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Abstract. Structure-from-motion (SfM) is an important computer vi-
sion problem and largely relies on the quality of feature tracking. In im-
age sequences, if disjointed tracks caused by objects moving in and out
of the view, occasional occlusion, or image noise, are not handled well,
the corresponding SfM could be significantly affected. In this paper, we
address the non-consecutive feature point tracking problem and propose
an effective method to match interrupted tracks. Our framework con-
sists of steps of solving the feature ‘dropout’ problem when indistinctive
structures, noise or even large image distortion exist, and of rapidly rec-
ognizing and joining common features located in different subsequences.
Experimental results on several challenging and large-scale video sets
show that our method notably improves SfM.

1 Introduction

Large-scale 3D reconstruction [1–4] is a very active research topic and finds many
practical applications in, for example, Google Earth and Microsoft Virtual Earth.
Recent work essentially relies on the SfM algorithms [5–7, 4] to automatically
estimate 3D features given the input of image or video collections.

Compared to images, videos usually contain denser geometrical and struc-
tural information, and are the main source of SfM in the movie and commercial
industry. A common strategy for video SfM estimation is by employing fea-
ture point tracking [8–11], which takes care of the temporal relationship among
frames. It is also a basic tool for solving a variety of computer vision problems,
such as automatic camera tracking, video matching, and object recognition.

In this paper, we discuss two critical and non-trivial problems of feature point
tracking, which could seriously handicap SfM especially for large-scale scene
modeling, and propose novel methods to address them. One problem is the high
vulnerability of feature tracking to object occlusions, illumination change, noise,
and large motion, which easily causes occasional feature dropout and distraction.
This problem makes developing a robust feature tracking system with the input
of long sequences very challenging.

The other problem is the inability of sequential feature tracking to cope with
feature matching over non-consecutive subsequences. To our best knowledge, this
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Fig. 1. “Street” example. (a) The snapshots of the input videos containing around
23, 000 frames. (b) With the matched feature tracks, we register many 3D points and
camera trajectories in a large 3D system. The camera trajectories are differently color-
coded. (c) Close-up of the recovered trajectories and 3D points. (d) Superimposing the
recovered camera trajectories onto a satellite image from Google Earth.

impact has not yet been thoroughly studied in existing literatures. A typical sce-
nario is that the tracked object moves out and then re-enters the field-of-view of
the camera. This yields two discontinuous subsequences containing the same ob-
ject. Although there are common features in the two subsequences, they cannot
be matched and included in a single track using conventional tracking methods.
Addressing this issue can alleviate the drift problem of SfM, which in turn bene-
fits high-quality 3D reconstruction as demonstrated in our experimental results.
A näıve solution to this problem is to exhaustively search all features. But this
consumes much unnecessary computation as many temporally far away frames
simply share no content.

Our new feature tracking framework efficiently addresses the above prob-
lems in two phases, namely consecutive point tracking and non-consecutive track

matching. We demonstrate their significance for SfM estimation using a few chal-
lenging videos. Consecutive point tracking detects and matches invariant features
distributed over consecutive frames. A new two-pass matching strategy is pro-
posed to greatly increase the matching rate of the detected invariant features and
extend the lifetime of the tracks. Then in the non-consecutive track matching

phase, by rapidly computing a matching matrix, a set of disjointed subsequences
with overlapping content can be detected. The common feature tracks scattered
over these subsequences can also be reliably matched.
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Our method can naturally handle feature tracking in multiple videos and
register sequences in a large-scale 3D system. Fig. 1 shows a challenging example,
which contains 9 videos (about 23, 000 frames in total) in a large-scale scene (500
meters long). With our method, a set of long and accurate feature tracks are
efficiently obtained. The computation time is only 1.3 seconds per frame with
our software implementation (single working thread). Our system also greatly
improves SfM by registering videos in a 3D system, as shown in Fig. 1(b). The
accuracy of SfM is verified by superimposing the recovered camera trajectories
onto a satellite image from Google Earth, as shown in Fig. 1(d). Please refer to
our supplementary video 1 for the complete results.

