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Abstract—We present an automatic hexahedralization tool, based on a systematic treatment that removes some of the
singularities that would lead to degenerate volumetric parameterization. Such singularities could be abundant in automatically
generated frame fields guiding the interior and boundary layouts of the hexahedra in an all hexahedral mesh. We first give the
mathematical definitions of the inadmissible singularities prevalent in frame fields, including newly introduced surface singularity
types. We then give a practical framework for adjusting singularity graphs by automatically modifying the rotational transition of
frames between charts (cells of a tetrahedral mesh for the volume) to resolve the issues detected in the internal and boundary
singularity graph. After applying an additional re-smoothing of the frame field with the modified transition conditions, we cut
the volume into a topologically trivial domain, with the original topology encoded by the self-intersections of the boundary of the
domain, and solve a mixed integer problem on this domain for a global parameterization. Finally, a properly connected hexahedral
mesh is constructed from the integer isosurfaces of (u, v, w) in the parameterization. We demonstrate the applicability of the
method on complex shapes, and discuss its limitations.

Index Terms—automatic hexahedral meshing, frame field, field singularity, volumetric parameterization
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1 INTRODUCTION

Automatic high quality hexahedral mesh generation
has sometimes been dubbed the “Holy Grail” in the
meshing community, as such meshes benefit finite
element methods due to their tensor product nature,
leading to improvement in both speed and accuracy.
Recent development in quadrangulation in computer
graphics and geometric modeling has stirred new
research effort in this direction based on meshing
methods guided by the cross-frame fields, fields of
equivalence classes of local frames under the chiral
octahedral symmetry group (the set of 24 rotations
that keep a cube centered at origin invariant without
changing the right-handed frame to a left-handed
one).

Such methods first create a parameterization of
the volume for 3D charts intersecting at common
interfaces, followed by extracting the vertices of the
hex mesh from the integral points in the parameter
domain. The edges of the hexahedra in the mesh
would then follow the gradient lines of the parame-
terization. For computational purposes, the boundary
of the resulting mesh must conform to the original
boundary, create patches sharing the same integer
parameter value over smooth regions, and introduce
sharp edges and corners near the original features of
the mesh. Thus, feature alignment and angle distor-
tion reduction are both linked to a high-quality frame
field with one of the axes aligned to the boundary
normal on all surface points.

In theory, CubeCover method [1], extending Quad-
Cover method [2], formulated necessary conditions for

Fig. 1: Automatically generated all hexahedral
meshes. Our method is able to handle complex mod-
els with various topologies.

the volumetric parameterization, and laid the founda-
tion for automatic hexahedralization methods based
on such parameterizations. They formulated the basic
requirements of rotational and translational transi-
tions on each interface between different charts or dif-
ferent parts of the same chart serving as the domains
for parameterizations. The nontrivial transitions (cuts)
of the domain are necessary to provide flexibility of
creating a mesh with high-quality element shape. Oth-
erwise, a polycube-like topology would be enforced,
potentially leading to large distortion [3], undesirable
for engineering or scientific computing purposes.

Combining the global volumetric parameterization
with compatible rotational and translational transi-
tions as specified in the CubeCover method with
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automatic generation of guidance fields, one would
imagine that an automatic hexahedral meshing tool
would be straightforward to construct. However, un-
less manually constructed or adjusted, frame fields do
not usually satisfy these compatibility conditions for
non-degenerate clean volumetric parameterization. In
fact, there can be a multitude of different types of
problems if one computes rotational transitions from
automatically generated frame fields that are continu-
ous up to a rotation in the chiral octahedral symmetry
group. The simplest example of the difficulty in such
volume parameterization would probably be the case
that two edges of a triangle are both along a same
singularity line. Thus all the points in the triangle
will share the same set of two variables, rendering the
image of the triangle in the parameter domain degen-
erate (collinear). Some other examples include internal
line singularities of degenerate types, boundary edges
that require the pairs of triangles adjacent to them to
fold onto one another, and nearby singularities forcing
the parameters to jump from one integer to another
across a short distance.

In this paper, we aim at formulating the common
problematic cases in a complete singularity graph
mathematically, providing a framework to automat-
ically detect and treat them in a consistent way with
the guarantee of convergence, and finally generating
an all hexahedral mesh by solving a mixed integer
programming problem after reducing the number
of integer variables. This paper does not provide a
sufficient condition for fixing all possible degenera-
cies, which remains an open problem. However we
provide more comprehensive formulation and fixing
strategy for the degeneracy problem in hexahedral
remeshing than the state-of-the-art [3]. In summary,
our main contributions include:

• We give a definition of surface singularities, and
necessary conditions for admissible singularity
graph of both internal and surface singularities
for hexahedral meshing.

• We provide a procedure with convergence guar-
antee to fix the above defects in the singularity
graph, which would lead to degenerate parame-
terization if left alone.

• We demonstrate a practical solution for hexahe-
dral mesh generation guided by automatically
generated guidance cross-frame input fields.

2 RELATED WORK

As mesh generation has been an active research topic
for a long period of time, a huge number of methods
have been proposed to generate high quality triangu-
lar or tetrahedral meshes automatically [4], [5]. Most
of them rely on Delaunay tessellation (dual of Voronoi
diagrams), which ensures proper connectivity and
element quality. However, quadrilateral or hexahedral
remeshing is substantially more difficult because there

is no such dual structure for non-simplicial elements.
In 2D manifold quadrangulation, some recent works
[6], [7], [8] use Morse-Smale Complexes (MSC) [9] to
guarantee a pure quadrangulation based on a scalar
function with periodic property. However, 3D MSCs
do not necessarily lead to hexahedral structures. As a
consequence, many hexahedral remeshing methods,
such as sweeping [10] and paving [11], rely heavily
on manual input to define the proper topological
structure by decomposing the volume into simple
parts. Such challenges make grid-based methods [12]
or hex-dominant mesh-based methods [13], [14] often
the practical choice for automatic remeshing in spite
of their inferior results.

