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Abstract—This paper presents a novel method for recovering consistent depth maps from a video sequence. We propose a bundle
optimization framework to address the major difficulties in stereo reconstruction, such as dealing with image noise, occlusions, and
outliers. Different from the typical multiview stereo methods, our approach not only imposes the photo-consistency constraint, but also
explicitly associates the geometric coherence with multiple frames in a statistical way. It thus can naturally maintain the temporal
coherence of the recovered dense depth maps without oversmoothing. To make the inference tractable, we introduce an iterative
optimization scheme by first initializing the disparity maps using a segmentation prior and then refining the disparities by means of
bundle optimization. Instead of defining the visibility parameters, our method implicitly models the reconstruction noise as well as the
probabilistic visibility. After bundle optimization, we introduce an efficient space-time fusion algorithm to further reduce the
reconstruction noise. Our automatic depth recovery is evaluated using a variety of challenging video examples.

Index Terms—Consistent depth maps recovery, multiview stereo, bundle optimization, space-time fusion.
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1 INTRODUCTION

STEREO reconstruction of dense depth maps from natural
video sequences is a fundamentally important and

challenging problem in computer vision. The reconstructed
depths usually serve as a valuable source of information,
and facilitate applications in various fields, including
3D modeling, layer separation, image-based rendering,
and video editing. Although the stereo matching problem
[31], [19], [32], [52] has been extensively studied during the
past decades, automatically computing high-quality dense
depths is still difficult on account of the influence of image
noise, textureless regions, and occlusions that are inherent
in the captured image/video data.

Given an input video sequence taken by a freely moving
camera, we propose a novel method to automatically
construct a view-dependent depth map for each frame
with the following two objectives. One is to make the
corresponding depth values in multiple frames consistent.
The other goal is to assign distinctive depth values for pixels
that fall in different depth layers. To accomplish these goals,
this paper contributes a global optimization scheme, which
we call bundle optimization, to resolve most of the aforemen-
tioned difficulties in disparity estimation. This framework
allows us to produce sharp and temporal consistent object
boundaries among different frames.

Our method does not explicitly model the binary
visibility (or occlusion). Instead, it is encoded naturally in
a statistical way with our energy definition. Our model also
does not distinguish among image noise, occlusions, and
estimation outliers, so as to achieve a unified framework for
modeling the matching ambiguities. The photo-consistency
and geometric coherence constraints associating different
views are combined in a global energy minimization
framework. They help reliably reduce the influence of
image noise and occlusions with the multiframe data, and
consequently, make our optimization free from the over-
smoothing or blending artifacts.

In order to get an accurate disparity estimate in the
textureless region and reduce the problem of false segmen-
tation especially for the fine object structures, we confine
the effect of color segmentation only in the disparity
initialization step. Then, our iterative optimization algo-
rithm refines the disparities in a pixelwise manner.

We have conducted experiments on a variety of
challenging examples and found that our method is robust
against occlusions, noise, and estimation outliers. The
automatically computed depth maps contain very little
noise and preserve fine structures. One challenging exam-
ple is shown in Fig. 1, in which the scene contains large
textureless regions, objects with strong occlusions, grassplot
with smooth depth change, and a narrow bench. Our
method faithfully reconstructs all these structures. Readers
are referred to our supplementary video (http://
www.cad.zju.edu.cn/home/gfzhang/projects/videodepth)
for inspecting the preserved temporal consistency among
the recovered dense depth maps.

2 RELATED WORK

Since our system contains several components, such as global
optimization, image segmentation, bundle optimization, and
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space-time fusion, we separately discuss the relevant
previous work in the following sections.

2.1 Global and Local Optimization
in Multiview Stereo

Multiview stereo algorithms [28], [6], [19], [52], [16]
estimate depth (or disparity) with the input of multiple
images. Early approaches [28], [6] used local and window-
based methods, and employed a local “winner-takes-all”
(WTA) strategy in depth estimation. Later on, several
global methods [22], [39], [19] formulate the depth
estimation as an energy-minimization problem and use
graph cuts or belief propagation to solve it. Most of these
methods adopt the first-order smoothness priors. For the
slanted and curved 3D surfaces, methods in [44], [26], [46]
incorporate the second-order smoothness prior for stereo
reconstruction. Recently, Woodford et al. [46] proposed an
effective optimization strategy that employs triple cliques
to estimate depth.

