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Abstract

In this paper, we propose a novel dense depth recovery
method for a trinocular video sequence. Specifically, we
contribute a novel trinocular stereo matching model, which
can effectively utilize the advantages of trinocular stereo
images, and incorporate the visibility term with segmenta-
tion prior for robust depth estimate. In order to make the re-
covered depth maps more accurate and temporally consis-
tent, we propose to first classify the pixels to static and dy-
namic ones, and then perform spatio-temporal depth opti-
mization for them in different ways. Especially, we propose
two motion models for handling dynamic pixels. The tradi-
tional bundle optimization model and our spatio-temporal
optimization model are softly combined in a probabilistic
way, so that the depths of both static and dynamic pixels
can be effectively refined. Our automatic depth recovery
approach is evaluated using a variety of challenging trinoc-
ular video sequences.

1. Introduction
3D reconstruction from images/videos has long been

a standard problem in computer vision due to its wide
applications. Especially, with the recent success of 3D
movies (e.g. Avatar), there has been tremendous interest in
3D video generation. Although stereoscopic videos can be
captured by a stereo camera, they only allow narrow multi-
view display of 3D content since the stereoscopic views are
generated from one viewing point. The users need to po-
sition themselves in the right locations for optimal visual
experience. For achieving wide multi-view display of 3D
content, accurate dense depth information is required.

For static scenes, we can use a single camera to capture
multiple images or a video sequence to recover depth in-
formation by multi-view stereo techniques that have been
widely studied in the past decades. Recent advances have
moved the focus on the 3D reconstruction of moving ob-
jects, which typically need to use synchronized multiple
cameras [19, 9]. However, most of existing methods assume
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the cameras are fixed and do not move, which seriously re-
stricts the applications in practice.

In this paper, we propose a novel method to recover ac-
curate and consistent depth maps from a trinocular stereo
sequence. In our device configuration, the relative cam-
era poses are constant, and the cameras can freely move
together. Compared to binocular stereo camera, trinocular
stereo camera has significant advantages in handling occlu-
sions, because for stereo images, there are always occluded
pixels whose depths can not be inferred by matching. In
contrast, in our case, since the baselines between cameras
are semi-wide, each pixel in the center image generally
has at least one correspondence in the left or right image.
Compared to the multi-camera array [19], using a trinocular
stereo camera is more flexible and the cost is much lower.

2. Related Work
Two-view stereo matching has been extensively studied

during the past decades [12, 14, 4]. However, two-view
stereo matching has inherent difficulty in handling occlu-
sions due to information missing. Although some methods
have been proposed to incorporate smoothness constraint
or segmentation prior to alleviate this problem, it is still
very challenging to recover high-quality depth maps from
complex natural images with strong occlusions. In con-
trast, multi-view stereo matching has more advantages in
handling occlusions and image noise, so that the recovered
depth maps could be more accurate. In recent years, multi-
view stereo has achieved significant advances. Furukawa et
al. [7] proposed a seed growing method to reconstruct ac-
curate surface model from a set of 3D points. Vu et al. [15]
reconstructed high quality large-scale scenes in a mesh opti-
mization framework. Although multi-view stereo matching
has been extensively studied, most multi-view stereo meth-
ods are limited to static scene reconstruction and the prob-
lem of how to accurately and consistently recover dense
depth information of dynamic scenes has not been suffi-
ciently addressed.

The typical solution for depth recovery of dynamic
scenes is to use multiple synchronized cameras. Depths
of dynamic objects are recovered by stereo matching on
multiple synchronous camera frames and temporal smooth-



Figure 1. Framework overview.

ness constraint based on optical flow is added for depth
refinement. In [9], Larsen et al. incorporate motion esti-
mation and modify the BP algorithm to generate tempo-
rally consistent reconstruction results from multiple cam-
era views. Some other methods [8, 10] extract moving ob-
jects from known or stationary background and incorpo-
rate segmentation to depth refinement, which require more
than three cameras for robust depth estimate. Recently,
Zhang et al. [17] proposed a robust bilayer segmentation
method which can accurately detect and extract the moving
object from a video sequence taken by a moving camera.
However, this method requires a manual preprocessing for
foreground color distribution learning.