2 Related Work

For video tracking, sequential matchers are used for establishing correspondences
between consecutive frames. Kanade-Lucas-Tomasi (KLT) tracker [8, 9, 12] is
widely used for small baseline matching. Other advanced methods [11, 13–15]
detect image local features and match them with descriptors.

Both the KLT tracker and invariant feature algorithms depend on model-
ing feature appearance, and can be distracted by occlusion, similar structures,
noise, and image distortion. Generally, sequential matchers cannot match non-
consecutive frames under large image transformation. Scale-invariant feature de-
tection and matching algorithms [11, 16, 2] are effective in recognizing panoramas
and in matching wide-baseline images. But they are not easy to be used in con-
secutive point tracking due primarily to the global indistinctiveness and feature
dropout problems in matching, which yield many short tracks.

In addition, invariant features are sensitive to large image distortion. Al-
though variations, such as ASIFT [17], can improve the feature matching perfor-
mance under substantial viewpoint change, computational overhead significantly
increases owing to exhaustive simulation. In this paper, we propose a novel two-
pass matching method to solve this problem.

There is work using invariant features for object and location recognition in
images/videos [18–22]. These methods typically use the bag-of-words technique
to perform global localization and loop-closure detection in an image classifica-
tion scheme. To reduce the matching ambiguity, they generally suppress indis-
tinctive features. This operation is not suitable for producing long and accurate
point tracks.

Engels et al. [23] propose integrating wide-baseline local features with the
tracked features to improve SfM. The method creates small and independent
submaps over short periods of time and links them together via feature recog-
nition. This approach generally cannot produce many long and accurate point
tracks. Only short tracks are found insufficient for drift-free SfM estimation in
our experiments. In comparison, our method is effective in high-quality point

1 The supplementary video can be downloaded from
http://www.cad.zju.edu.cn/home/gfzhang/
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track estimation. We also address the ubiquitous nondistinctive feature match-
ing problem in dense frames, and utilize track descriptors, instead of the feature
descriptors, to reduce computation redundancy.

3 Our Approach

Given a video sequence Î with n frames, Î = {It|t = 1, ..., n}, the objective of
our feature tracking method is to extract and match features in all frames in
order to form a set of feature tracks. A feature track X is defined as a series
of feature points in images: X = {xt|t ∈ f(X )}, where f(X ) denotes the frame
set spanned by track X . Each invariant feature xt in frame t is associated with
an appearance descriptor p(xt) [11] and we denote all description vectors in a
feature track as PX = {p(xt)|t ∈ f(X )}.

Table 1. Overview of Our Method

1. Detect invariant features over the entire sequence.
2. Consecutive point tracking (Section 4):

2.1 Match features between consecutive frames with descriptor comparison.
2.2 Perform the second-pass matching to extend track lifetime.

3. Non-consecutive track matching (Section 5):
3.1 Use hierachical k-means to cluster the constructed invariant tracks.
3.2 Estimate the matching matrix with the grouped tracks.
3.3 Detect overlapping subsequences and join the matched tracks.

Our method has two main steps, i.e., consecutive point tracking and non-
consecutive track matching. The algorithm overview is given in Table 1.

Step 2 in Table 1 suppresses the influence of image noise and distortion in
feature tracking, which usually cause spurious feature appearance variation and
feature dropout in matching. We locate missing features (as well as the un-
matched ones) by a constrained spatial search with planar motion segmentation
as described in Section 4.2.

Step 3 is a non-consecutive track matching process. It first uses a hierarchical
K-means method to cluster the obtained track descriptors. Based on it, overlap-
ping confidence among non-consecutive frames is measured using a matching
matrix, which helps robustly join common features in subsequences. This step
is described in Section 5.