Recent progress shows that global parameteriza-
tion has achieved great success in surface quadran-
gulation [2], [15] with the help of a smooth frame
field defined on a manifold surface with compati-
ble transition functions between charts. From such a
non-degenerate parameterization, a pure quadrilateral
mesh can be extracted by tracing the iso-lines. To
extend such a scheme to hexahedral remeshing, [1]
has proposed a global parameterization method for
hexahedral remeshing, and [16] gives a method to
automatically construct a desired frame field. These
two works are most relevant to our method. Roughly
speaking, we attempt to apply the parameterization
method in CubeCover to the automatically generated
frame field. However, the task is extremely challeng-
ing as the automatically generated frame field does
not take into account the conditions on admissible
singularity types (both inside the volume and on the
boundary). In addition, without a coarse meta-mesh
manually specified or generated from a manually
specified frame field, a topologically sound partition-
ing of the volume for global parameterization is not
straightforward to generate as one might expect. [17]
also proposed a method for all hexahedral remeshing
with the topological restriction of no internal singular-
ity, thus leaving few degrees of freedom to optimize
the shape of hexahedra. As noted in [1], it is often
necessary to move the right angle transition line in the
parameter domain on smooth regions of the surface
into singular edges inside the volume to have better
element quality, as the former turns the dihedral angle
between a hexahedron’s two faces into nearly 180◦,
while the latter only turns the sum of three such
dihedral angles around the internal edge to 360◦.

Singularity plays a critical role in detecting and
remedying this issue. [18] lists many topological re-
strictions that arise in hexahedral meshing, and uses
them in a frame-field-independent remeshing algo-
rithm. The topological constraints in this work apply
to the primal elements of a hexahedral mesh, such
as node, edge and face etc. Some methods have been
proposed to analyze the global topological structure
of a quadrangular mesh or a 2D symmetry vector
field by singularity graphs [19], [20]. In 2D quadran-
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gulation, noisy singularity points lead to problematic
parameterization results. Thus, some remedies have
been proposed for denoising or adjusting the singular-
ities in the frame field [2]. For hexahedral remeshing,
[1] provides a definition on internal singularity types
and proved some of its properties. Such singularity
structures are also important to hexahedral mesh
coarsening, e.g., [21] and [22]. However, there is no
existing work on automatic surface singularity and
internal singularity adjustment for frame fields used
in hexahedral meshing, except a concurrent work on
hexahedral meshing by Li et al. [3]. Their method
does not address the potential issues involving surface
singularities. Although such inadmissible singulari-
ties may be amended in their method by manually
designed “guiding boxes” (all frames inside a given
box are set to be aligned to the three edge directions of
the box), they often appear in automatically generated
frame fields and should be addressed for the sake of
robustness.

3 OVERVIEW

Algorithm 1: Hexahedralization process overview.
Data: tetrahedral mesh Ω with one frame F per

tet computed by, e.g., [16]
Result: hexahedral mesh with edges guided by F
Compute the singularity graph (Sec. 4);
while there is a zigzag (Sec. 5.2) do

Remove zigzag by “straightening”
while a compound edge (Sec. 5.3) adjacent to two
admissible edges exists do

Split the compound edge:
turn it into an admissible type;
create a separate singularity path through
vertices newly introduced in a local
refinement;

Adjust the frame field (Sec. 5.4);
Reduce the number of integer variables
(used in boundary and transitions, Sec. 6.1);
while an untreated integer variable (Sec. 6.2) exists
do

minimize the parameterization energy;
round the integer variable closest to an
integer;
turn the variable into a constant;

Minimize the parameterization energy;
Construct hexahedral meshes with integer grid
points;
Post-processing if necessary (Sec 7);

Our paper focuses on generating all hexahedral
meshes from input cross-frame fields generated au-
tomatically by [16]. Given a tetrahedral mesh Ω, each
tetrahedron is associated with an orthonormal frame

F = (U, V,W ), with column vectors U , V , and W
as the basis vectors. The frame is considered as a
representative of a cross-frame (an equivalent class
of 24 orthonormal frames with axes chosen from
{U,−U, V,−V,W,−W}). To generate an all hexahedral
mesh with edges following such an input, we com-
pute a parameterization with a method similar to the
one proposed in [1]. We loosely follow their notations
below.

We denote the parameterization f : Ω → R
3, which

can be expressed in each chart (tetrahedron) as a
linear function with three components (u, v, w)T . In
tetrahedron t, we denote its expression by ft.

If we use integral lines of the gradients of the
parameterization for edges, they must connect to each
other across the tetrahedron boundaries. Thus, for two
adjacent tetrahedra s and t, the transition from fs to
ft for a parameterization whose integer grid points
can be used in hexahedralization must satisfy

ft = Πstfs + gst, (1)

where gst ∈ Z
3 and Πst ∈ O, the set of one of the 24

matrices for the cross frame containing the standard
identity frame, a.k.a. the chiral octahedral symmetry
group. Comparing with the transition from t to s, we
have

Πst = Π−1
ts , gst = −Πstgts. (2)

We call any face with a non-identity rotational transi-
tion or non-zero translational transition a jump-face.