However, it is known that the global optimum is not
always computationally reachable. Even the state-of-the-art
numerical optimizers, such as loopy belief propagation and
multilabel graph cuts, cannot guarantee to produce the
globally optimal solution in energy minimization [4], [23],
[43]. In addition, given the matching ambiguity in the
textureless regions or occlusion boundaries, the key to
improving the depth estimates is an appropriate energy
definition. For an oversimplified (or problematic) defini-
tion, even using the method that can yield the global
optimum cannot improve much the depth estimates. With
this observation, in this paper, we introduce a novel data
term that combines the photo-consistency and geometric
coherence constraints in a statistical way. Our experiments
demonstrate that it is rather effective to improve the depth
estimation around the occlusion boundaries and in the
textureless regions.

2.2 Segmentation-Based Approaches
By assuming that the neighboring pixels with similar colors
have similar depth values, segmentation-based approaches
[42], [8], [47], [21], [40] were proposed to improve the depth
estimation for large textureless regions. These methods
typically model each segment as a 3D plane and estimate
the plane parameters by matching small patches in
neighboring views [47], [21], or using a robust fitting
algorithm [42]. In [2], non-fronto-parallel planes are

constructed on sparse 3D points obtained by structure-
from-motion. Gallup et al. [13] used the sparse points to
determine the plane directions for the three orthogonal
sweeping directions. Zitnick and Kang [52] proposed an
oversegmentation method to lower the risk of spanning a
segment over multiple layers. However, even with over-
segmentation or soft segmentation, accurate disparity
estimate is still difficult to obtain especially in the textured
regions and along the segment boundaries.

2.3 Occlusion Handling
Occlusion handling is another major issue in stereo
matching. Methods in [20], [19], [35], [38], [36] explicitly
detect occlusions in disparity estimation. Kang and Szeliski
[19] proposed a hybrid method that combines shiftable
windows, temporal selection, and explicit occluded-pixel
labeling, to handle occlusions in dense multiview stereo
within a global energy minimization framework.

Visibility maps are commonly used to indicate whether a
pixel in one image is also visible in another. Each pixel in
the map has a value of 0 or 1, indicating being occluded or
not, respectively. Several algorithms [35], [19], [38] itera-
tively estimate the disparities (or depths) and visibilities.
This strategy is effective if the amount of occlusions or
outliers is relatively small. Strecha et al. [36] jointly modeled
depth and visibility in a hidden Markov random field, and
solved the problem using an expectation-maximization
algorithm. The state of each pixel is represented as a
combination of discrete depth and visibility. This method
yields a good performance given a small set of wide-
baseline images. However, for a video sequence containing
many frames, a large amount of state variables makes the
inference intractable.

2.4 Multiview Stereo Methods for
Reconstructing 3D Models

Multiview stereo (MVS) methods were developed to
reconstruct 3D object models from multiple input images.
A survey can be found in [32]. Many of these methods (e.g.,
voxel-based approaches [33], [45]) aim to build a 3D model
for a single object and are usually not applicable to large-
scale sceneries due to the high computational complexity
and memory space requirement. The approaches based on
multiple depth maps [35], [36], [5] are more flexible,
requiring fusing view-dependent depth maps into a
3D model. In these methods, the visibility or geometric
coherence constraint is typically used only for fusion. To
obtain a 3D surface representation of an object, Hernández
et al. [18] proposed a probabilistic framework to model
geometric occlusion in a probabilistic way. Recently, Merrell
et al. [27] described a quick depth map fusion method to
construct a consistent surface among multiple frames. They
introduced two fusion strategies, namely, the stability-based
and confidence-based fusions, based on the visibility con-
straint and confidences. Zach et al. [48] proposed a range
image integrating method based on minimizing an energy
functional incorporating a total variation (TV) regularization
term and an L1 data fidelity term. This method is globally
convergent. For some MVS methods using level-set or
deformable polygonal meshes [9], [49], the geometric
coherence constraint is incorporated and formulated in 3D.
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Fig. 1. High-quality depth maps recovered from the “Lawn” sequence.
(a) An input video sequence taken by a moving camera. (b) The depth
maps automatically estimated by our method. The sharp boundary of the
statue, as well as the grassplot with smooth depth transition, are
accurately constructed in the depth maps.
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However, these methods typically need a good starting point
(e.g., a visual hull model [25]).