Several algorithms [18, 2, 16] for temporally consis-
tent depth maps estimation have been developed. Zhang et
al. [18] proposed a powerful bundle optimization frame-
work to recover spatio-temporally consistent depth maps
for static scenes with a single moving camera. Recently,
Yang et al. [16] extended this method to handle dynamic
scene. However, their method only used very few neighbor-
ing frames for depth optimization, and is rather sensitive to
optical flow errors and occlusions. As a result, their method
required a camera array with relative small baselines for ro-
bust depth estimate. To overcome disadvantages of previous
methods, we propose a novel method for high-quality dense
depth recovery from a trinocular video sequence, which can
generate accurate and consistent depth maps for both static
and dynamic regions automatically.

3. Framework Overview

Figure 1 gives the flow chart of our system. The camera
parameters of the input trinocular stereo sequence can be
estimated by SfM technique [11]. Since our paper focuses
on the dense depth recovery problem, we assume the cam-
era parameters of the input trinocular stereo sequence are
already known. Our objective is to estimate the depth maps
for each frame. We first initialize the depth maps for each
frame in the center sequence. In order to effectively utilize
the advantage of trinocular images to handle occlusions, we
propose a new trinocular stereo matching model which can
reliably estimate the depth maps of trinocular images in the
same time instance. Considering the number of views may
significantly influence the robustness of stereo matching,

we need to involve temporally neighboring frames to im-
prove the depth accuracy as much as possible. Based on the
initialized depth maps, we contribute a novel moving object
extraction method, which can classify the pixels to static
and dynamic ones so that their spatio-temporal refinement
can be performed in more effective ways. Finally, tradi-
tional bundle optimization model and our spatio-temporal
optimization model are combined to refine the estimated
depth maps. After depth generation of the center sequence,
the ones of the left/right sequence are also computed. In our
paper, disparity is defined as “inverse depth”, the same as in
[18]. For simplicity, the terms “depth” and “disparity” are
used interchangeably in the following sections.

4. Disparity Initialization
In this step, each depth map in the center sequence is es-

timated independently. Due to the semi-wide baseline con-
figuration (the baseline is generally 8 ∼ 20 cm), the occlu-
sion in trinocular stereo images can be better handled since
each pixel in the center view generally has at least one cor-
respondence in left or right frame. Therefore, we propose
to take this advantage to define trinocular stereo matching
model.

4.1. Trinocular Stereo Matching Model

Given a trinocular frame, we denote the left, center and
right views as IL, IM and IR, respectively, and the occlu-
sion of the center view as O = {OL, OR}. OL(x) indicates
whether a pixel x in the center view is occluded in the left
view. If x is occluded, OL(x) = 1, otherwise OL(x) = 0.
OR(x) is defined in a similar way. We denote Ii(x) as the
color of pixel x in the view Ii.

Our goal is to estimate the disparity map D of the center
view. We denote the disparity range as [dmin, dmax] and
equally quantize the disparity into m + 1 levels, where the
kth level dk = (m−k)/m·dmin+k/m·dmax, k = 0, ...,m.
Similar to the symmetric stereo matching model [14], we
minimize the following energy function to solve disparity
map D and occlusion O:

E(D,O; I) = Ed(D,O; I) + Es(D,O; I) + Ev(D,O; I)
(1)

where Ed(D,O; I) is the data term, Es(D,O; I) is the
smoothness term and Ev(D,O; I) is the visibility term.