For a surface triangle a associated with tetrahedron
t, to avoid cutting the corresponding hexahedron
by the boundary surface, one of parameter must be
an integer, with its gradient aligned to the surface
normal. Thus, there is a transition Πta that makes the
parameterization coordinates of a surface point p ∈ a
satisfy

(Πtaft(p)) · (1, 0, 0)T = gta, (3)

where Πta ∈ O aligns the U -axis of the frame to the
normal of a, and gta ∈ Z.

The translational part (the gap) gst can be resolved
during the parameterization process if the hex edge
size can be adjusted, but the rotational part Πst must
be properly prescribed to avoid fold-overs and degen-
eracy in parameterization while following the given
frame field.

For the parameterization with its gradients follow-
ing the frame field to be smooth, a natural require-
ment for the rotational transitions is that they make
the angles between the corresponding axes in Ft and
FsΠst respectively as small as possible. If one of these
angles becomes greater than π/2, it can lead to large
angle distortion in the parameterization. In addition,
more constraints are required to avoid the defects
caused by singularities as shown in the next section.
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4 ROTATIONAL TRANSITION AND SINGU-
LARITY

A straightforward method to evaluate the rotational
transition is to find the best transition matrices that
minimize the following “alignment error”:

‖Ft − FsΠst‖
‖(FtΠta)(1, 0, 0)

T − na‖,
(4)

where na stands for the normal of the surface triangle
a in t, and the matrix norm is the Frobenius norm,
which is used throughout the paper. For a tetrahedron
t containing more than one boundary faces, say a and
b, Πta �= Πtb or t should be split into two. When
the rotation Πta minimizing the above error is non-
unique, we choose the one fixing one of the axes. Such
a setup is necessary to make the gradient fields of the
parameterization smooth while remaining consistent
with the guidance frame fields [1]. However, it does
not guarantee degeneracy-free parameterizations in
the presence of certain types of singularities as dis-
cussed below.

4.1 Internal Singularities

If the valence (number of adjacent hexahedral cell) of
an internal edge in the final hexahedral mesh is not
4, it is an internal singularity. Such singularities can
be detected by checking the rotational transitions. As
formulated in [1], for an oriented tetrahedral mesh
edge e, surrounded by a small counter-clockwise
oriented dual edge loop passing through tetrahedra
(t0, t1, · · · , tk, t0), we can define the type of the edge
with respect to starting tetrahedron t0 as

type(e, t0) = Πtkt0Πtk−1tk · · ·Πt0t1 . (5)

If type(e, t0) �= I , we call it an internal singularity edge.
An internal singularity can lead to a non-valence-

4 segment in the final hexahedral mesh, only if
type(e, t0) is a rotation around one of the axes in
the frame. Other types of singularities are said to be
compound, and forced to be mapped to a point in
any parameterization producing a hexahedral mesh
consistent with the transitions, leading to degeneracy.
It can be shown by contradiction. Suppose that the
image of e in the parameterization is not a point. If we
choose a sufficiently fine hexahedral mesh, the image
is either parallel to hexahedral faces, or intersecting
with a hexahedral face. For a compound singularity
edge e, U , V , or W is not an eigenvector of type(e, t0),
so its image cannot be parallel to one of the gradient
lines of the parameters. On the other hand, the hexa-
hedral face that it intersects with contains edges along
U , V , or W , which cannot form a loop consistent with
accumulated rotational transition type(e, t0), leading
to a contradiction.

The additional requirement on the inner singularity
vertex (Thm 2.2 in [1]) through counting valences

would be satisfied automatically when the rotational
transitions form the minimizer of the frame field
transitions. Although valence 3 and 7 (or 4 and 8)
cannot be distinguished by edge type, it is possible
to detect high valences, e.g. rotation around Z with
an angle > 2π, through first locally aligning the Z-
axes of frames to the edge and then accumulating the
rotation angle. In practice though, we have never seen
any high valence singularity edges in automatically
generated frame fields.

4.2 Surface Singularities
As shown in Section 5, internal singularities may
lead to degeneracy in parameterization because of
the constraints that they impose. Some surface edges
produce similar constraints, and may cause degener-
acy as well. Such constraints force two components
of the parameterization coordinates along the edge to
be both constant integers, i.e. the edge must be along
some edges of the hexahedral mesh. We call such sur-
face edges surface singularities, which are formulated
mathematically below, with a definition consistent
with the internal singularities.

a

be

x

t0

t1 t2

t3

Πba

Πat0

Πtkb

Πt1t2

Πt0t1
Πt2t3

Fig. 2: Surface singularity example.

Similar to the internal case, for an oriented sur-
face edge e, we also create a small counter-clockwise
oriented loop around it, which passes through
(a, t0, · · · , tk, b, x, a) (e.g., Figure 2), where the faces
sharing e, a and b, are the triangles adjacent to tetra-
hedra t0 and tk, respectively, and x stands for a point
outside of the tetrahedral mesh. We then define the
type of the edge as

type(e, a) = ΠbaΠtkbΠtk−1tk · · ·Πt0t1Πat0 , (6)

where Πba is a rotation around axis U aligning the
V,W -axes on triangles a and b when U -axis on each
triangle is aligned to the normal. More precisely, it
minimizes

‖Re(na, nb)Ft0Πt0aΠab − FtkΠtkb‖,
where Re(na, nb) is the rotation around e that aligns
na (normal of a) to nb (normal of b), which flattens
the hinge formed by the two boundary triangles. If
type(e, a) is a rotation around an axis by ±π/2, it
creates a sharp edge on the surface in the parameter
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domain, and denotes an admissible singularity. In
other words, the valence of such an edge in the
hexahedral mesh would be different from 2. If it is
not a rotation around one of the frame axes, we have
a compound boundary singularity.