2.5 Recovering Consistent View-Dependent
Depth Maps

Instead of reconstructing a complete 3D model, we focus on
recovering a set of consistent view-dependent depth maps
from a video sequence in this paper. It is mainly motivated
by applications such as view interpolation, depth-based
segmentation, and video enhancement. Our work is closely
related to that of [19], [15], which also aims to infer
consistent depth maps from multiple images. Kang and
Szeliski [19] proposed simultaneously optimizing a set of
depth maps at multiple key frames by adding a temporal
smoothness term. This method makes the disparities across
frames vary smoothly. However, it is sensitive to outliers
and may cause the blending artifacts around object
boundaries. Gargallo and Sturm [15] formulated
3D modeling from images as a Bayesian MAP problem,
and solved it using the expectation-maximization (EM)
algorithm. They use the estimated depth map to determine
the visibility prior. Hidden variables are computed in a
probabilistic way to deal with occlusions and outliers. A
multiple-depth-map prior is finally used to smooth and
merge the depths while preserving discontinuities. In
comparison, our method statistically incorporates the
photo-consistency and geometric coherence constraints in
the data term definition. This scheme is especially effective
for processing video data because it can effectively suppress
temporal outliers by making use of the statistical informa-
tion available from multiple frames. Moreover, we use
efficient loopy belief propagation [10] to perform the overall
optimization. By combining the photo-consistency and
geometric coherence constraints, the distribution of our
data cost becomes distinctive, making the BP optimization
stable and converge quickly.

The temporal coherence constraints were also used in
optical flow estimation [1] and occlusion detection [30], [37].
Larsen et al. [24] presented an approach for 3D reconstruc-
tion from multiple synchronized video streams. In order to
improve the final reconstruction quality, they used optical
flow to find corresponding pixels in the subsequent frames
of the same camera, and enforced the temporal consistency
in reconstructing successive frames. With the observation
that the depth error in conventional stereo methods grows
quadratically with depth, Gallup et al. [14] proposed a
multibaseline and multiresolution stereo method to achieve
constant depth accuracy by varying the baseline and
resolution proportionally to depth.

In summary, although many approaches have been
proposed to model 3D objects or to estimate depths using
multiple input images, the problem of how to appropriately
extract information and recover consistent depths from a
video remains challenging. In this paper, we show that by
appropriately maintaining the temporal coherence, surpris-
ingly consistent and accurate dense depth maps can be
obtained from the video sequences. The recovered depth
maps have high quality and are readily usable in many
applications such as 3D modeling, view interpolation, layer
separation, and video enhancement.

3 FRAMEWORK OVERVIEW

Given a video sequence Î with n frames taken by a freely
moving camera, we denote Î … fIt j t … 1; . . . ; ng, where
ItðxÞ represents the color (or intensity) of pixel x in frame t.
It is either a 3-vector in a color image or a scalar in a
grayscale image. In our experiments, we assume it is an
RGB color vector. Our objective is to estimate a set of
disparity maps D̂ … fDt j t … 1; . . . ; ng. By convention,
disparity DtðxÞ (dx for short) is defined as dx … 1=zx, where
zx is the depth value of pixel x in frame t. For simplicity, the
terms “depth” and “disparity” are used interchangeably in
the following sections.

The set of camera parameters for frame t in a video
sequence is denoted as Ct … fKt; Rt; Ttg, where Kt is the
intrinsic matrix, Rt is the rotation matrix, and Tt is the
translation vector. The parameters for all frames can be
estimated reliably by the structure from motion (SFM)
techniques [17], [29], [50]. Our system employs the SFM
method of Zhang et al. [50].

In order to robustly estimate a set of disparity maps, we
define the following energy in a video:

EðD̂; ÎÞ …
Xn

t…1
ðEdðDt; Î; D̂nDtÞ þ EsðDtÞÞ; ð1Þ

where the data term Ed measures how well disparity D̂
fits the given sequence Î and the smoothness term Es
encodes the disparity smoothness. For each pixel in
disparity map Dt, because it maps to one point in 3D,
there should exist corresponding pixels in other nearby
frames. These pixels not only satisfy the photo-consis-
tency constraint, but also have their geometric informa-
tion consistent. We thus propose a bundle optimization
framework to model the explicit correlation among the
pixels and use the collected statistics to optimize the
disparities jointly.