4.1.1 Data term

The data term measures how well the hypothesized disparity
D and occlusion O fit the given sequence I . For the center
view, the data term Ed(D,O; I) is defined as:

Ed(D, O; I) =
∑

x

1

Zn(x)

(

OL(x)OR(x)η+

(1 − OL(x))(1 + OR(x))ρ(x, D(x); IL, IM )+

(1 − OR(x))(1 + OL(x))ρ(x, D(x); IR, IM ))

)

,

(2)
where ρ(x, d; I1, I2) is the robust matching cost function of
pixel x and disparity d given observation I1 and I2, which
is the same as ρd(x) in [14]. Zn(x) is the normalization
factor, making the largest cost of each pixel x be 1. The
cost η is to prevent the whole image from being labeled as
occlusion. According to occlusion status, Ed(D,O; I) is
set to the binocular stereo data cost of the center and left
images, or the data cost of the center and right images, or
their average.

4.1.2 Smoothness term

The smoothness term Es(D,O; I) encodes piecewise
smoothness on disparity D, which is defined as:

Es(D,O; I) =
∑

x

∑

y∈N(x)

λ(x,y)ρs(D(x), D(y)), (3)

where N(x) is the set of adjacent pixels for pixel x, and
λ(x,y) encourages the disparity discontinuity to be coinci-
dent with abrupt intensity/color change, which is the same
as Equation (4) in [18]. ρ(·) is a robust function defined
as ρs(D(x), D(y)) = min(|D(x) − D(y)|, T ). Here, T
controls the upper limit of the cost.

4.1.3 Visibility term

The visibility term Ev(D,O; I) is the same with Equa-
tion (6) in [14]. Taking Ev(D,OL; IL, IM ) as an example,
Ev(D,OL; IL, IM ) is defined as:

Ev(D,OL; IL, IM ) =
∑

x

βω|OL(x) − WL(x;D)|+

∑

x

∑

y∈N(x)

βo|OL(x) − OL(y)|,

(4)
where WL is a binary map defined on the center view. For
computational efficiency, the asymmetric occlusion model
[4] is applied, so that WL can be computed as follows:

WL(x; D) =







1, if
∃y ∈ IM , P (x, D(x)) = P (y, D(y))
∧ D(x) < D(y) ∧ f(x) 6= f(y)

0, otherwise
(5)

where x is a pixel in the center view, and P (x, d) is its cor-
responding pixel in the left view given the disparity value
d. f(x) is the surface that x belongs to, which can be de-
termined by the mean-shift segments (i.e. if x and y are in
the same segment, f(x) = f(y)). Therefore, if the dispar-
ity map and the segments of a frame are known, WL can be
easily computed by using Equation (5). The visibility term
Ev(D,OR; IR, IM ) and the binary map WR(x;D) are de-
fined in a similar way.

4.2. Iterative optimization

We apply an iterative optimization algorithm to mini-
mize (1). Similar to [14], the optimization process iterates
between two steps : 1) estimate occlusion given disparity,
and 2) estimate disparity given occlusion. Generally, two
iterations are sufficient in our experiments. Please refer to
our supplementary material 1 for more details.

The second iteration step contains the following three
steps. First, BP algorithm [6] is applied to minimize (1)
to generate the disparity map directly. Then the estimated
disparity map is refined by fitting disparity segments to a
set of 3D planes, using the same plane fitting technique
introduced in [18]. However, the refined disparity map
may contain errors if the segmentation information is im-
perfect. Similar to [4], in order to reduce this problem, we
propose to fuse different disparity maps estimated under a
variety of segmentation results generated by different seg-
mentation parameters. Specifically, we choose a set of dif-
ferent mean-shift parameters to generate k disparity maps
{D1, D2, · · · , Dk} which form the disparity candidate set
D̂. In addition, we also compute the average value (i.e.
Dk+1(x) =

∑k

i=1 Di(x)/k), and add it into D̂. Finally,
with these disparity candidates, the disparity map is refined
by minimizing (1) (occlusion variables are fixed). In our
system, the candidate number is generally set to 4 or 5.