The transition between surface faces Πab describes
a rotation on V,W -axes in the parameter domain.
The product of Πab’s along a loop around a surface
vertex can be used to detect singularity vertices on
the surface, which forms a sharp corner in the pa-
rameter domain with a discrete Gaussian curvature
(angle defect) of multiples of π/2. Only ±π/2 would
lead to reasonable sharp corners. If the angle defect
becomes π, the parameterization would wrap two
surface squares around a surface vertex, leading to
degeneracy. However, such a degeneracy never oc-
curred in all our experiments based on automatically
generated guidance fields.

5 INADMISSIBLE SINGULARITIES

The whole singularity graph G is composed of the in-
ternal and surface singularity edges, and the vertices
incident to these edges. The following two issues in
such a graph will lead to degeneracy in the parame-
terization, and are thus necessary to eradicate:

• Compound singularity (a rotation not around any
axis in the frame): It maps to a single point in the
parameter domain, thus inducing degeneracy. In
addition, a surface rotation around a frame axis
by π is also treated as a compound singularity,
because it indicates zero or 4 neighboring hexahe-
dra, leading to great distortion except for the case
with a valence-4 boundary edge whose adjacent
boundary faces have nearly opposite normals.

• Zigzag (two same type consecutive singularity
edges in one tetrahedron): Denote the edges by
e0 and e1, and the tetrahedron by t, type(e0, t) =
type(e1, t). Such edges map to a straight line in
the parameter domain, thus making the image of
the tetrahedron degenerate.

These issues can be viewed as resulting from im-
proper discretization of a smooth frame field with
only admissible singularity types. A compound sin-
gularity can be viewed as several close-by singularity
lines merged onto one tetrahedral edge. A zigzag
can be explained as misalignment of the edges of
tetrahedral mesh with the singularity line in the
smooth frame field. Unless a manually constructed
or adjusted frame field is used, these issues almost
always exist and must be addressed.

Based on the above observation, we propose a
two-step method to schematically adjust the initial
rotational transition set derived from Equation 4 to
address the above issues. In the first step, we remove
all the zigzag issues by straightening the singularities.
In the second step, we split the compound singulari-
ties into admissible ones.

Additional care may be necessary to avoid extreme
angle distortion associated with high hexahedral edge
valences. However, for internal singularity edges, the
valences are in most cases less than 6 when the singu-
larity types are derived from the automatically gener-
ated guidance frame field. For boundary singularity
edges, one may want to make sure that the dihedral
angles do not deviate far from the dihedral angles
specified by the singularity type in the parameter
domain. Similarly, the boundary singularity vertex
should have compatible Gaussian curvature in the
parameter domain and on the mesh to avoid extreme
angle distortion at the sharp corners.

5.1 Atomic Operation to Adjust the Singularities
For an internal face shared by tetrahedra s and t,
modifying the rotational transition Πst into ΠstΠ by
a rotation matrix Π on the face will affect the types
of its three edges. The type of one of these three edge
type(e, s) that is counterclockwise oriented around the
direction of s → t will change to type(e, s)Π after the
modification. Thus, the types of all these edges change
by a same rotation. It can be likewise applied to
surface singularities. We use this simultaneous change
as the basic operation to remedy the issues in the
singularity graph.

5.2 Zigzag Removal

X

X

Y

p

x

q

⇒
I

I

X · Y

p

x

q

As shown in the right inset, the
triangle between tetrahedra s and t
contains a zigzag pxq with type X .
Changing the rotational transition
Πst into ΠstX

−1 turns the edges
px, xq into regular edges. The type
of the third edge pq in this triangle
with original type Y will become XY . Such an oper-
ation can be viewed as straightening the singularities
px, xq into pq, and superpose their type onto the
original type of pq. If the original type of edge pq
is not I , its type may become compound singularity
after removing the zigzag, which will be split into
admissible ones in the second step of our method.

Removing a zigzag may introduce new zigzags,
but the procedure always terminates when we repeat-
edly find a zigzag to remove until all zigzags are
eliminated. The number of zigzag removal operations
to be performed cannot exceed the total number of
singularity edges in the graph, since that number
decreases by either one or two in each operation.
The monotonic decreasing of singularity edge number
provides a proof of convergence.

5.3 Compound Singularity Split
After removing all the zigzags in the graph, the
remaining inadmissible singularities are compound
singularities. To remove a compound singularity, we
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split it into multiple admissible singularities inside its
one-ring neighborhood without affecting other singu-
larities or introducing zigzags (Figure 3). During this
procedure, tetrahedra may be split into smaller ones
through local refinement. In the refinement steps, we
keep the rotational transition on split faces, and set the
rotation transition to identity for the newly introduced
faces. Thus, the split edges share the same type as the
original ones, and the newly introduced edges are all
regular edges.

x

p

q

y1

yn

⇒ x

p

q

y1

yn

y′1
y′n

⇒ x

p

q

y1

yn

y′1
y′n

Fig. 3: Splitting a compound singularity edge xq. The
gray edges are regular, and the black edges can be
singular.