Fig. 2 gives an overview of our framework. With an
input video sequence, we first employ the SFM method to
recover the camera parameters. Then, we initialize the
disparity map for each frame independently. Segmentation
prior is incorporated into initialization for improving the
disparity estimation in large textureless regions. After
initialization, we perform bundle optimization to iteratively
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Fig. 2. Overview of our method.
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refine the disparity maps. Finally, we use a space-time
fusion to further reduce the reconstruction noise.

4 DISPARITY INITIALIZATION

With a video sequence input, we first initialize the disparity
map for each frame independently. Denoting the disparity
range as ‰dmin; dmax�, we equally quantize the disparity into
m þ 1 levels, where the kth level dk … ðm � kÞ=m � dmin þ
k=m � dmax, k … 0; . . . ; m. So, the task in this step is to estimate
an initial disparity d for each pixel. Similar to the traditional
multiview stereo methods, using the photo-consistency
constraint, we define the disparity likelihood as

Linitðx; DtðxÞÞ …
X

t0

pcðx; DtðxÞ; It; It0 Þ;

where pcðx; d; It; It0 Þ measures the color similarity between
pixel x and the corresponding pixel x0 (given disparity d) in
frame t0. It is defined as

pcðx; d; It; It0 Þ …
�c

�c þ kItðxÞ � It0 ðlt;t0 ðx; dÞÞk
; ð2Þ

where �c controls the shape of our differentiable robust
function. kItðxÞ � It0 ðlt;t0 ðx; dÞÞk is the color L-2 norm.
With these definitions, for each frame t, data term Et

d is
expressed as

Et
dðDt; ÎÞ …

X

x
1 � uðxÞ � Linitðx; DtðxÞÞ; ð3Þ

where uðxÞ is an adaptive normalization factor, and is
written as

uðxÞ … 1= max
DtðxÞ

Linitðx; DtðxÞÞ:

It makes the largest likelihood of each pixel always one,
which is equivalent to imposing stronger smoothness
constraint in the flat regions than in the textured ones.

The spatial smoothness term for frame t can be
defined as

EsðDtÞ …
X

x

X

y2NðxÞ

�ðx; yÞ � �ðDtðxÞ; DtðyÞÞ; ð4Þ

where NðxÞ denotes the set of neighbors of pixel x, and � is
the smoothness weight. �ð�Þ is a robust function:

�ðDtðxÞ; DtðyÞÞ … minfjDtðxÞ � DtðyÞj; �g;

where � determines the upper limit of the cost.
In order to preserve discontinuity, �ðx; yÞ is usually

defined in an anisotropic way, encouraging the disparity
discontinuity to be coincident with abrupt intensity/color
change [11], [3], [4], [31], [35]. Our adaptive smoothness
weight is defined as

�ðx; yÞ … ws �
u�ðxÞ

kItðxÞ � ItðyÞk þ "
;

where u�ðxÞ is a normalization factor:

u�ðxÞ … jNðxÞj
� X

y02NðxÞ

1
kItðxÞ � Itðy0Þk þ "

:

ws denotes the smoothness strength and " controls the
contrast sensitivity. Our adaptive smoothness term imposes
smoothness in flat regions while preserving edges in
textured ones.

Finally, the initial energy function for each frame t can be
written as

Et
initðDt; ÎÞ …

X

x

�
1 � uðxÞ � Linitðx; DtðxÞÞ

þ
X

y2NðxÞ

�ðx; yÞ � �ðDtðxÞ; DtðyÞÞ
�

:
ð5Þ

We minimize Et
init to get the initial disparity estimates.

Taking into account the possible occlusions, we employ the
temporal selection method proposed in [19] to only select
the frames in which the pixels are visible for matching. For
each frame t, we then use loopy belief propagation [10] to
estimate Dt by minimizing (5). Fig. 3b shows one frame
result obtained in this step (i.e., step 2.1 in Fig. 2).