4 Two-Pass Matching for Consecutive Tracking

In the first place, we use the SIFT algorithm [11] to detect and describe image
features. We extract SIFT features from all frames in the input sequence and
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match them among temporally adjacent frames. The matched features consti-
tute sequential feature tracks. Note that previous KLT methods typically detect
features in the first frame and then track them down consecutively without the
invariant feature descriptor constraint. Our method, contrarily, obtains not only
a set of feature tracks, but also descriptors to represent tracks, which avail further
non-consecutive track matching.

We propose a two-pass matching strategy to efficiently reduce false matches
caused by structure similarity and feature dropout due to image noise and dis-
tortion. The first-pass matching is used to obtain high-confidence matches. In
the second pass, tracks are extended with planar motion segmentation and con-
strained spatial search.

4.1 First-Pass Matching by Descriptor Comparison

In this section, we discuss tracking a feature X from It to It+1. It can be gener-
alized to tracks spanning multiple frames. An invariant feature in It is denoted
as xt with descriptor p(xt). To determine if there is a corresponding feature
xt+1 with descriptor p(xt+1) in It+1, we employ the 2NN heuristic proposed by
Lowe [11].

Specifically, we search for the two nearest neighboring features of xt in It+1

with respect to the Euclidean distance of the descriptor vectors and denote them
as N t+1

1 (xt) and N t+1
2 (xt). Their corresponding descriptor vectors are denoted

as p(N t+1
1 (xt)) and p(N t+1

2 (xt)) respectively. The matching confidence between
xt and N t+1

1 (xt) is defined as

c =
||p(N t+1

1 (xt)) − p(xt)||

||p(N t+1
2 (xt)) − p(xt)||

, (1)

where c measures the global distinctiveness of one feature xt with respect to the
ratio of the smallest feature distance and the second smallest one. If c < ε, we
assign xt+1 = N t+1

1 (xt) and mark these detected features as globally distinctive.
In our experiments, ε is set to 0.7.

However, this metric is easily interfered by image noise, repeated structures,
and image distortion, which make it difficult to find matches for some features
even in the adjacent frames. This common problem usually results in breaking
a long track into several short ones. One example is shown in Fig. 2. Given
an image pair, we detect 1, 246 features. Only 50 features can be matched by
descriptor comparison, as shown in Fig. 2(a). In the next step, we propose a
spatial search method to help identify more matches.

4.2 Second-Pass Matching by Planar Motion Segmentation

With a few high-confidence matches in neighboring frames (It, It+1) computed
in the first step, we use the RANSAC algorithm [24] to estimate the funda-
mental matrix Ft,t+1 and remove outliers. For those unmatched features, it
is possible to search for their correspondences along the conjugate epipolar
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(a) (b) (c) (d)

Fig. 2. Feature matching comparison. (a) First-pass matching by SIFT descriptor com-
parison. There are 1, 246 features detected; but only 50 matches are found. (b) Second-
pass matching by planar motion segmentation. 717 new matches are included; but quite
a number of them are outliers. (c) The final result with our outlier rejection. A total
of 343 matches are retained. (d) The matching result by ASIFT [17]. 220 matches are
found.

Algorithm 1 Second-Pass Matching

1. Use the inlier matches to estimate a set of homographies {Hk
t,t+1|k = 1, ..., N} by

Algorithm 2, and then use them to obtain a set of rectified images {Îk
t |k = 1, ..., N}.

2. for each unmatched feature xt in It do

for k = 1, ...., N do

Find the best match xk
t+1 by minimizing (2) with Hk

t,t+1.
end for

Find the best match xi
t+1 among {xk

t+1|k = 1, ..., N} which minimizes
Sk

t,t+1(xt). Further refine xi
t+1 to x∗

t+1 with the KLT tracking. If ||x∗

t+1−xi
t+1||

is large, reject this match.
end for

line lt,t+1(xt) = Ft,t+1xt. However, if significant image distortion exists, naive
window-based matching becomes unreliable. Also, an exhaustive search is time-
consuming and ambiguous with many potential correspondences. To address
these problems, we propose a segmentation-based method (sketched in Algo-
rithm 1) to robustly identify missing matches.

