelize visibility tests of rays with mesh blocks in
device memory. We directly perform the ray intersection tests on
low-level hierarchies, the SBVHs. In each visibility test, an ac-
curate intersection point is unnecessary. Instead, the intersection
search stops as soon as one object is intersected. After all in-core
meshes have been tested, rays that are occluded are removed from
the sample-light rays cache. Rays that have been tested with all po-
tential mesh chunks are compacted into the buffer of visible sample-
light rays. In integration, these lights with visible rays in the visible
sample-light ray are accumulated to pixels.

To further reduce the latency of data transfer from the CPU to GPU,
we use asynchronous data transfer. Two streams are created and
used in the out-of-core shading to overlap the transfers with com-
putation. We launch kernels in one stream to compute lightcuts,
take visibility tests and do the integration, and transfer data asyn-
chronously from the CPU to GPU in the other stream. In the shad-
ing process, when one vertex in the optimal path is processed, we
check if there is buffer space available for the upcoming compu-
tation of the next vertex. If so, we launch the asynchronous data
transfer to fill these buffers. More implementation details can be
found in the supplementary document.

6 Results and Discussion

We have implemented all our algorithms using CUDA. In the fol-
lowing, we present our results computed on a PC with an Intel
CoreTM i7 3770 CPU, 64GB RAM, and an NVIDIA GeForce GTX



680 graphics card with 2GB RAM. Unless mentioned otherwise, all
images reported are rendered at a resolution of 800 × 600 with 4
supersamples. Surface samples are generated by an out-of-core ray
tracer that traces rays from supersamples of pixels. There are sev-
eral ways to generate VPLs fast and efficiently, such as a standard
VPLs generation [Keller 1997] using an out-of-core ray tracer or
sampling mesh surfaces by randomly distributing samples in trian-
gles [Kontkanen et al. 2011]. We generated surface samples and
VPLs in a preprocess and fed them with geometry as input for our
algorithm.

Our host buffer consists of a light buffer and a mesh buffer. The
light buffer and mesh buffer are allocated to contain all lights and
meshes along with their low-level hierarchies. Each light chunk
and mesh chunk size is set to approximately 50 MB, but after adap-
tive matrix partitioning and mesh data packing, the light and mesh
blocks have variable sizes from 50 MB to 400MB. The device
buffer consists of a light buffer, a mesh buffer, and the sample-light
ray cache buffer. By default, we allocate two 500 MB buffers for
meshes and lights and 400 MB for the sample-light ray cache. The
rest of device memory is used for temporary storage of different
kernels.

We tested our algorithm on different scenes: the Museum, the Air-
port, the Chinese Town and the Carnival. For each scene, we gener-
ated images from at least two views. Table 1 summarizes statistics
of these scenes.

Museum. The left image of Fig. 1 and Fig. 7(a) shows a scene con-
taining several statues and models in one museum, including David,
Lucy, Neptune, Satva, the asian dragon and two dinosaur skeletons.
This scene consists of 117.1 M triangles in total. The triangles
and the two-level hierarchies of the scene take about 14.3 GB. The
number of lights is 32.4 million and these lights with hierarchies
occupy 3.75 GB of host memory.

Airport. The middle image of Fig. 1 and Fig. 7(b) shows the Air-
port scene with two Boeing 777s and a hangar. This scene consists
of 669.3 million triangles. The triangles and the two-level hierar-
chies of the scene take 46.3 GB. 64 area lights, shown in spheres,
are distributed in the hangar. The environmental lighting is parti-
tioned into 20 thousand point lights. The total number of lights is
18 million and these lights with hierarchies occupy 2.1 GB of host
memory.

Carnival. The right image of Fig. 1 and Fig. 7(c) shows the Carni-
val scene. The original scene is only approximately 200 thousand
triangles but has complex lighting. To demonstrate our approach,
we added some tree models and subdivided the scene into 17.1 mil-
lion triangles. The triangles and the two-level hierarchies of the
scene take 1.76 GB. The number of lights is 256 M and these lights
with hierarchies occupy 29.6 GB of host memory.