In order to better handle textureless regions, we
incorporate the segmentation information into the disparity
estimation. The segments of each frame are obtained by
mean-shift color segmentation [7]. Similar to the nonfronto-
parallel techniques [42], [38], we model each disparity
segment as a 3D plane and introduce plane parameters
‰ai; bi; ci� for each segment si. Then, for each pixel
x … ‰x; y� 2 si, the corresponding disparity is given by
dx … aix þ biy þ ci. Taking dx into (5), Et

init is formulated
as a nonlinear continuous function w.r.t. the variables ai, bi,
and ci, i … 1; 2; . . . . The partial derivatives over ai, bi, and ci
are required to be computed when applying a nonlinear
continuous optimization method to estimate all 3D plane
parameters. Note that Linitðx; dxÞ does not directly depend
on the plane parameters. We, therefore, apply the following
chain rule:

@Linitðx; dxÞ
@ai

…
@Linitðx; dxÞ

@dx
�
@dx

@ai
… x

@Linitðx; dxÞ
@dx

:

Similarly, @Linitðx;dxÞ
@bi

… y @Linitðx;dxÞ
@dx

and @Linitðx;dxÞ
@ci

… @Linitðx;dxÞ
@dx

. In
these equations, gradient @Linitðx;dxÞ

@dx
is first computed on the

quantized disparity levels:

@Linitðx; dxÞ
@dx

����
dk

…
Linitðx; dkþ1Þ � Linitðx; dk�1Þ

dkþ1 � dk�1
;

where k … 1; . . . ; m. Then, a continuous version of
Linitðx; dxÞ (denoted as Lc

initðx; dx)) is constructed by
cubic-Hermite interpolation. Finally, the continuous partial
derivatives are calculated on Lc

initðx; dxÞ.
With the parametric form dx … aix þ biy þ ci, estimating

disparity dx is equivalent to optimizing plane parameters
‰ai; bi; ci�. It is thus possible to use a nonlinear continuous
optimization method to minimize the energy in (5). Initial
3D plane parameters can be obtained by the nonfrontopar-
allel plane extraction method [42]. In experiments, we adopt
a simpler method which can produce sufficiently satisfac-
tory plane parameters with less computational time.
Particularly, for each segment si, we first set ai … 0 and
bi … 0 by assuming a frontoparallel plane. The disparity
values in all other segments are fixed. Then, we compute a
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set of ci with different assignments of dk, where
k … 0; . . . ; m, and select the best c�

i that minimizes (5). After
getting c�

i , we unfreeze ai and bi, for i … 0; 1; 2; . . . , and use
the Levenberg-Marquardt method to reestimate them by
solving the function in (5). When all plane parameters are
estimated, the disparities in each segment can be obtained
accordingly. We show in Fig. 3 one frame from the “Road”
example. Fig. 3c shows the incorporated segmentation in
initialization. The disparity estimated from the initialization
step is shown in Fig. 3d.

5 BUNDLE OPTIMIZATION

In the disparity initialization step, we perform color
segmentation and estimate the disparity map for each
frame independently. It is widely known that segmentation
is a double-edged sword. On one hand, segmentation-based
approaches regularize the disparity estimate in large
textureless regions. On the other hand, they inevitably
introduce errors in textured regions and do not handle well
the situation that similar-color pixels are with different
disparity values. Figs. 3d and 3g show that there are visual
artifacts along the occlusion boundaries. Our initialization
independently estimates the disparity maps, which are not
necessarily consistent among each other. This easily causes
flicker during video playback.

In this section, we propose using the geometric coher-
ence constraint to associate each video frame to others, and
introduce bundle optimization to refine the disparity maps.
The corresponding disparity estimate is iteratively refined
by simultaneously imposing the photo-consistency and
geometric coherence constraints.

5.1 The Energy Function
We define a new energy function for (1). Compared to (5),
only the data term is largely modified. This is based on a

common observation that data term usually plays an
essential role in energy minimization. If the data costs for
the majority of the pixels are not informative, the
corresponding solution to the stereo problem will be
ambiguous since the resultant minimal cost in (1) may
refer simultaneously to multiple results that are quantita-
tively and visually quite different. For example, if the data
term only measures color similarity, strong matching
ambiguity for pixels in the textureless areas will be the
result. One may argue that the smoothness term has an
effect of regularizing the solver. However, this term only
functions as compromising the disparity of one pixel to its
neighborhood and does not contribute much to inferring
the true disparity values.

One objective of defining the new data term is to handle
occlusion. In our approach, we reduce the influence of
occlusions and outliers by collecting both the color and
geometry information statistically over multiple frames.
More specifically, in a video sequence, if the disparity of a
pixel in a frame is mistakenly estimated due to either
occlusion or other problems, the projection of this pixel to
other frames using this incorrect disparity has a small
probability of satisfying both the photo-consistency and
geometric coherence constraints simultaneously. With
this intuition in mind, we define the data term in the
following way.