We base our method on the observation that many feature points undergo
similar motion. This allows computing inlier matches to estimate a set of homo-
graphies {Hk

t,t+1|k = 1, ..., N}, which represent possible local image transforma-
tion, as described in Algorithm 2. We then rectify images with their homogra-
phies. This scheme is similar to that of [25] where a set of dominant scene planes
are extracted to generate a piecewise planar depth map. For an unmatched fea-
ture in image It, if its transformation towards It+1 is coincident with any of
these homographies after rectification, a match in It+1 can possible be found.
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Algorithm 2 Planar Motion Segmentation

1. Put all matches into a set Ω.
2. For k = 1, ...., Nmax, %Nmax is the maximum number of the homographies.

2.1 Use RANSAC to estimate homography Hk
t,t+1 that has the maximum inliers.

2.2 Remove the inliers from Ω. If the size of Ω is small enough, stop; otherwise,
continue.

Incorrect homographies are unlikely to yield high-confidence matches. To han-
dle illumination change, we estimate the global illumination variation Lt,t+1

between images It and It+1 by computing the average intensity ratio between
the matched features.

With the image transformation Hk
t,t+1, we rectify It to Îk

t such that Îk
t =

Hk
t,t+1(Lt,t+1 · It). Correspondingly, xt in image It is rectified to x̂k

t where x̂k
t ∼

Hk
t,t+1xt in Îk

t . If x̂k
t largely deviates from the epipolar line (i.e., d(x̂k

t , lt,t+1(xt)) >

5.0), we reject Hk
t,t+1 since it does not describe the motion of xt well. Otherwise,

we search for the match along the epipolar line by minimizing the matching cost

Sk
t,t+1(xt) = min

x′∈lt,t+1(xt)

∑

y∈W

||Îk
t (x̂k

t + y) − Ît+1(x
′ + y)||2, (2)

where W is a 11 × 11 matching window, and x′ is in the local searching area
where ||x̂k

t − x′|| < r (usually r = 15 in our experiments). The best match is
denoted as xk

t+1. With the set of homographies {Hk
t,t+1|k = 1, ..., N}, we can

find several matches {xk
t+1|k = 1, ..., N}. Only the best one i = mink Sk

t,t+1(xt)
is kept.

In case the feature motion cannot be described by all of the homographies or
the feature correspondence is indeed missing in the other image, the computed
match is actually an outlier. Simply applying threshold Si

t,t+1(xt) < τ cannot
perform satisfactorily, as shown in Fig. 2(b). In addition, the best match may not
strictly lie on the epipolar line due to estimation error. We adopt the following
procedure to detect outliers.

Our strategy is to relax the epipolar geometry constraint and use the KLT
method instead to locally search the best match x∗

t+1. The intuition is that
true correspondence produces the minimum matching cost locally; so searching
with and without the epipolar constraint should return the same result. We thus
calculate the distance between x∗

t+1 and xi
t+1. If ||x∗

t+1 − xi
t+1|| is large (over

3.0 in our experiments), xi
t+1 is considered as an outlier; or else, x∗

t+1 is the
correspondence of xt and its descriptor is set to that of xt, i.e. p(x∗

t+1) = p(xt).

Applying this criterion effectively rejects most outliers, as shown in Fig. 2(c).
Compared to ASIFT [17], our method adaptively estimates a set of dominant
homographies, without exhaustively simulating all views. So the computation
is much less. Besides, it is hard to apply ASIFT to consecutive point tracking
because features, after the simulation of viewpoint change, are no longer the
original SIFT ones. Our method has no such problem.
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Most of the above steps can be performed hierarchically to yield high ef-
ficiency. For a pair of images (resolution 640 × 480) with 1, 196 features and 4
estimated homographies, the second-pass matching only requires 0.4 second with
our software implementation.

