Computers & Graphics 34 (2010) 107-118

Contents lists available at ScienceDirect

ul K
&GRAPHICS

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Technical Section

Cage-based deformation transfer

Lu Chen?, Jin Huang ®*, Hanqiu SunP, Hujun Bao?

a State Key Lab. of CAD&CG, Zhejiang University, Hangzhou, China
b Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

ARTICLE INFO

ABSTRACT

Article history:

Received 4 May 2009
Received in revised form
7 January 2010

Accepted 21 January 2010

Keywords:

Mesh deformation
Deformation transfer
Green Coordinates

We present a cage-based method for transferring animation from a mesh sequence or motion capture
data to geometric models in variant representations. To reach the aimed generality, the target model is
first embedded into a cage by Green Coordinates interpolation, which preserves the geometric details
inherently. The deformation gradient sequences of some user-selected points on the source are then
extracted and used as the gradient constraints in the cage to guide the target deformation. The variation
of deformation gradients in the cage is minimized to avoid degeneration and ensure smoothness of the
result. Position and length constraints can also be applied for more controls. The optimal positions of
target cage vertices can be efficiently evaluated by solving a non-linear minimization problem in terms
of a few variables. The main advantage of our algorithm is that both source and target can be in a wide
range of shapes and deformation representations. Moreover, we can transfer the deformation from

multiple sequences onto a single target model.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

To get realistic or natural deformation sequences, people often
resort to motion capture, physical simulation, or manual design
of skilled artists. It is usually a difficult and time-consuming job
in many cases. Therefore, the reuse of data becomes quite
appealing.

The ability of handling different geometry representations is
also a desired property of the algorithm reuse, which will greatly
improve generality and productivity. The source animation can be
represented in motion capture data or a mesh sequence. The
target geometric representation can be not only manifold meshes,
but also non-manifold, multiple-part objects, polygon soup, or
even point data. For the application of deformation transfer, how
to handle complex models in various representations is still a
challenging problem.

To address this problem, we employ the deformation gradients
and cage as the transfer intermediate. Deformation gradient on
certain point, which is defined as a 3 x 3 affine transformation,
can be extracted from many types of deformation sources. We
also use Green Coordinates [14] to embed target model into a
cage, which is usually a polygon mesh enclosing the original
model. Such space deformation technique can handle models in
various representations. Based on these intermediates, we put
forward a new cage-based subspace method for deforming the
cage with an embedded model using deformation gradient

* Corresponding author.
E-mail address: hj@cad.zju.edu.cn (J. Huang).

0097-8493/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cag.2010.01.003

constraints. First, users build several point-to-point correspon-
dence between source and target models. Then, the deformation
transfer is done by deforming the cage with target model using
deformation gradient constraints, the data of which are extracted
from corresponding points of the source sequence.

1.1. Contribution

The main contribution of this paper is a method for
transferring animation sequences between various types of source
and target models. The advantages of our method include:

Generality: Our method can transfer deformation between a
wide range of deformation and model representations. This
generality comes from the fact that a wide range of shape
representations can be embedded in the cage space and
deformation gradients can easily be extracted from various
animation sources. Also, our method can even transfer the
deformation from multiple sequences to a single target model
by the point-to-point deformation gradient correspondence.

Efficiency: Different from linear subspace methods, the Green
Coordinates we employed ensure quasi-conformal deformation,
which preserves the shape and details inherently [14]. Therefore,
pure linear constraints can transfer the deformation from source
model with the details preserved. Because Green Coordinates are
non-linear in terms of cage vertex positions, the optimization
problem is also non-linear. However, it can be solved efficiently
without traversing inner sample points to evaluate the gradient of
the deformation energy, which is a common problem in previous
subspace deformation methods [10,22].

www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2010.01.003
mailto:hj@cad.zju.edu.cn

108 L. Chen et al. / Computers & Graphics 34 (2010) 107-118

1.2. Related works

A large number of approaches for interactive shape deforma-
tion have been proposed during the last decade and some of them
have also been used for deformation transfer. We will take a brief
overview of the related works in this section.