Considering a pixel x in frame t, by epipolar geometry,
the matching pixel in frame t0 should lie on the conjugate
epipolar line. Given the estimated camera parameters and
the disparity dx for pixel x, we compute the conjugate pixel
location in It0 by multiview geometry and express it as

x0h � Kt0 R>
t0 RtK�1

t xh þ dxKt0 R>
t0 ðTt � Tt0 Þ; ð6Þ

where the superscript h denotes the vector in the homo-
geneous coordinate system. The 2D point x0 is computed by
dividing x0h by the third homogeneous coordinate. We
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Fig. 3. Disparity estimation illustration. (a) One frame from the “Road” sequence. (b) The initial estimate after solving (5) by belief propagation without
incorporating segmentation. (c) Segmentation prior incorporated in our initialization. (d) Disparity initialization with segmentation and plane fitting
using a nonlinear continuous optimization. (e) Our refined disparities after bundle optimization. (f)-(h) Magnified regions from (a), (d), and (e),
showing that our bundle optimization improves disparity estimate significantly on object boundaries.
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denote the mapping pixel in frame t0 of x as x0 … lt;t0 ðx; dxÞ.
The mapping lt0;t is symmetrically defined. So, we also have
xt0!t … lt0;tðx0; dx0 Þ, as illustrated in Fig. 4.

If there is no occlusion or matching error, ideally, we
have xt0!t … x. So, we define the likelihood of disparity d
for any pixel x in It by combining two constraints:

Lðx; dÞ …
X

t0

pcðx; d; It; It0 Þ � pvðx; d; Dt0 Þ; ð7Þ

where pvðx; d; Dt0 Þ is the proposed geometric coherence
term measuring how close pixels x and xt0!t are, as shown
in Fig. 4. It is defined as

pvðx; d; Dt0 Þ … exp �
kx � lt0;tðx0; Dt0 ðx0ÞÞk2

2�2
d

 !

ð8Þ

in the form of a Gaussian distribution, where �d denotes the
standard deviation. The definition of pc is given in (2). Our
geometric coherence term is similar to the symmetric
constraint used in two-view stereo [38] and the geometric
visibility prior in [15].

Both the photo-consistency and geometric coherence
constraints make use of the information of the correspond-
ing pixels mapped from t0 to t. But, they constrain the
disparity from two different aspects. In the following
paragraphs, we briefly explain why there is no need to
explicitly model occlusion or visibility.

Our likelihood requires a correct disparity estimate to
satisfy two conditions simultaneously, i.e., high photo-
consistency as well as high geometric coherence for the
corresponding pixels. We use the following example to
explain how the data term ensures the reliable depth
estimation. Suppose we compute the disparity likelihood
of pixel x in frame t. A correct disparity d makes
pcðx; d; It; It0 Þ � pvðx; d; Dt0 Þ output a large value for several
neighboring frames t0. An arbitrary d other than that has
small chance to find similar consistent support from
neighboring frames and, thus, can be regarded as noise.

Combining the computed likelihood for all possible dis-
parities, a highly nonuniform cost distribution for each
pixel can be obtained favoring the correct disparity.

We also found that this model performs satisfactorily
around depth discontinuous boundaries. The reason is
similar to that given above. Specifically, we use color
segmentation and plane fitting to initialize depths indepen-
dently on each frame. So, the corresponding pixels in
multiple frames are possibly assigned to the correct or
incorrect depth segments. Even if we only obtain a few correct
depth estimates for the corresponding pixels, it sufficiently
makes

P
t0 pcðx; d; It; It0 Þ � pvðx; d; Dt0 Þ output a relatively

large value for the correct disparity d. Therefore, our data
energy, in many cases, can form a highly nonuniform cost
distribution where the likelihood of the correct depth is large.

In [19], an extratemporal smoothness term is introduced
outside the data term, which functions similarly to the
spatial smoothness constraint. It compromises the dispa-
rities temporally, but does not essentially help the inference
of true disparity values.

To fit the energy minimization framework, our data term
Ed is finally defined as

EdðDt; Î; D̂nDtÞ …
X

x
1 � uðxÞ � Lðx; DtðxÞÞ; ð9Þ

where uðxÞ is an adaptive normalization factor, and is
expressed as

uðxÞ … 1= max
DtðxÞ

Lðx; DtðxÞÞ:

It makes the largest likelihood of each pixel always one.