The two-pass matching can also produce many long tracks as shown in our
supplementary video. Each track has a group of description vectors, denoted as
PX = {p(xt)|t ∈ f(X )}. These descriptors must be similar to each other in the
same track due to the matching criteria. We compute an average of them and
denote it as track descriptor p(X ). It is used in the following non-consecutive
track matching.

5 Non-Consecutive Track Matching

Given the invariant feature information encoded in tracks, we detect and match
features scattered over non-consecutive frames. The following process consists of
two main phases, namely matching matrix estimation and non-consecutive track

matching.

5.1 Fast Matching Matrix Estimation

To allow non-consecutive track matching, we first estimate a matching matrix
for the whole sequence to describe the frame overlapping confidence. Obviously,
exhaustive all-to-all frame matching is computationally expensive especially for
long sequences. We propose fast estimation of the matching confidence among
different frames with regard to the track descriptors.

In [26], extracted image descriptors are used to construct a vocabulary tree
for fast image indexing. Note that our consecutive point tracking has already
clustered matchable features in sequential frames. Instead of locating similar
features, we propose constructing a vocabulary tree based on track descriptors
for finding similar tracks. This approach can not only significantly reduce the size
of the tree, but improve the matching accuracy among non-consecutive frames
as well.

We use a hierarchical K-means approach to cluster the track descriptors. The
root cluster contains all the descriptors. It is partitioned into b subgroups by
the K-means method. Each sub-cluster consists of the descriptor vectors closest
to the center. The same procedure is recursively applied to all subgroups and
terminates when the variance of all descriptors in a final (leaf) cluster is less
than a threshold. The leaf clusters provide a detailed partition of all tracks.
We measure the overlapping confidence between any two frames based on the
descriptor similarity (depicted in Algorithm 3). The scores are stored in the
matching matrix M , which is with size n×n. n is the number of all frames. The
confidence value between images Ii and Ij is saved in M(i, j).

All elements in M are first initialized to zeros. In each iteration of Algo-
rithm 3, M(i, j) is increased by 1 if two features respectively in frames i and
j are in the same leaf node of the tree. With the objective of non-consecutive
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Algorithm 3 Matching Matrix Estimation

1. Initialize M as a zero matrix.
2. For each track cluster Gk (k = 1, ..., K), % K is the number of the final clusters.

For each track pair (Xu,Xv) in Gk, if f(Xu) ∩ f(Xv) = ∅,
For any i ∈ f(Xu) and j ∈ f(Xv),

M(i, j) += 1,
M(j, i) += 1.
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Fig. 3. Matching matrix estimation and non-consecutive track matching evaluation. (a)
Selected frames from the “wallpaper” sequence. (b) Computed matching matrix that
is linearly scaled for visualization. (c) Reconstruction result without non-consecutive
track matching. (d) With non-consecutive track matching, the 3D points and camera
motion are better estimated. The drift problem is also eliminated, as shown in our
supplementary video.

frame matching, we exclude the cases that two tracks in the same group span
common frames (i.e., f(Xu) ∩ f(Xv) 6= ∅).

For acceleration, we only select long tracks in the confidence estimation.
In our experiments, for a sequence with 735 frames, the matching matrix esti-
mation only requires 6 seconds, with a total of 22, 573 selected feature tracks.
Fig. 3(b) visualizes the computed matching matrix from a video, beside which a
few selected frames are shown. Bright pixels indicate high confidence. It can be
observed that these bright pixels are clustered in different regions in the match-
ing matrix, reflecting the content similarity among subsequences in the input
video. The diagonal band has no value because we exclude track self-matching.

5.2 Non-Consecutive Track Matching

We identify overlapped subsequences by detecting rectangular regions containing
the brightest pixels in the matching matrix. Suppose a rectangular region spans
[ub, ue] horizontally and [vb, ve] vertically, video subsequences with frame sets
φ1 = {ub, ..., ue} and φ2 = {vb, ..., ve} are correlated.