Surface-based deformation: Multi-resolution approaches can
intuitively preserve the local geometric details by the frequency
decomposition techniques [13,8]. Since the explicit multi-scale
decomposition and reconstruction cannot distribute distortion
evenly, methods that optimize gradient-based or Laplacian-based
energies can be used to preserve surface details [23,15,24].
However, specifying orientations for each mesh face is inevitable
for such linear least square optimization based methods.
Particularly, it is difficult to achieve shape preserving under large
deformation. This problem was recently solved by Botsch et al.
[4], Au et al. [1] and other non-linear optimization methods.

Embedded deformation: Surface-based deformation methods
share a common limitation that they require the deforming model
to be a manifold. This limitation restricts their applications from
complex geometric representations. Space-based methods, having
objects embedded in the deforming space, are usually weakly
correlated to the geometric representations. Various methods are
brought forward using different space expressions and interpola-
tion bases. Radial basis functions (RBFs) are useful tools for
smoothly propagating the deformation from control points to
embedded models [3,22]. The work of Botsch et al. [5] and many
finite element methods discretize the object by linear interpo-
lated cells [17]. Some other methods, developed from the previous
free-form deformation methods [19], which have to embed the
object in a lattice with the special topology, use a closed polygon
mesh (cage) to enclose the deformable model [12,11,10]. Most
space-based methods use interpolation bases which are linear to
the vertex positions of the control mesh, such as mean value
coordinates, harmonic coordinates and barycenter coordinates,
etc. And it is hard to get smooth and conformal deformation result
with only a few control points, cage vertices or elements.
Recently, Lipman et al. [14] presented a method which introduces
the face normals into the interpolation bases and makes the
deformation function non-linear to the vertex positions of the
control mesh. This method ensures high quality conformal
deformation results with quite simple cages. The above embedded
deformation methods could also be regarded as using reduced
deformation models or subspaces to simplify the complex
deformation problem by making it independent of the high
geometric complexity. This idea of dimensionality reduction was
also used in the work of Der et al. [7]. It identifies control
parameters of a reduced deformation model with a set of
transformation matrices controlling shape deformations.
Although this subspace could be constructed automatically and
implicitly, it needs a set of deformation examples to span the
deformation space, which is hard to be satisfied in our application.

Deformation transfer: The animation can be represented by
mesh sequences. For such data, Sumner et al. [21] transferred the
deformation from source model to target model by deformation
gradients over triangle mesh. This method requires the source and
target models both to be manifold triangle meshes, and cannot be
applied to other geometric representations (e.g. polygon soup)
directly. Motion capture data are another important source of
animation. Shi et al. [20] and Zhou et al. [25] demonstrated that it
can be used to drive the deformation of manifold triangle meshes.
All of the above methods can only handle manifold mesh. To
address various representations of target models, we adopt
embedded deformation method. In order to handle both mesh
sequence and motion capture data in a uniform way, we use
gradient constraints to transfer the deformation. The embedding

deformation methods employed in the works of Huang et al. [10]
and Sumner et al. [22] can be used under this strategy. However,
both methods involve a non-linear detail preserving energy in
terms of discretization samples (vertex positions of the mesh or
deformation gradients and translations on the graph nodes). It is
inevitable for them to traverse numbers of these discretization
samples to evaluate the time-variant energy gradient during each
iteration. This could lead to low performance for complex models.
Because they use the linear interpolation bases inherently, which
may cause artifacts like shearing and anisotropic scaling, they
cannot preserve the local details well. Some comparisons between
Green Coordinates and linear subspace could be seen in Figs. 2
and 3. Our method avoids these problems by introducing the non-
linear bases which are subjected to the vertex positions of the
control mesh and solve the deformation independently of the
embedded objects during the runtime calculation. Choi et al. [6]
proposed a real-time simulation technique which eliminates the
linearization artifacts in large deformation while retaining the
efficiency of the previous modal analysis methods [9,18]. They
also demonstrated that this technique can be used for the
constraint-based motion retargeting, a similar application with
deformation transfer. The deformation space of their method is
spanned by the modal displacements calculated from the
eigenvalue-decomposition. Different from this, our method
defines the deformation space with a cage and it can be used
for designing the deformation subspace intuitively. For example,
in the articulated model deformation, the users can arrange the
joint positions by designing the tesselation of the cage, which
could be independent of the embedded model’s shape.