We use the Middlebury stereo data [13] to quantitatively
evaluate our method. Figures 2(b)-(d) show the estimated
disparity maps of “Teddy” example in different procedures,
and Figure 2(e) shows the estimated occlusion map. In the
first procedure, the estimated depth map contains lots of er-
rors as shown in Figure 2(b). These errors are dramatically
reduced after the following procedures. The error percent-
ages after each procedure are listed in Table 1. Please refer
to our supplementary material for inspecting the intermedi-
ate results of “Cones” example.

5. Detection of Dynamic Regions
Because the 3D position of a dynamic point may vary

among different frames but a static 3D point remains con-
stant, their spatio-temporal refinement should be performed

1The supplementary material and video can be found from the website:
http://www.cad.zju.edu.cn/home/gfzhang/



(a) (b) (c) (d) (e)

Figure 2. Intermediate results of trinocular stereo matching. (a) One image of “Teddy” data. (b) Procedure 1: the estimated disparity map
without plane fitting. (c) Procedure 2: the estimated disparity map by plane fitting with one segmentation result. (d) Procedure 3: the final
refined disparity map after fusion refinement. (e) The estimated occlusion map. White pixels are occluded in the right image and gray
pixels are occluded in the left image.

Table 1. The percentages of error pixels (disparity errors > 1
pixel).

Teddy Cones
Procedure 1 2 3 1 2 3

Error 17.08 6.84 5.21 9.99 6.54 5.84

in different ways, so that the separation of dynamic and
static regions is needed. In this section, we will discuss our
bilayer segmentation method.

5.1. Optical Flow Estimation

We use the method proposed in [3] to estimate the optical
flow maps between consecutive frames. The optical flow
from frame k to k + n can be computed as Uk→k+n =
∑k+n−1

i=k Ui→i+1, where Ui→i+1 is the optical flow from
frame i to i + 1, and the reverse optical flow from frame
k + n to k is defined in a similar way.

Since optical flow estimation is not very reliable, accu-
racy measurement with outlier detection is quite necessary.
For pixel x in frame k, its correspondence y in frame k + n
can be found by y = x + Uk→k+n(x). The corresponding
point x

′ of y, which is in frame k, can be found by using
x
′ = y+Uk+n→k(y). If the optical flow is accurate, x and

x
′ should be the same point. However, due to estimation

errors, x and x
′ may be two different points. Therefore, the

optical flow reliability at pixel x can be measured by:

Popt(x) = exp(−
||x − x

′||2
σ

), (6)

where σ is usually set to 2 in our experiments.

5.2. Moving Object Detection

Similar to [17], before moving object detection, we need
to estimate the static background information first. For each
reference frame k, the color images and depth maps of its
neighboring frames can be warped to frame k with the esti-
mated depth maps. So each pixel generally receive multiple
projections. We use a median filter to reliably estimate the
background color and depth. Then, we define the following
three kinds of measures:

1. Color difference measure. It measures the color dif-
ference between the reference image and the estimated
background image:

Dc(x) =
1

Zc

||I(x) − IB(x)||2
||I(x) − IB(x)||2 + εc

, (7)

where εc controls the shape of this function and Dc(x)
is normalized to [0, 1] by factor Zc.

2. Disparity difference measure. It measures the dif-
ference between the initialized disparity map and the
estimated background disparity map:

Dd(x) =
1

Zd

min{|D(x) − DB(x)|, εd}, (8)

where DB is the estimated background disparity map,
and εd controls the upper limit of |D(x) − DB(x)|.
Dd(x) is normalized to [0, 1] by factor Zd.