Since the matching matrix is symmetric, we only consider either the upper
or lower triangle. We use the following method to estimate [ub, ue] and [vb, ve].
In the beginning, we search for the element Mij with the largest similarity value.
Then we search for the maximum range [ub, ue] such that ub < i < ue and for any
t ∈ [ub, ue], Mtj/Mij > δ, where δ is a threshold. [vb, ve] is computed similarly.
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Algorithm 4 Track Joining

1. Track Matching:
For i = ub, ..., ue, // one subsequence φ1

For j = vb, ..., ve, // another subsequence φ2

Match features in Ii and Ij and join their corresponding tracks.

2. Outlier Rejection:
For joined tracks Xs (in φ1) and Xt (in φ2), if any of their feature pair {(xs

i ,x
t
j)|i ∈

f(Xs) ∩ φ1, j ∈ f(Xt) ∩ φ2} do not satisfy the epipolar geometry constraint, the
match is rejected.

Finally, we set φ1 = {ub, ..., ue} and φ2 = {vb, ..., ve} and set the corresponding
elements in the matrix M to zeros. So in the next round, we again select a new
Mij from the updated matrix M to detect another subsequence pair for track
matching. This process repeats until no high overlapping-confidence frames can
be found.

Given the estimated subsequence pair (φ1, φ2), we reliably join tracks scat-
tered over these frame sets (described in Algorithm 4). For each two frames, if
their two distinctive features xs

i and xt
j , belonging to Xs and Xt respectively, are

matched using the method described in Section 4.1, we join tracks Xs and Xt

as well. To reject outliers, we apply the geometric constraint to check whether
all features in Xs and Xt satisfy the epipolar geometry constraint, i.e., (xs

i ,x
t
j)

consistent with a fundamental matrix Fij estimated with the potential matches
between frame pair (Ii, Ij) by the RANSAC algorithm [24]. If the two tracks
qualify, they can be safely joined.

The example shown in Fig. 3 demonstrates the effectiveness of our non-
consecutive track matching. We perform feature tracking and use the SfM method
of [2] to recover camera poses together with sparse 3D points. In the first part
of the experiment, we only use sequential tracks to estimate SfM. It is shown in
Fig. 3(c) that this scheme produces erroneous camera pose estimate. Then we
perform non-consecutive track matching to automatically join common tracks. It
improves SfM, as shown in Fig. 3(d). The reconstruction quality can be assessed
by inserting a virtual object into the scene, as demonstrated in our supplemen-
tary video. When skipping the non-consecutive track matching, the drift problem
of the virtual object caused by inaccurate camera pose estimation is severe. In
comparison, no such problem is observable after non-consecutive track matching.

5.3 Tracks in Multiple Videos

To describe a large-scale scene, multiple videos can generally be obtained from
internet or be captured in different geographic regions but generally with over-
laps. How to efficiently match multiple videos and register them in a common 3D
system was seldom discussed in previous work. In our feature tracking system,
this can be naturally accomplished. We first track feature points for each video
independently and then detect overlap between each pair of the videos. The
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Table 2. Running time of a few examples.

Datasets Resolution Frames Feature Tracking Time
Consecutive Non-Consecutive

Wallpaper 640 × 480 735 6 minutes 2 minutes

Circle 960 × 540 1, 991 30 minutes 12 minutes

Yard 960 × 540 3, 201 50 minutes 20 minutes

Street 960 × 540 ∼ 23, 000 6 hours 2 hours

algorithm described in Section 5.1 is used to rapidly estimate the matching ma-
trix such that related subsequences in different videos can be found. Afterwards,
we match the common tracks distributed in various subsequences using Algo-
rithm 4. This method quickly yields a matching graph for the collected videos,
which finally leads to a robust global 3D registration, as shown in Fig. 1(b).

6 Results

We have evaluated our method on several challenging sequences. All results are
generated using a PC with an Intel Core2Duo CPU 2.0GHz and 2GB memory.
Running time for feature tracking on the tested data is listed in Table 2.