1.3. Overview

Before introducing technical details, we briefly describe the
procedure of our method.

e The input of our method includes a source deformation pose or
sequence (Fig. 1(a)) and a target model with a cage (Fig. 1(b)).
The cage is usually manually built by users and indicates the
freedom of the deformation. Building such a cage is a common
preliminary of cage-based deformation methods [12,11,10].

e The user selects corresponding points from the source and the
target (as shown in Fig. 1(a, b), where the corresponding points
are indicated by letters).

e The deformation gradients of the points on the source are
extracted (shown in Fig. 1(a), where the material frames [2]
on the selected points are extracted as the deformation
gradients) and used as corresponding constraints to deform
the target model by the subspace deformation method (shown
in Fig. 1(c)).

In the next section we will introduce our cage-based subspace
deformation method. Some technical details used in deformation
transfer procedure are presented in Section 3. Implementation
details are described in Section 4. Finally, we show our results in
Section 5 and conclude this paper in Section 6.

2. Subspace deformation

The framework of our approach is similar to other deformation
methods [22,5,10]. Our framework intends to solve the deformed
models by minimizing the deformation energy. Usually, the total
energy can be mainly divided into two parts: one is for satisfying
the constraints specified by the users and the other part indicates
an objective of the deformation, like detail preservation and

L. Chen et al. /| Computers & Graphics 34 (2010) 107-118 109

Fig. 1. (a) One deformed cable pose from a simulation program and five user-selected points with their material frames. (b) The up figure shows the static deer-beam
model with the cage. The bottom one shows the gradient controls (the highlighted points with the local frame axes) and the position constraint controls (the other points).
These constraints are all set by users. (¢) The deformation transfer result for the beam model. We can get visually smooth deformation result under sparse constraints using
our smoothness energy (shown in Section 2.1). (d) Without the smoothness energy, the deformation gradient changes unsmoothly in the cage. The small figure
demonstrates the duplicated gradient constraints we used for preventing degeneration in this case.

smoothness. We can minimize the energy with the following
formulation:

n}/li,n Eobject(M,) +Econstraint(M/)’ (1)

where M’ is a vector of the vertices of the deformed model.

In our subspace method, the model is embedded in a cage and
the target model can be expressed by the cage with interpolation
function. Then, the energy minimization comes to

rl‘})i,n Eobject (f(P,)) + Econstraint(f(P/))a (2)

where P’ is the deformed cage mesh and f(P)=M' is the
interpolation function. In our method, the Green Coordinates
interpolation which can preserve the details inherently was
employed. So E,pjec: does not need to include detail preservation
energy explicitly for the subspace deformation. In the following
parts, we will present our formulation of the energies for the
subspace and the constraints.

2.1. Green Coordinates subspace

Instead of the previous linear interpolation methods, Green
Coordinates interpolation, which ensures high quality quasi-
conformal deformation, is employed in our method to encage
the target model. Such a choice leads to a non-linear deformation
energy only in terms of a few cage vertex positions. In this section,
we first briefly review Green Coordinates representation and then
introduce an energy term to enforce the smoothness of the
deformation result.

We use the same notations as in [14]. Let the cage be
an oriented simplicial surface that P=(V, T), where V ={v;};,
c R? are the vertices and T ={tj}jc;, are the simplicial face
elements. Here, Iy and Iy are the index sets of the vertices and
faces, respectively. n(tj) denotes the unit length outward normal
to the oriented simplicial face tj(Iln(t;)ll=1). The deformation
function on each interior point 5(;j € R®) about the deformed cage
(with the deformed cage vertices v; and faces t;) is described as
following:

0 =Fap)=">_ ¢;mvi+>_yasn(t)), 3)

iely jely

where F maps # to its new position #’ after cage deformation. ¢
and y are the Green Coordinates used in [14] for the interpolation.
s; is the scale factor of the j th face:

\/IIaI\ZHbon—Z(a - b)(ao - bo)+ Ibl%llag!?
Si=
! V/8area(t;)

>

where ag, by, @ and b are any two corresponding edge vectors of
the original triangle t; and deformed triangle t.

We rearrange the summation into matrix form and pack
variables as following:

E@m) = @)V + PN, (C))

where V and N are the column vectors of packed vertices
coordinates v; and scaled normal vectors s;n(t;) of the deformed
cage, respectively. @ and ¥ are matrices in dimensions 3 x 3|ly|
and 3 x 3|Iy|, respectively.