3. Motion-depth difference. It measures the consistency
of the estimated depth and the motion (or optical flow)
information, defined as Do(x) = D′

o(x)/(D′

o(x)+εo),
where εo is a parameter and D′

o(x) in frame k is de-
fined as:

D′

o(x) =
1

W

n
∑

i=−n

P k→k+i
opt (x) · ||xk→k+i

o − x
k→k+i
d ||22,

(9)
where x

k→k+i
o and x

k→k+i
d are x’s corresponding pix-

els in frame k + i according to the estimated opti-
cal flow and depth, respectively. If pixel x is static,
x

k→k+i
o and x

k→k+i
d should be very close. Otherwise,

||xk→k+i
o −x

k→k+i
d ||22 should be large. W is a normal-

ization factor, defined as W =
∑n

i=−n P k→k+i
opt (x).

5.3. Disparity Error Detection

Directly combining the computed measures may have
problems, since they are computed with different ways and
have respective characteristic. Especially, the estimated
motion/depth information may contain significant errors,
which will harm the segmentation results. Figure 3 shows



(a) (b) (c)

Figure 3. Disparity error detection. (a) A center image. (b) The
initial estimated disparity map, which contains noticeable errors
marked by a yellow rectangle. (c) The detected disparity errors.

an example, where the region marked by the yellow rect-
angle contain obvious disparity errors, so that the com-
puted disparity difference measure will be unreliable. Fig-
ures 4(a)-(b) show a segmentation result directly using the
computed disparity difference measure. Zhang et al. [17]
used a voting-like scheme to alleviate this problem. Here,
we propose a disparity error detection method to more ef-
fectively utilize the computed depth cue.

We found that the estimated disparity of a pixel x is very
likely to be inaccurate, if its corresponding disparity differ-
ence measure Dd(x) is large but color difference measure
Dc(x) is quite small, except the case that the dynamic re-
gion have similar colors with the static background. The
intuition is that if the estimated disparity is accurate, the
pixel with large Dd(x) should be in dynamic regions, so
that Dc(x) also should be large. In order to address the am-
biguity caused by color similarity, we further use motion-
depth difference measure, and define the following rule: if
a pixel x, whose Dd(x) is large but Dc(x) and Do(x) are
both small, we think the estimated disparity value is incor-
rect.

Based on the above rule, we formulate the disparity error
detection as a labeling problem. Let L be a binary map
where L(x) equals to 0 if the disparity of pixel x is wrong,
and 1 otherwise. The energy function is defined as:

El(L) = El
d(L) + βEl

s(L),

where El
d(L) is data term, and El

s(L) is the smoothness
term defined the same as (3). β is the smoothness weight.
El

d(L) is define as:

El
d(L) =

∑

x

(Tc(1−L(x))+
Dd(x)

max(Dc(x), λoDo(x)) + Td

·L(x)),

where Tc and Td are thresholds and λo controls the weight
of the motion-depth difference measure. We use BP algo-
rithm to solve the energy function. Figure 3(c) shows the
detected disparity errors.

5.4. Segmentation Model
After detecting the disparity errors, the dynamic likeli-

hood of pixel x can be defined as:

L(x) =
Dc(x) · (1 − L(x)) + max(Dc(x),Dd(x)) · L(x)

1 + exp(−(D(x) − M)/V )
,

(10)

(a) (b) (c) (d) (e)

Figure 4. Detection of dynamic regions. (a) The segmentation re-
sult only using color difference measure. (b) The segmentation
result using both of color and disparity difference measures. (c)
The initial segmentation result by solving (11). (d) The segmenta-
tion result after temporal refinement. (e) The magnified regions of
(c) and (d).

where D(x) is the disparity of x. Because pixels with small
disparities are usually in static regions, we add a denomina-
tor 1 + exp(−(D(x) − M)/V ) into this equation, and use
parameters M and V to control the function shape. Since
optical flow estimation is not reliable, the estimated motion-
depth difference measure may have problems. Therefore,
we only use it to detect disparity errors and do not consider
it in (10). With this likelihood definition, we define the fol-
lowing segmentation energy function:

ES(S) =
∑

x

(L(x)(1 − S(x)) + (1 − L(x))S(x))

+βS

∑

x

∑

y∈N(x)

λ(x,y)ρs(S(x), S(y)),
(11)

where βS is the smoothness weight. λ(·) and ρs(·) are de-
fined the same as in Equation (3). S is the segmentation
map, where S(x) = 1 if pixel x is dynamic, and S(x) = 0
otherweise. We use Graph Cuts [5] to solve (11) for each
frame independently. Figure 4(c) shows a segmentation re-
sult.