Chinese Town. Fig. 8 shows the Chinese town scene. This scene
consists of 88.1 million triangles. The triangles and the two-level
hierarchies of the scene take 8.1 GB. A directional light illumi-
nates the scene from right to left. The total number of lights is 21.4
million, and these lights with hierarchies occupy 2.5 GB of host
memory.

6.1 Errors

The relative error bound in this paper is set to 2%. In Fig. 5, we
show a comparison with the ground truth result generated by brute-
forcedly accumulating all light contributions to pixels. It can be
observed that our approach is able to capture the main visual ef-
fects. As we decrease the relative error bound, the global image
error decreases. Though we have a different relative error crite-
rion in choosing representative lights, our method still inherits the

Museum Airport
Chinese

Carnival
Town

Meshes
tris. (m) 117.12 669.3 88.1 17.1
size (GB) 14.3 46.3 8.1 1.76

Texture size (MB) 186.3 0 274.8 182

Lights
num. (m) 32.4 18 21.42 256
size (GB) 3.75 2.1 2.51 29.6

Samples num. (m) 1.9 1.8 1.6 0.99

Mesh
chunks 875 1804 367 183
blocks 167 820 121 35

Lights
chunks 154 87 105 1172
blocks 43 16 32 110

Submatrices num. (k) 6.1 6.4 3.6 10.5
Graph vertices num. (k) 58.2 132.2 18.3 30.4

Table 1: Data statistics of view #1 in the test scenes. For each
scene, we list the numbers and sizes of triangles and lights, the sizes
of texture, the number of samples, numbers of chunks and blocks of
meshes and lights, numbers of submatrices and the graph vertices.
m and k indicate million and thousand respectively. MB and GB
are Megabytes and Gigabytes respectively.

stochastic error-bound merit of Lightcuts [Walter et al. 2005; Walter
et al. 2006]. We also visualize per pixel cut sizes of our method and
Lightcuts [Walter et al. 2006] in Fig. 6. It can be seen that our per
pixel cut size is larger than that in Lightcuts [Walter et al. 2006],
indicating that our algorithm conservatively estimates the relative
errors and produces less image error.

6.2 Data Preparation

In Table 1, we list the number of chunks, blocks, submatrices, and
graph vertices produced by our out-of-core data preparation step.
To validate our data preparation step, when we used two graphs,
with and without data packing to do data management, under the
local search strategy, the total rendering times using the graph with
data preparation were 64.2, 456.1, 16.9 and 32.6 seconds, compared
with 113.5, 605.6, 51 and 60.9 seconds without the data prepara-
tion. From the performance improvement, our data preparation step
clearly provides better data layout and data management.

6.3 Performance

The timings spent in each step of our approach are listed in Table 2.
The hierarchy construction takes tens to hundreds of seconds. In
shading, compared with the time to compute lightcuts and do in-
tegrations, the time to perform visibility tests and manage data be-
tween CPU and GPU dominate the entire computation. To assess
the performance of our graph traversal strategies, we introduce two
naive traversal strategies. The first one is to minimize nl in Eq. (3)
such that, once one light block is loaded in, it is swapped out only
after all surface samples have been processed with lights in such
a block. The second naive strategy is to minimize nk in Eq. (3)
such that, once one mesh chunk is loaded in, it is swapped out only
after all submatrices that it potentially intersects have been tested
for visibility. These two naive strategies are compared with three
graph traversal solutions, the MST-based traversal, the local search
traversal and the ant colony optimization traversal. The reported
timings of I/O are are determined after applying the asynchronous
data transfer. Even if some latency has been hidden, in all scenes,
the I/O costs of naive strategies are more than the computational
time. After applying optimal data management, in some scenes,
such as the Airport and Carnival, it still takes longer to load data
than to perform visibility tests. It demonstrates that without proper
data management, the I/O overhead becomes the main bottleneck.