110 L. Chen et al. / Computers & Graphics 34 (2010) 107-118

Because the subspace defined by Green Coordinates can
preserve the details inherently, it seems that we could solve the
following system directly for the shape preserving deformation:

H}’l:n Econstraint(f(P/)) (5)

However, compared with the degrees of freedom (DOFs) of
deformation, which is 3|Iy| (the normal variable N lies on the
vertices V during the deformation which fixes the triangles’
topology and orientations), there might be much fewer DOFs
associated with the constraints specified by users. It leads to a
degenerated optimization problem for solving (5). More seriously,
the deformation gradient in the quasi-conformal deformation
field may not change smoothly (Fig. 1(d))! without any object
energy Eopjece being used.

To overcome these problems, we penalize the variation of
deformation gradient to make the deformation as smooth as
possible. We measure the variation of deformation gradient at
point n in the cage by the Hessian matrix of the deformation
mapping function 6*F(n)/onon as follows:

PFm)|
onon

*F(n)
onon

2

F

2
(52 Fk('l))
k e {x.y.z}p.q € {(x.y.z} apoq

_ <62<1>k(m i) N)2

Fokexyz

k.p.q € xy.z} opoq opoq
A Z (Piepg(M) - V+ ¥ ipg() - NY2, ©
k.p.q € {xy.z)

where | - llr denotes the Frobenius norm. F,(1)), k € {x,y,z} denotes
the three scalar components of the value of deformation function
at point n. And @y, ¥ stand for the corresponding row vectors in
the matrices @ and Y. The symbol £ means “is equal to by
qeﬁnition" and here it defines that @kpq(n):azd?k(n)/apaq and
¥ g = 3> Wi () /0péq. Then, the energy for smoothness in the
whole cage can be defined as the integral of the above term
measured in the cage region C:

PF)||°
Esmaoth: /// c (”)
. ne

anon do @)

F

Since we do not have a close-form expression of this integral,
we convert it into a sum of finite samples. We subdivide the
bounding box of the cage into a uniform lattice. Based on our
experience, a regular lattice with 60 nodes along the longest edge
of the bounding box can achieve visually satisfied result in usual
cases. The second derivative terms (ikpq(ni) and 'f’kpq(ni) are
calculated using finite difference method with the assistance of
the lattice. Hence derivative of one node is computed from the
function values of the neighboring nodes. Then, the smoothness
energy can be approximated by the following summation:

my

Esmooth ~ Z Z

i=1kpgeixyz

(@ipg@) - V+ P ipg(11y) - N)? = 1OV +PNI2,

®)

where the m; sample points are the nodes on the uniform lattice
which can calculate the second derivatives. ® and W are packed
matrices for all the summarizing terms. Here, both the row
dimension of & and ¥ are 27m;, and 27 is the summarizing
element number of the second derivative terms for one sample
point.

! While generating this figure, we duplicate several gradient constraints
around the original ones to prevent degeneration.

After using Esmoomn aS Eopjecr in formula (2), undesired
deformation variation can be efficiently eliminated from the
conformal deformation space defined by the Green Coordinates,
as shown in Fig. 1(c).

2.2. Constraints

In this section, we introduce the position, gradient and length
constraints which are used in our deformation algorithm. All of
them are formulated as penalty energies in the optimization
framework.

2.2.1. Position constraint

The position constraint is an intuitive way to interact with the
deformation procedure. Users can manipulate the vertices on the
embedded object directly. Denoting the original positions of
the k, control points as p;(ie{l,...,ky}) and the deformed
positions as Pi(ie{l,...,kp}), the energy term of the position
constraints can be formulated as

kp
Epos= Y _ IF(p)—P;I?
i=1
kp
> @)V + (NP>
i=1
kp
23 IV +PN-P,I?. 9)

i=1

As shown in Figs. 2 and 3, the bend and twist effect can be
achieved by minimizing the weighted sum of position constraints
and the smoothness energy. The weights setting schema will be
discussed in Section 4. Moreover, because the smoothness energy
and the other two constraints cannot restrict the global translation
of the target object, at least one position constraint must be given.

2.2.2. Gradient constraint

The gradient constraint is used for controlling the deformation
gradients on the corresponding points in the cage space. As
described in the Introduction section, it is the essential constraint
used for the application of deformation transfer.