We first find an open end node x of a compound
singularity polyline, i.e. a node connected to only one
compound singularity edge. In its one-ring neighbor-
hood Ωx, we pick one node p on one adjacent admissi-
ble singularity, and another node q on the compound
singularity. Then, we subdivide each triangle on the
boundary of Ωx and its associated tetrahedron into
four by inserting one new node at the middle of each
boundary edge. As the newly introduced nodes yi’s
are connected, and each original node is adjacent to
some of them, we can always find a path of the form
py1y2 · · · ynq. In particular, we can pick the shortest
one. These edges and x form a fan of triangles (in the
same orientation), with each edge xyi being regular.

To avoid re-introducing zigzag edges when splitting
the compound singularity, we further subdivide the
triangle fan x, py1y2 · · · ynq as follows. Each edge xyi,
along with each of its incident tetrahedra in the one-
ring, is split into two by inserting a new node y′i
at the middle. Then we get a new path py′1y

′
2 · · · y′nq

completely inside the original one-ring neighborhood,
with each of its edges initialized to the identity type.
We modify the rotational transition on all the trian-
gles in the fan composed of x and py′1y

′
2 · · · y′nq by

multiplying the inverse matrix of the edge type for px,
turning px into a non-singular edge. Then the polyline
py′1y

′
2 · · · y′nq becomes an admissible singularity with

the same type of px. The vertex x is now incident
to only two singularity edges, with one of them the
original incident admissible singularity. According to
Proposition 5.1 proved in the appendix, the other
edge xq must also be an admissible singularity.

Proposition 5.1: If a vertex is incident to only two
singularity edges, the types of the two edges must
match in a certain local alignment.

The above operation can be viewed as splitting and
shifting the singular segment pxq to the new paths. It
fails when there exist loops of compound singularity
edges, which contain no end node. However, it never
occurred in all frame fields automatically generated
during our experiments. The monotonic decrease in
the number of compound singularity edges within
each iteration guarantees the termination of the pro-
cedure.

In Figure 4, we demonstrate several typical cases
in singularity adjustment on real data. To help visu-
alize the details, we show close-ups on parts of the
singularities enclosed by colored squares in the insets
enclosed by ones with the same colors respectively.
The purple box contains a zigzag on pxq, and the blue
box contains a compound singularity pq.

5.4 Frame Field Adjustment

The above singularity adjustment removes the zigzag
and compound inadmissible edges defined in this
paper, but it may increase the alignment error, leading
to possible difficulties in the subsequent parameteri-
zation step. By minimizing the alignment error with
respect to F , we can update the frame field accord-
ing to the new rotational transitions. For robustness,
we adopt a scheme that incorporates the non-linear
constraints gradually. With the rotational transitions
fixed to the adjusted matrices, we first obtain an initial
guess by turning the problem into a linear system,
minimizing Eq. 4, without the constraints F ∈ SO(3),
i.e. treating each F as an arbitrary 3 by 3 matrix. We
then incorporate the orthonormality constraints on F
as soft constraints, by including a non-linear penalty
term w‖FTF − I‖2 (w is set to 100 in all our results),
and solve the optimization problem again with Gauss-
Newton method starting from the initial guess. The
solution will be converted to the closest ZYZ Euler
angle representation, and serve as the initial value to
minimize the alignment error in such a representation.
We then transform the solution back to the 3 by
3 matrix representation as the updated frame field
satisfying the hard constraints F ∈ SO(3). In most
cases, the largest angle between the corresponding
axes of two adjacent tetrahedra is about 30◦ when
measured with the initial rotational transition, but
increases to about 120◦ after adjusting the rotational
transition to resolve inadmissible singularities. After
the above adjustment, it finally decreases to about 75◦.

In some cases, the resulting singularities may be
close to each other, resulting in high distortion in the
parameterization. However, a simple post-processing
of local relaxation as mentioned in Section 7 reduces
the distortion of the parameterization in the hexahe-
dral elements between these singularities, producing
high quality hexahedral meshes.
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(a) (d)(b) (e)(c)
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p
q

x

p q

x

qp
x

(b)

(b)

(c)

(c)

(d)

Fig. 4: Example of removing inadmissible singularities. (a) shows the input frame field visualized by
streamlines. (b) The initial singularity graph that it induced contains many inadmissible singularities. The
zigzag issues and compound singularities are shown in red and black respectively. The zigzag issues are
resolved in (c), and the compound singularities treated in (d). After adjusting the singularities, an all hexahedral
mesh (e) can be extracted from the parameterization result.

6 PARAMETERIZATION

We follow essentially the same idea in the CubeCover
method for parameterization, i.e. finding the mini-
mizer of the following energy∫

V

‖df − F‖2 d V ol,

which means that the gradient of each component of
the parameterization should follow the corresponding
axis of the given frame field F as much as possible.
The main difference is that we are able to greatly
reduce the number of integer variables through a sim-
ple preprocessing procedure, making the subsequent
steps more efficient and robust.

6.1 Topological Simplification
We merge all the charts to get a global parameteri-
zation domain. To improve efficiency, instead of just
creating a minimal spanning tree (MST) to remove
a minimum set of transition variables across faces
between tetrahedra adjacent in the tree as in [1],
we additionally create a 3D domain with trivial in-
ternal topology to fill the volume, removing as many
transition variables associated with faces as possible.
Note that the original (possibly nontrivial) topology
is encoded by the self-intersection of the new domain
boundary. This can be achieved by slowly growing the
domain to eventually occupy the whole volume, while
maintaining a ball-like topology for the interior of the
domain throughout the process. In Figure 5, we show
a simple example of the topological simplification
process for torus.