Comparison of scenes. The Airport scene is an outdoor scene and
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Figure 5: Comparison under different error bounds.

Museum Airport
Chinese

Carnival
Town

Build VPL hierarchies (s) 8.5 4.4 5.9 63.5
Build Mesh hierarchies (s) 71 441 48 12.4
Partition matrix (s) 1.8 1.0 1.6 2.2
Pack data (s) 2.1 5.8 1.3 1.5

Compute lightcuts (s) 26 19.6 17.9 36.5
Test visibility (s) 141 170.1 27.4 16.5
Integration (s) 3.3 1.8 1.0 2.8
Naive #1 time (s) 182.9 862.4.4 65.4.9 48.7
traversal 1 #2 time (s) 176.2 1015.2 62.1 52.5
Naive #1 time (s) 136.2 1734.1 76.5 63.3
traversal 2 #2 time (s) 123.5 1826.5 73.1 69.1
MST #1 time (s) 106.1 663.1 52.8 46.4
traversal #2 time (s) 71.2 688.3 51 49.1
Local search #1 time (s) 64.2 456.1 16.9 32.6
traversal #2 time (s) 59.5 470.8 15.3 36.1
Ant colony #1 time (s) 60.6 416.3 14.3 28.2
traversal #2 time (s) 46.1 425 13.8 30.4

Table 2: Timings in different scenes. Statistics of view #1 of each
scene include the numbers of surface samples, submatrices, nodes
in the matrix-mesh graph and the average cut size per surface sam-
ple are given. The times to preprocess the meshes and lights, to
partition the matrix, to sample submatrices, to test visibilities and
to do integration of view #1 of each scene are listed. Finally, to
compare the performance of different strategies on traversing the
matrix-mesh graph, the time spent on data management of both
view #1 and #2 are included.

has the largest number of triangles but with a relatively small num-
ber of lights. Thus, it takes less time to partition the matrix and
compute lightcuts, but takes the longest time to perform visibility
tests and load mesh blocks in the graph traversal. The Museum is an
indoor scene with a large number of lights and triangles. The com-
plexity of visibility makes the shading take much more time than
that of the Chinese town, even though they have similar numbers of
lights and triangles. The Carnival scene has the largest number of
lights but the least number of triangles. Having a small number of
triangles makes the data management of lights and meshes more ef-
ficient than that of the Museum, even though the Carnival has much
more light data to manage.

Comparison of different graph traversal strategies. In Table 2,
the time to compute the graph route is included in the traversal time.
For view #1 of the Airport scene, the time to compute the optimal
path is 15.2s, 4.1s and 21.2s for the MST-based traversal, the local
search traversal and the ant colony traversal. Compared with the

(a) Lightcuts [Walter et al. 2006] (b) Our method (Fig. 5(c))

Figure 6: Cut size comparison.

Museum Airport
Chinese

Carnival
Town

Naive 1(s) 266.9 (84.0) 1027.0 (164.6) 94.8 (29.4) 71.3 (22.6)
Naive 2(s) 247.5 (111.3) 1899.8 (165.7) 113.9 (37.4) 91.3 (28.0)

MST 151.8 (45.7) 770.0 (106.9) 79.5 (26.7) 65.7 (19.3)
Local search 97.3 (33.1) 525.7 (69.6) 29.0 (12.1) 43.5 (10.9)
Ant colony 90.3 (29.7) 469.3 (53.0) 25.3 (11.0) 36.2 (8.0)

Table 3: I/O timings in seconds for four scenes (view #1) using
different strategies without asynchronous data transfer. The hidden
latency is shown in brackets.

reduced time obtained by our graph-based data management, the
costs on optimizing pathes are satisfactory. Additionally, for the
Museum scene, we record the I/O data transfer per 32 × 32 pixels
using different strategies and plot them in Fig. 9. These compar-
isons demonstrate the high data coherence of our data management
strategies, especially the one with the ant colony optimization. In
all scenes, it outperformed other strategies, and, in some scenes,
it reduced the time to one fifth. However, in the Carnival scene,
the improvement of the local optimization and ant colony optimiza-
tion is not as significant. This is mainly because, in the Carnival
scene, the number of mesh blocks is relatively small. The traversal
of Naive Strategy 1 is almost equal to other optimized traversals.