We combine the local classifier model [1] and our spatio-
temporal prior together to further improve the segmentation
result. First, a set of overlapping local classifiers are con-
structed around the initial segmentation boundaries, so that
for each pixel x, its foreground probability P c

F (x) and back-
ground probability P c

B(x) can be computed. Then we apply
optical flow to make segmentation more temporally consis-
tent. For pixel x in frame k, the probability that l is the
segmentation label of x can be defined as:

Ps(l|x) =

2n+1
∑

i=1

∑

y∈W (x)

(exp(−||l − Ski
(y)||22/T1) · Popt(y)·

exp(−||y − x||22/T2) ·
T3

T3 + ||I(x) − I(y)||2
),

(12)
where {Sk1

, ..., Sk2n+1
} is generated by warping the seg-

mentation results of frames {k − n, ..., k + n} to frame k
by optical flow. W (x) is a local window centered at x, and
Popt is optical flow reliability (Equation (6)). T1, T2 and T3



are constants. The normalized probability P (l|x) is:

P (l|x) =
Ps(l|x)

(Ps(l = 0|x) + Ps(l = 1|x))
.

We denote P t
F (x) = P (l = 1|x) and P t

B(x) = P (l = 0|x).
The data cost for segmentation can be finally written as:

ES
d (S) = −

∑

x

((1 − S(x)) log(PF (x)) + S(x) log(PB(x))),

(13)
where PF (x) = P c

F (x)P t
F (x) and PB(x) = P c

B(x)P t
B(x).

The smoothness term is defined the same as in (11). We use
Graph Cuts [5] to solve it. The refinement can be performed
iteratively. Two iterations are enough in our experiments.
Figure 4(d) shows the refined segmentation result.

6. Spatio-Temporal Depth Optimization
Due to the lack of explicit temporal coherence constraint,

the initialized depth maps may be not consistent among
neighboring frames. After segmentation, we can perform
spatio-temporal depth optimization for static and dynamic
pixels with different models. For static pixels, we can use
the bundle optimization model [18] to refine the depth. For
dynamic pixels, we define the following two motion mod-
els.

6.1. Local Linear Motion Model

The motion of an object can be usually decomposed as
the motion of several rigid bodies, so we assume that the
3D trajectory of a point in dynamic regions can be approx-
imated to a 3D line within a short time. For the points that
violate this assumption, we will use a different model intro-
duced in the next subsection.

For 2D point x
′ in frame k, its corresponding point set

x̂ = {x′

k−n, ...,x′

k−1,x
′

k+1, ...,x
′

k+n} in neighbor frames
from k − n to k + n can be found by optical flow. n is
set to 2 ∼ 4 in our experiments. With the estimated depth
maps, we project the points in set x̂ to 3D space, denoted as
{X1, X2, ..., X2n+1}.

The parametric equation of a line can be represented by
l : X = X0 + tv, where X0 is a point on the line and v is
a direction vector. Given the 3D point set, the line can be
easily computed using PCA. Let µ be the average of these
2n+1 points and H be their covariance matrix decomposed
as H = QΣQT , where Q is an orthogonal matrix and Σ is a
diagonal matrix whose diagonal entries are the eigenvalues
of H . The first and second largest eigenvalues of H are
denoted as λ1 and λ2, respectively. Then parameter X0 and
v can be set to µ and λ1, respectively. If λ1/λ2 ≥ τ (τ = 50
in our experiments), we think the 3D trajectory of x can be
approximately described by a 3D line.