After using MST to globally align the frames while
keeping the singularity structure intact, we start from
a seed tetrahedron, gradually remove faces with triv-
ial transitions to merge tetrahedra, and expand the
domain until all tetrahedra are merged to it. Any
non-rotational-jump-face is a candidate for removal.
If both adjacent tetrahedra of such a face are already
merged to the domain, it can still be removed when it
contains a non-singularity edge adjacent only to this
unremoved face. Since all the faces corresponding to

(a) (b) (c)

(d) (e) (f)

Fig. 5: An example of topological simplification. (a)
the arbitrary tetrahedron chosen as the starting cell.
(b) (c) the first several steps of expanding the do-
main by merging neighbouring tetrahedra. (d) (e) the
intermediate stages of the merging process. In (e),
we render the faces (in green) only for illustrative
purposes. They are not detected until the merging
process is completed. (f) the final remained faces that
cannot be removed in order to maintain the ball-like
topology.

the MST edge can be removed, the entire volume can
always to be merged into a single domain. However,
an arbitrary order of traversing such face candidates
can leave more faces unremoved than necessary, lead-
ing to more integer variables. We follow a simple
rule when expanding the domain, under which all
candidate faces around an edge on the boundary
of the growing domain are simultaneously removed.
This ordering will leave few rotational transition face
patches, which, together with at most P translational
transition patches, cut the genus-P volume into a ball-
like parameterization domain.

6.2 Parameterization as a Mixed Integer Program-
ming Problem
We can easily cluster the remaining faces into patches
with same transition types. Each internal patch uses

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX XXX 8

only three integer jumps, and each boundary patch
has one integer parameter. It is equivalent in theory
to associate variables with each individual face, and
then use Gaussian elimination to reduce the num-
ber of variables, or simply leave these variables in
the final linear system with an increased number of
equations. However, the Gaussian elimination process
is significantly slower with a much larger number
of constraints. Leaving the constraints as equations
in the linear system would turn them into soft con-
straints when we solve the over-constrained system
using least squares method. With the patches clearly
identified, we can actually leave a small number of
integer constraints only on the internal singularity
lines and the boundary patches, and use three floating
point values per internal patch. This approach can
greatly reduce both the integer degrees of freedom of
the system and the number of constraints, and thus
expedite the process of the Gaussian elimination when
we enforce the hard constraints.

The final system normally contains less than few
tens of integer variables for a given input frame field.
We successively snap one integer variable from the
floating point value obtained in the previous solve
in a greedy fashion. The linear system is assembled
through first removing redundant hard constraints,
and then eliminating them from the variables by
substitution. This can be done on the gradient opera-
tor. After that, the reduced gradient operator and its
transpose can be assembled as the reduced Laplacian
operator for the optimization step. The construction
process may take long if the model contains a large
number of vertices, but the subsequent linear systems
turn out to take little time for each solve when we call
the sparse linear solver of Matlab.

With a singularity graph containing only admissible
singularities, the parameterization may still contain
degenerate or flipped tetrahedra initially, due to ge-
ometric distortion and numerics. In experiments, we
use five iterations of local stiffening [15] to alleviate
the situation. However, this method can not guarantee
flip-free parameterization. Thus we adopt the same
strategy in [3] to leave this problem into hexmesh
extraction. Besides, there are some degeneracies as-
sociated with internal singularities which are very
close to the surface. This issue is handled by a post-
processing procedure as detailed in the next section.

We use a simple approach to produce the final
mesh. First, we generate the integer points (u, v, w) ∈
Z
3 and half-integer points (u + 1/2, v + 1/2, w + 1/2)

within each tetrahedron, and snap nearby points of
the same type together through a spatial indexing
structure to avoid potential duplicates near the faces.
Then, starting from each half-integer point which
serves as the center of a hexahedron, we follow the
U,V,W directions to find the 8 corresponding corner
vertices from the set of integer points and produce
the connectivity information for the hexahedral mesh.

During this process, we keep track of how far it needs
to go in the parameterization domain, and the change
of directions to handle any jump-faces encountered
along the path.

7 RESULTS AND DISCUSSION

The singularity correction method mentioned in Sec-
tion 5 is able to resolve all the zigzag and compound
singularity issues in our experiments. However, it
remains an open problem to give a sufficient condition
on singularity graphs compatible to non-degenerate
hexahedral meshing.

In our experiments, some singularities close to the
surface lead to degeneracy as well. As shown in
Figure 6, some singularities sink right below the
boundary surface of the tetrahedra mesh, and lead to
degeneracies in regions between them and the bound-
ary. As a result, the boundary of output hexahedral
mesh at these singularities edges is not aligned with
the input boundary.

(a) (b) (c)

Fig. 6: The red singularity edges in (a) lead to de-
generacy and the sunk part (in red) in (b), but the
defects can be easily fixed by surface snapping and
post-smoothing (c).

Similar to zigzag and compound singularity, dis-
cretization of a singularity in a smooth cross-frame
field which is close to, but not exactly on the surface
(possibly due to the numerics of the frame field gen-
eration process) may lead to such singularities. This
issue is inevitable when few assumptions can be made
on the automatically generated cross-frame field. The
difficulty of solving it lies in that such a degeneracy
cannot be locally detected from the singularity graph.
Fortunately, such sunk parts are all narrow and shal-
low (often less than two layer of tetrahedra) as they
resulted from near-misses, and more importantly, the
output hexahedral mesh still shares the same topology
to the input tetrahedral mesh. Thus, we simply first
snap the sunk nodes in the hexahedral mesh onto
the tetrahedral mesh boundary by projecting them
along the normal, and then improve the quality of the
hexahedral mesh by using Mesquite software [23].