Asynchronous data transfer. The I/O timings using different
strategies without asynchronous data transfer are provided in Ta-
ble 3. The hidden latency is shown in brackets. It can be observed
that the asynchronous data transfer is beneficial to the performance
for all scenes and all strategies. It can also be found that the hidden
latency is decreased with better strategies. This is because with a
better strategy, the in-core memory buffer is optimally used to load
more blocks. With less free buffer space, the space to hide the I/O
latency is less. Additionally, with a better strategy, when light and
mesh blocks are loaded in memory, they tend to tend to take more



(a) Museum view #2 (b) Carnival view #1 (c) Airport view #2

Figure 7: Views of different scenes.

(a) View #1 (b) View #2

Figure 8: Chinese town.

computation than that of a less optimal strategy. The less overlap-
ping of computation and data transfer also results in less hidden
latency. Although less latency is hidden, optimal strategies reduce
the overall I/O cost more than less optimal strategies, especially in
scenes where I/O costs dominate. With or without asynchronous
data transfer, our graph-based data management can greatly reduce
the overall I/O cost and achieve better performance.

Comparison with CPU-based approach. We also compared our
GPU-based approach with a CPU-based one. Because all data are
stored in CPU memory, in the CPU-based approach, there is no I/O
cost. However, only the computational times for view #1 of Mu-
seum, Airport, Town and Carnival scenes are 3244, 3740, 2513
and 1958 seconds, respectively. These results demonstrate that
our GPU-based implementation has one order of magnitude per-
formance gain over the CPU-based approach.

7 Conclusion and Future work

We have presented a GPU-based rendering approach for the out-
of-core many-lights problem. A graph-based data management al-
gorithm is designed to handle the out-of-core data I/O of lights
and geometry in the many-lights rendering framework. In order to
achieve less I/O overhead, we formulate the data management as a
graph traversal problem and employ different optimization schemes
to guide the computation. Results demonstrate that our algorithm
and the GPU-based implementation exhibit high coherence in ac-
cessing the data and provide better performance in rendering com-
plex global illumination effects in out-of-core scenes with complex
lighting.

There are several directions to be explored in the future. First, better
graph traversal strategies for data management are worth exploring.
Algorithms with better results usually require more computation
time. The trade-off between the quality of TSP traversal and the
time to optimize is an interesting problem to be explored. Second,
it would be necessary to further extend the data storage into three
levels – GPU memory, CPU memory, and hard disks – to handle
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Figure 9: The I/O data transfer using different strategies in the
Museum scene. Data transferred for every 32×32 image block are
counted and plotted.

larger scale scenes and more complex lighting. With more levels of
data storage, the out-of-core data management becomes more chal-
lenging. Thirdly, it is interesting to incorporate glossy interreflec-
tions into the out-of-core many-lights rendering, where more lights
are required and will aggravate the data management problem.

Compared with the well studied out-of-core path-tracing ap-
proaches, our out-of-core many-lights rendering method inherits
some drawbacks of other many-lights rendering approaches, such
as a general inefficiency at handling high-rank light transport ef-
fects (e.g., highly glossy materials and complex occlusions). Our
main strength is the scalability and efficiency for rendering global
illumination effects on massive models with a large number of point
lights. It has been demonstrated that hundreds of million or bil-
lion VPLs are needed for movie-quality rendering [Kontkanen et al.
2011]. Moreover, with the rapid increase of captured geometry data
size, the data size of lights need to be increased to capture detailed
illumination for small-scale geometric features. The problem stud-
ied in this paper is thus important for high-quality rendering of large
scale scenes.
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