Then the disparity likelihood can be defined as:

P (d|x) = exp(−
Dis(X(x, d), l)2

v(x)2 · σt

), (14)

where Dis(y, l) is the distance from point y to line l.
X(x, d) is the 3D position of x given disparity d, and
v(x) = mind Dis(X(x, d), l). Parameter σt controls the
function shape. Obviously, if the distance from the corre-
sponding 3D point to the fitted 3D line is small, P (d|x)
will be large. Otherwise, P (d|x) will be small.

6.2. Planar Motion Model
If a point violates the above assumption (i.e. λ1/λ2 <

τ ), we alternatively assume that it approximately moves in
a constant depth plane among neighboring frames. We use
optical flow to estimate the disparity likelihood Pp(d|x) by:

P (d|x) =

3
∑

i=1

∑

y∈W (x)

(exp(−||d − Dki
(y)||22/T1) · Popt(y)·

exp(−||y − x||22/T2) ·
T3

T3 + ||I(x) − I(y)||2
.

(15)
Here, {Dk1

, Dk2
, Dk3

} is generated by warping the dispar-
ity maps of frames {k − 1, k, k + 1} to frame k by optical
flow. It is similar to (12), estimating the distribution by sam-
pling the disparities among neighboring frames. Because
the disparity of a dynamic point may vary quickly, we only
select two neighboring frames to estimate P (d|x).

6.3. Depth Optimization

We combine bundle optimization and our proposed mo-
tion models together. The data term for refinement of dy-
namic regions is defined as:

Ed1
(D; I) = Ed(D,O; I)−λ

∑

x

(log P (D(x)|x)), (16)

where Ed(D,O; I) is the data term defined in (2) for trinoc-
ular stereo matching, and P (D(x)|x) is Equation (14) or
(15) according to different situations. λ controls the weight
of the prior.

The data term Ed2
(D; I) for refinement of static regions

is defined as follows:

Ed2
(D; I) =Ed(D,O; I) +

∑

x

(

1 − u(x)·

∑

t′

pc(x, D(x), I, It′) · pv(x, D(x), Dt′)

)

,

where pc is the same to Equation (2) in [18], and pv is sim-
ilar to Equation (8) in [18]. The minor difference is that the
geometric coherence term pv is defined in disparity space
instead of image space. Please refer to our supplementary
material for more details. u(x) is the normalization factor
defined the same as [18]. Because it is better to softly com-
bine Ed1

(D; I) and Ed2
(D; I), we define the combinatorial

data term as:

Ef

d (D; I) =
∑

x

(Ed1
(D(x); I)·P f

F (x)+Ed2
(D(x); I)·P f

B(x)).



(a) (b) (c)

Figure 5. Spatio-temporal depth optimization. (a) The initial es-
timated depth map. (b) The refined disparity map after spatio-
temporal optimization. (c) The magnified region of (b).

Here, P f
F (x) is the probability that pixel x is in the dynamic

regions, defined as:

P f
F (x) =

{

S(x), if Dis(x) > Tb

PF (x)/(PF (x) + PB(x)), otherwise

where PF (x) and PB(x) are already introduced in Equation
(13). S is the segmentation map. Dis(x) is the distance
from x to the segmentation boundary and Tb is a threshold.
Here, P f

B(x) can be computed by P f
B(x) = 1 − P f

F (x).
The smoothness term Es(D; I) is defined the same as

(3). We use BP to minimize the energy function E(D; I) =

Ef
d (D; I) + Es(D; I). While refining one disparity map,

other disparity maps are fixed. Two iterations are generally
sufficient. Figure 5(b) shows the refined disparity map.