We tested the proposed method on several models.
The statistics on the models are given in Table 1 and
Table 2. The timing is measured on a PC with an I7-
940 CPU at 2.8 GHz and 12 GB RAM. To measure
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Fig. 7: Topological structures of the singularities.

the dihedral angles of an edge in a hexahedron, the
normal of each adjacent quadrilateral face is evaluated
by averaging the four triangle normals in two differ-
ent tessellations of the quadrilateral face. As shown
in the table below, nearly all the elements are with
decent shape quality measures.

Model Tet Comp Zz-inner Zz-surf T(s)
Torus 30k 0 100 15 0.04
Nut 65k 0 0 5 0.10
Sphere 80k 0 26 10 0.05
Pretzel 300k 5 204 35 6.27
Sculpture 105k 0 8 1 0.11
Fandisk 301k 0 148 16 0.22
Elk 123k 12 318 58 5.04
CAD1 68k 0 36 2 0.07
CAD2 130k 0 56 1 0.12
CAD3 530k 0 60 132 0.54

TABLE 1: Statistics of the results. The number of in-
put tetrahedra, inadmissible singularity edges (Com-
pound, Zigzag-inner and Zigzag-surface), and time
spent (in seconds) for fixing them are in columns Tet,
Comp, Zz-inner, ZZ-surf and T, respectively.

Model T Hex Angle Length Scaled jac Haus.
Torus 0.5m 12768 90.0/85.7 1.53/1.08 0.974/0.827 0.448
Nut 1m 6640 90.0/88.8 1.28/1.04 0.966/0.389 0.286
Sphere 1.5m 7776 90.1/83.4 1.50/1.05 0.976/0.757 0.745
Pretzel 1.17m 3024 90.0/89.4 1.62/1.13 0.822/0.0203 0.605
Sculpture 1.3m 6348 89.9/88.4 1.42/1.07 0.973/0.557 0.295
Fandisk 5m 24001 90.0/82.1 1.70/1.02 0.943/0.01 0.341
Elk 1.1m 21462 90.0/79.4 1.58/1.01 0.936/0.282 1.33
CAD1 0.5m 21530 89.9/82.4 1.37/1.09 0.958/0.01 0.709
CAD2 2m 13788 90.0/87.3 1.24/1.01 0.981/0.300 3.55
CAD3 81.5m 17784 90.0/88.7 1.18/1.01 0.974/0.208 1.09

TABLE 2: Statistics of the results (average/minimal).
The time used in parametrization is listed in
the second column. The following columns list
mean/minimal of dihedral angles, edge lengths and
scaled Jacobian [24], and the Hausdorff distance
(10−3× bounding box diagonal) for measuring the
quality of the output hexahedral mesh.

As shown in Figure 7, our method preserves the
symmetries captured by the automatically generated
frame fields. Even for high genus models, our method
is able to automatically find a proper topological
structure.

In the following figures, to demonstrate the param-
eterization results, we show the adjusted singularity
graphs, resulting hexahedral meshes, and their cut-
away views from left to right. In Figure 8, without
any manual input, the models Pretzel, Elk and Fan-
disk are remeshed into a polycube-like topology, as
indicated by their frame fields. In Figure 9, several
internal singularities are automatically introduced on
the models CAD1, Sculpture and CAD2, producing
excellent element quality.

Fig. 8: Results with polycube-like structure. The red
lines are near-misses, exposed on the boundary after
post-processing.

Fig. 9: Results on CAD1, sculpture and CAD2 contain
internal singularities.

In Figure 10, we show the result of our method
applied on the complex model CAD3. Manually con-
structing a meta-mesh for such models would have
been extremely time-consuming. The models have
some small features, which even cause problems in
some surface quadrangulation techniques. By choos-
ing a relatively small element size, our method is able
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to generate an all hexahedral mesh while preserving
important features at the same time. The initial sin-
gularity graph extracted from the input frame field
has roughly depicted the final connectivity structure.
However, the original singularities are on or near the
surface, such near-misses can lead to distorted and
even degenerate parameterization. After automatic
adjustment, all singularities are snapped to the surface
for the model shown, resulting in a polycube-like
topology.

Fig. 10: Our method can automatically remesh the
complex model CAD3 while preserving its important
features without time-consuming manual meta-mesh
construction.

7.1 Comparisons
Automatic generation of high quality hexahedral
meshes is still an open problem. Many methods have
been proposed under various assumptions. [17] as-
sumes no internal singularities inside of the object.
[1] requires a valid singularity graph in the input. [14]
allows non-hexahedral elements in the resulting mesh.
The most closely-related work [3] also takes a frame
field in the input, and tries to reduce the inadmissible
singularities. Although our method shares some of the
same limitations, such as lack of guarantee in elimi-
nating all inadmissible singularities (e.g. in presence
of looped compound singularities), our method has
the following advantages:

• In addition to all the inadmissible cases men-
tioned in [3], our method can detect and fix
surface inadmissible singularities. As shown in
Figure 12, the inadmissible surface singularities
(top left) forces the associated elements to be
degenerate, while our method is more robust
by taking such inadmissible singularities into
account.

• Our method guarantees convergence for both
zigzag and compound edge removal steps. The
compound edge collapsing strategy [3] may intro-
duce new zigzags (Figure 11), and is thus without
convergence guarantee.

• Near miss cases are often inevitable in automat-
ically generated frame fields. We are the first to
recognize and address such issues.