As our consecutive point tracking can handle wide-baseline images, frame-
by-frame tracking is generally not necessary. In our experiments, the system
extracts one frame for every 5 ∼ 10 frames to apply feature tracking. The tracked
features are then propagated to other frames by simple KLT sequential tracking.
This trick saves a lot of running time and results in feature tracking in a video
sequence (1000 features per image and image resolution 640 × 480) only taking
about 0.5 second per frame with our software implementation (single working
thread). The running time of KLT2 is about 0.4 second per frame. Note that
the camera pose estimates from KLT could drift while our method avoids this
problem because the computed matches are with very high quality and large
quantity.

We compare our method to the brute-force SIFT matching in the Bundler
software [27]. The brute-force SIFT matching method does not make use of image
ordering. It extracts the SIFT features in all frames and exhaustively compares
them. Although a K-d tree is used for matching speedup, the complexity is still
quadratic to the number of the processed frames. In contrast, the complexity of
our method is almost linear to the frame number.

For the “circle” example with 1991 frames. Performing the brute-force SIFT
matching in the whole sequence will take days using our desktop computer.
To save time, we pick out one frame for every 5, to compose a new sequence
containing only 399 frames. The brute-force SIFT matching spends 187 min-
utes (6 minutes for SIFT feature extraction) on it, while our method only re-

2 We use the CPU implementation downloaded from
http://www.ces.clemson.edu/∼stb/klt/.
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Fig. 4. Comparison with the brute-force SIFT matching. (a) Three selected frames
from the “circle” sequence. (b-c) The track length histograms of the brute-force SIFT
matching and our non-consecutive feature tracking, respectively. (d) The SfM result
using the feature tracks computed by brute-force SIFT matching. (e) The SfM re-
sult using the feature tracks computed by our method. (f) Superimposing the camera
trajectory in (d) to (e).

quires 25 minutes in total. When excluding the SIFT feature extraction time,
our method is about one order of magnitude faster. Figs. 4(a) and 4(b) show
the track length histograms to compare the tracking quality. Our method yields
many long feature tracks thanks to the effective two-pass matching and subse-
quence joining. The SfM results are shown in Figs. 4(d)-(f). The aligned two
camera trajectories (shown in Fig. 4(f)) are with average camera position differ-
ence 0.000425 (normalized w.r.t. the total length of the camera trajectory).

We tested our method on a challenging large-scale “street” example con-
taining a total of 9 videos, each of which has around 2000 ∼ 3000 frames. This
example has been shown in Fig. 1. The camera moved along a street and captured
several buildings. We first track feature points for each video independently, and
then use our non-consecutive track matching algorithm to detect and match
common feature tracks across different videos. We perform SfM estimation for
each video independently. By aligning the computed 3D points, we register these
videos in a 3D system. There are as many as 558, 392 estimated 3D points in
this example. Superimposing the recovered camera trajectories onto a satellite
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image shows the high accuracy of the results as all trajectories are on streets
and are not drifted.

7 Conclusion and Discussion

We have presented a robust and efficient non-consecutive feature tracking sys-
tem for SfM, which consists of two main steps, i.e., consecutive point track-
ing and non-consecutive track matching. Different from the typical sequential
matcher (e.g. KLT tracker), we use the invariant features and propose a two-
pass matching strategy to significantly extend the track lifetime and reduce the
feature sensitivity to noise and image distortion. The obtained tracks contain
not only a set of 2D image positions, but also descriptors. They avail estimating
a matching matrix to detect a set of disjointed subsequences with overlapping
views. Our method can also handle tracking and registering multiple videos.
Experimental results demonstrate the significance for SfM in middle- and large-
scale scenes.

Our method is designed for SfM, and thus consider feature tracking only
on rigid (non-deforming) objects in this paper. Part of our future work is to
handle deforming or dynamic objects. Besides, although the proposed method is
based on the SIFT features, there is no limitation to use other representations,
especially in the general two-pass matching process. Further investigation will
be conducted.
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