5.2 Iterative Optimization
With the above energy definition, we iteratively refine the
depth estimate using loopy belief propagation. The seg-
mentation prior is not used in this step and we, instead,
perform pixel-wise disparity refinement to correct the error.

Each pass starts from frame 1. With the concern of
computational complexity, in refining disparity map Dt, we
fix the disparity values in all other frames. The data term
only associates frame t with about 30-40 neighboring
frames. One pass completes when the disparity map of
frame n is optimized. In our experiments, after the first-pass
optimization, the noise and estimation errors are dramati-
cally reduced. Fig. 3e shows one depth map. Two passes are
usually sufficient to generate temporally consistent depth
maps in our experiments.

6 SPACE-TIME FUSION

Bundle optimization can largely improve the quality of the
recovered disparity maps in a video sequence. But, it does
not completely eliminate the reconstruction noise. In this
section, we describe a space-time fusion algorithm to reduce
the remaining noise due to inevitable disparity quantiza-
tion, video resolution, and other estimation problems. The
disparity consistency error, after space-time fusion, can be
decreased to an even lower fraction.

Our space-time fusion makes use of the sparse feature
points in 3D computed by structure-from-motion and the
depth correspondences from multiview geometry. Based on
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Fig. 4. Geometric coherence. The conjugate pixel of x in frame t0 is
denoted as x0 and lies on the conjugate epipolar line. Ideally, when we
project x0 from frame t0 back to t, the projected pixel should satisfy
xt0!t … x. However, in disparity estimation, because of the the matching
error, xt0!t and x are possibly in different positions.
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the estimated Dtðx; yÞ for each pixel Itðx; yÞ from the bundle
optimization step, we attempt to compute the fused
disparity maps D� … fD�

t j t … 1; . . . ; ng with three groups
of constraints.

6.1.1 Spatial Continuity
Depths computed by bundle optimization contain many
correctly inferred depth structures, such as edges and
smooth transitions. To preserve them in the final depth
results, we require the first-order derivatives of the space-
time fused depths to be similar to those from bundle
optimization. So, the spatial constraints for every two
neighboring pixels in D�

t are defined as

D�
t ðx þ 1; yÞ � D�

t ðx; yÞ … Dtðx þ 1; yÞ � Dtðx; yÞ;
D�

t ðx; y þ 1Þ � D�
t ðx; yÞ … Dtðx; y þ 1Þ � Dtðx; yÞ:

ð10Þ

6.1.2 Temporal Coherence
Because depth values are view-dependent, one point in 3D
is possibly projected to multiple frames. Using Fig. 5 as an
example, if a 3D point X projects to x and x0 in frames t and
t0, respectively, the corresponding depth values zx and zx0

should be correlated by a transformation with the com-
puted camera parameters. It is written as

ðxx0 ; yx0 ; zx0 Þ> … zxR>
t0 RtK�1

t xh þ R>
t0 ðTt � Tt0 Þ; ð11Þ

where K is the intrinsic matrix, R is the rotation matrix, and
T is the translation vector. The transformation can be
simplified to zx0 … AðxÞ � zx þ B, where AðxÞ and B are
determined by pixel x and the camera parameters.

Our temporal constraint is based on the above depth
correlation in multiframes. Considering frames t and t þ 1,
we denote the corresponding pixel in frame t þ 1 to Itðx; yÞ
as ðxt!tþ1; yt!tþ1Þ. We accordingly define the disparity
consistency error as

e …
1

Aðx; yÞ þ B � Dtðx; yÞ
Dtðx; yÞ � Dtþ1ðxt!tþ1; yt!tþ1Þ

����

����;

which measures the disparity consistency error between
Dt and Dtþ1. We plot in Figs. 6a and 6b the average disparity
consistency errors for different frames in the “Angkor Wat”
and “Road” sequences. It shows that the recovered disparities
after bundle optimization are already temporally consistent.

The average error is only about 0:003 � ðdmax � dminÞ. By
visual inspection, the pixels that cause abnormally large
errors are mostly occlusions. If the error is above a threshold �
(i.e., e > �), we regard the correspondence as “unreliable.”

Finally, the temporal constraint is defined for each
reliable correspondence as

� �
D�

t ðx; yÞ
Aðx; yÞ þ B � D�

t ðx; yÞ
� D�

tþ1ðxt!tþ1; yt!tþ1Þ
� �

… 0;

ð12Þ

where � is a weight, and is set to 2 in our experiments.