• There are known specific local degenerate cases
that our method can handle but the method in [3]
cannot. For instance, a face with three singularity
edges in types Ru, Rv , and Rv cannot be properly

handled either in their “matching adjustment”
phase, “improper singular edge collapse” phase,
or their ad hoc split method (Figure 11). Our
pipeline can trivially handle such cases by first re-
moving zigzag, and then splitting the compound
singularity.

• Unlike our subdivision strategy, the collapse
strategy used in [3] leads to possible numerical
issues in parameterization because of the nu-
merous poorly shaped tetrahedral elements in-
troduced in fixing long compound singularities
(Figure 13).
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Fig. 11: Left: A tet with Ru (blue), Rv (red) singular-
ities and a compound singularity (black). Following
the steps in [3], the tet will be split at edges ab and
dc to make each face around ac contain only one ad-
missible singularity (middle left), and then ad is split
to make ac collapsible (middle right). Zigzags occur
after the collapse (right), which cannot be removed by
the “matching adjustment”.

original singularities fixed singularities

Result of [3] Our result

Fig. 12: Compared with the method in [3], which lacks
the ability of detecting and fixing inadmissible surface
singularities, our method is more robust in generating
high quality hexahedral meshes with their presence.

8 CONCLUSION

We present a global volumetric parameterization-
based tool to automatically generate an all hexahe-
dral mesh based on a 3D frame field. Although a
manually constructed or adjusted frame field may
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Fig. 13: Unlike our method, the collapse strategy [3]
may introduce numerous poorly shaped tetrahedral
elements. The histograms show the scaled Jacobian
of the tetrahedral meshes. Minimal scaled jacobian of
our result is 0.176, and Li et.at [3] is 0.003. Their results
contains 55 cells with scaled jacobian < 0.176.

lead to a singularity graph compatible to a non-
degenerate parameterization, an automatically gener-
ated one usually will not. To eliminate degeneracy
in parameterization caused by conflicting rotational
transitions in an automatically generated frame field,
the definitions and some analysis on commonly seen
inadmissible internal and surface singularity types are
provided in this paper. We also devised a framework
to adjust these problematic singularities by applying
a sequence of local operations with guaranteed con-
vergence.

The major limitation of this work is that it can-
not detect and fix all the conflicting geometric and
topological by using the definition of inadmissible
singularity, and thus the method does not provide
a sufficient condition to guarantee a complete solu-
tion for automatic all hexahedral remeshing. There
are degenerate cases that cannot be fixed by current
methods. Indeed, we find that even a singularity
graph containing no zigzag or compound singularities
can still lead to degeneracy, for example, near-misses.

a f e

b d

c

g

ih

We conjecture that it may be
related to near misses or certain
global inadmissible structure of the
singularity graph, which forces cer-
tain singularity lines to be mapped
to a single point in the parameter
domain. For example, as shown in
the inset (where red and blue lines represent differ-
ent types of singularities, and gray lines are non-
singularities) these constraints force a and e to have
the same parameterization values.

We mainly focused on the singularity structure.
Thus, to get a valid parameterization, we often use
a relatively small element size, which leads to an
excessively large number of hexahedra. As shown
in [8], sizing is important for a more controllable
tessellation, and proper sizing can lead to coarser

hexahedral mesh. Extension on some recent works
[25], [26] can potentially be employed to coarsen the
results into better meshes.
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[4] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang,
“On centroidal voronoi tessellation-energy smoothness and
fast computation,” ACM Trans. Graph., vol. 28, no. 4, pp. 101:1–
101:17, 2009.

[5] P. Mullen, P. Memari, F. de Goes, and M. Desbrun, “Hot:
Hodge-optimized triangulations,” ACM Trans. Graph., vol. 30,
no. 4, pp. 103:1–103:12, 2011.

[6] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C.
Hart, “Spectral surface quadrangulation,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 1057–1066, 2006.

[7] J. Huang, M. Zhang, J. Ma, X. Liu, L. Kobbelt, and H. Bao,
“Spectral quadrangulation with orientation and alignment
control,” ACM Trans. Graph., vol. 27, no. 5, pp. 147:1–147:9,
2008.

[8] M. Zhang, J. Huang, X. Liu, and H. Bao, “A wave-based
anisotropic quadrangulation method,” ACM Trans. Graph.,
vol. 29, no. 4, pp. 118:1–118:8, 2010.

[9] H. Edelsbrunner, J. Harer, and A. Zomorodian, “Hierarchical
Morse-Smale complexes for piecewise linear 2-manifolds,”
Discrete and Computational Geometry (SoCG), vol. 30, no. 1, pp.
87–107, 2001.

[10] B.-Y. Shih and H. Sakurai, “Automated hexahedral mesh gen-
eration by swept volume decomposition and recomposition,”
in 5th International Meshing Roundtable, 1996, pp. 273–280.

[11] M. L. Staten, R. A. Kerr, S. J. Owen, and T. D. Blacker,
“Unconstrained paving and plastering: Progress update,” in
In Proceedings, 15th International Meshing Roundtable, 2006, pp.
469–486.

[12] Y. Su, K. Lee, and A. S. Kumar, “Automatic hexahedral mesh
generation for multi-domain composite models using a hybrid
projective grid-based method,” Computer-Aided Design, vol. 36,
no. 3, pp. 203 – 215, 2004.

[13] S. Yamakawa and K. Shimada, “Hex-dominant mesh genera-
tion with directionality control via packing rectangular solid
cells,” in Proceedings of Geometric Modeling and Processing 2002,
2003, pp. 2099–2129.
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