6.4. Depth Recovery of Left and Right Sequences

After obtaining the segmentation and depth maps of the
center sequence, we can quickly generate the segmentation
and depth maps for the left/right sequences, by warping the
estimated segmentation and depth maps of the center se-
quence to the left/right ones. Due to occlusion, the warped
depth map may contain some holes. We use mean-shift
segmentation information to infer the depth values of these
missing pixels. If a segment contains both static and dy-
namic pixels (based on the warped segmentation masks), it
will further split until a segment only contains either static
or dynamic pixels. If a segment contains missing pixels, we
will fit the 3D plane using the pixels with available depth
values, and then fill the depth values for missing pixels. Fi-
nally, we employ the spatio-temporal optimization method
introduced in Section 6 to refine the depth maps. With this
strategy, the initialization stage can be saved, and the ob-
tained depth maps of left/rigth sequence are naturally con-
sistent with the center ones.

7. Experimental Results
We have conducted experiments on several challenging

trinocular video sequences to evaluate the performance of
our method. All the experiments are conducted on a desk-
top PC with Intel i7 3.4GHz CPU, 4G memory and NVIDIA
GeForce GTX 560 Ti display card. Data cost computation

(a)

(b)

(c)

Figure 6. “Walking” example. (a) The trinocular stereo images of
one time instance. (b) The extracted dynamic regions. (c) The
computed disparity maps.

Table 2. Parameter configuration.
η T ε β βw βo βS εc εd εo λo

0.5 2 50 0.1 1.0 1.0 0.1 80-240 8-15 5 0-0.5
Tc Td M V T1 T2 T3 τ σt λ Tb

2.5 0.2 7 1.0 2 8 10 50 16 0.1 3

of stereo matching has been accelerated by GPU in our im-
plementation. It takes about 3.0 minutes per frame to re-
cover the segmentation and depth maps of the center se-
quence with 960 × 540 image resolution. Table 2 lists the
parameter values used in our experiments.

The “Walking” sequence is shown in Figure 6. The es-
timated dynamic regions and depth maps are shown in Fig-
ure 6(b) and (c), respectively. Figure 7 shows an exam-
ple containing two moving objects. Figure 8 shows another
challenging sequence “Indoor” captured by a fixed camera,
which contains two men, a statue, and very large texture-
less regions. Our method faithfully reconstructs all these
structures. The recovered disparity maps are shown in Fig-
ures 8(d)-(e). To verify the accuracy of the recovered dis-
parities, we warp the center image to the left view and make
a comparison. Figure 8(c) shows the warped image, and
(f) shows the difference image, which demonstrates the ac-
curacy of the estimated disparity map. Please refer to our
supplementary material for more results.

8. Conclusions
In this paper, we propose a novel dense depth recov-

ery method which can automatically recover accurate and
consistent depth maps from a trinocular video sequence. A
novel trinocular stereo matching model is introduced, which
can robustly estimate the depth map of center image given
the trinocular stereo images in the same time instance. With
the initialized depth maps, we first separate the static and
dynamic pixels, and then refine their depths with different



Figure 7. “Two Persons” example. From left to right: a center image, segmentation map, the estimated disparity map and a synthesized
novel view.

(a)

(d)

(b)

(e)

(c)

(f)

Figure 8. “Indoor” example. (a) One selected image in the left se-
quence. (b) One selected image in the center sequence. (c) Warp-
ing the center image to the left image with the estimated disparity
map. (d) The estimated disparity map of (a). (e) The estimated
disparity map of (b). (f) The difference between (a) and (c).

spatio-temporal optimization models. The experimental re-
sults demonstrate the effectiveness of the proposed method.

If the moving objects do not have sufficient movement,
or have very similar colors with the background, our mov-
ing object detection method may recognize it as background
with default parameters. If this happens, we can tune the pa-
rameters to avoid recognizing the dynamic pixels as static
ones. If a background region is recognized as moving re-
gion, it may not harm the depth estimation because our
spatio-temporal depth refinement for dynamic pixels also
can be used for static pixels.
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