6.1.3 Sparse Feature Correspondences
Our SFM step has estimated a sparse set of 3D feature
points S. These 3D points are view-independent, and
therefore, can be used as anchors to constrain different
views with the geometric correlations.

For a 3D point X 2 S, its projection and the correspond-
ing disparity in frame t are, respectively, denoted as ut

X and
dX

t . ut
X is given by

ut
X … Kt

�
R>

t X � R>
t Tt

�
;

with the estimated camera parameters Kt, Rt, and Tt for
frame t. We similarly define “reliable” projection from X to
frame t if kDtðut

XÞ � dX
t k < �, where � is a threshold. The

feature correspondence requires, for all pixels that corre-
spond to reliable 3D features, the refined disparity values
should be similar to those of the features in each frame. The
constraint is thus written as

	 �
�
D�

t ðut
XÞ � dX

t
�

… 0; ð13Þ

where 	 … 100 in all our experiments. It should be noted
that the above three constraints are all necessary to make
space-time fusion solvable. The spatial continuity constraint
is to preserve depth structures, such as edges and depth
details. The temporal coherence constraint is to make the
disparity temporally consistent. The sparse feature corre-
spondences help refine the depths making use of the
reliable 3D point information.

Because (12) is nonlinear, to make the computation
efficient, we employ an iterative optimization method and
introduce a substitute for (12) that is defined as

� �
D�

t ðx; yÞ
Aðx; yÞ þ B � ~D�

t ðx; yÞ
� D�

tþ1ðxt!tþ1; yt!tþ1Þ

 !

… 0;

ð14Þ

where ~D�
t ðx; yÞ is the estimate of D�

t ðx; yÞ from the previous
iteration and is initialized as Dtðx; yÞ.

With (10), (13), and (14), in each iteration, we solve a
linear system using the conjugate gradient solver. With the
concern of the memory consumption, each time we perform
space-time fusion in a slab of 5-10 frames. For example,
with an interval of 5 frames, we first fuse frames 1 to 5, then
we fix frames 1 to 4 and fuse frames 5 to 9, etc.

We analyze the disparity errors using the “Angkor Wat”
and “Road” sequences, and plot them in Fig. 6. We
introduce two measures—that is, the disparity consistency
error between adjacent frames and the disparity error with
respect to the sparse 3D feature points. Figs. 6a and 6b show
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Fig. 5. Illustration of multiview geometry. X is a 3D point. x and x0 are its
projections in frames t and t0, respectively. zx and zx0 are the
corresponding depth values.
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the average disparity consistency error for each frame. In
computing the disparity errors, since we do not have the
ground truth disparity maps, the computed sparse
3D points in the SFM step are regarded as “correct”
coordinates. For all reliable projections from the 3D points
to a frame, average disparity error kDtðut

XÞ � dX
t k is

calculated. The plot is shown in Figs. 6c and 6d. The
comparison of the average errors shows that the space-time
fusion is effective. It reduces the reconstruction noise and
makes the recovered depth temporally more consistent.

7 RESULTS AND ANALYSIS

To evaluate the performance of the proposed method, we
have conducted experiments on several challenging video
sequences. Table 1 lists the statistics of the tested sequences.
All our experiments are conducted on a desktop PC with Intel
Core2Duo 2.0 GHz CPU. Most of the parameters in our
system use fixed values. Specifically, ws … 5=ðdmax � dminÞ,
� … 0:05ðdmax � dminÞ, " … 50, �c … 10, � … 2, 	 … 100. We also
found 2 � �d � 3 works well in our experiments. Its default
value is 2.5. For depth estimation from a video sequence, we
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Fig. 6. Disparity error measures on the “Angkor Wat” and “Road” examples. The red/blue curve shows the average errors without/with space-time
fusion. (a) and (b) Disparity consistency error. We compute the average error between consecutive frames. Without space-time fusion, the average
disparity consistency error of these two examples is around 0:3% � ðdmax � dminÞ. After our space-time fusion, both of them are reduced to around
0:1% � ðdmax � dminÞ. (c) and (d) Disparity error w.r.t. the sparse 3D points obtained in the SFM step. Our space-time fusion also largely reduces it.

TABLE 1
The Statistics of the Tested Sequences Shown in This Paper
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