We denote the kg gradient constraint points as g; (ie {1,...,kg}),
and the corresponding deformation gradient on them as
Gi (ie{l,...,ke}). Giis a 3 x 3 matrix, which may contain rotation,
scale or shear transformation. We try to minimize the difference
between the deformation gradient on the point g; and the
guidance G; with the following energy:

kg 2

kg
od(g; oY (g))
Egaa= Y _IVF@)—-Gilf=>" > a‘fl)wr 6(,;’;’ N—Gjy,
i=1 i=1ke{xyz
kg kg

= > Id@g)V+P@EIN-GiI>2 > " I1d;V+ P N-G;l%, (10)

i=1 i=1

where Gy is the column vector in the gradient matrix for the
corresponding component and G; packs the columns of G; into one
column vector with dimension 9 x 1. &; and ¥; are the packed
matrices for the summarizing terms of three components and
terms od(g;)/ok,oW(g;)/ok are calculated by finite difference
with step size which is consistent with the grid size used for
calculating & and .

Gradients G; can be set by users’ interactions or transferred
from other sources. In Fig. 1, deformation gradients are trans-
ferred from simulation data. In Fig. 4, gradient constraints are set
by users for constraining the orientations of the head and feet.

L. Chen et al. / Computers & Graphics 34 (2010) 107-118 111

Fig. 2. The bend results using different subspace methods. (a) The rest shape with the cage. (b) The constraints used for the bend case. (c) The bend result of our method.
(d) The bend result of mean value coordinates based subspace method described in [10].

a b

Fig. 3. The twist results using different subspace methods. (a) The constraints used for the twist case, where the yellow bars show the segments of the point pairs used
as length constraints. These length constraints are only used in (c). (b) The twist result of our method with the smoothness energy and the position constraints only.
(c) The twist result of our method with additional length constraints. (d) The twist result of method in [10]. This method does not involve length constraints. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The deformation result of the Asian dragon model. Both the surface representation and the tetrahedrons representation can be deformed with the same cage and
constraints. The colors of the tetrahedrons do not relate to the deformation energy, but their volumes. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

112 L. Chen et al. / Computers & Graphics 34 (2010) 107-118

2.2.3. Length constraint

Keeping some parts as-rigid-as-possible is a common require-
ment in many deformation cases. For example, in the character
animation, the parts like head, legs and arms are assumed to be
nearly rigid. Because the Green Coordinates restrict the deforma-
tion to be quasi-conformal, which leave almost only isotropic
scale and rotation transformation in the deformation gradient, we
can achieve quasi-rigid effects by restricting the isotropic scale in
certain region. For this, we preserve the distance between some
point pairs by the length constraints introduced below.

Denoting two user-selected points in the cage space as p* and
p¢, the length constraint intends to keep the distance of the two
points during the deformation. Given a set of such point pairs as
p;—pi(iel,... k), the energy term of the length constraints can
be formulated as

ki
Ejen = Z(HF(pf)_F(pf)HZ_liZ)Z
i=1

ki
= > ((@@)—-PP)V
i=1

+(P @) - P P)NIP—12)
Kk
23 (10V+W¥NIP-), (1m

i=1

where [; is the initial distance of the two points.

As the comparison shown in Fig. 3(b) and (c), our length
constraints (shown in Fig. 3(a)) prevent shrinkage at correspond-
ing parts, and the result achieves visually rigid effect.

2.3. Interactive deformation

Putting all the energies introduced above together, we get the
following unconstrained optimization problem:

mvin wasmooth + nggTad + wIJEpOS + COIElens (1 2)

where wy, wg, wp, w; are the weighting parameters of the
energies. The weighting scheme would be discussed in Section 4.

By solving the non-linear optimization problem in terms of
cage vertex positions (details can be found in Section 4), we can
interactively deform the embedded object with details preserved.

In Fig. 5, we use only the position constraints to achieve large
deformation effects with the details preserved well. In Fig. 4,
gradient constraints are used for fixing the orientations of the
dragon head and the feet. The length constraints prevent the
unexpected scaling on the forefeet and head. Another dragon model
composed of tetrahedrons can be used to perform the deformation
procedure with the same constraints and cage, which shows that our

method can handle volume-data geometric representations and
does not need the information of topological connection.

3. Deformation transfer

We use deformation gradients to transfer deformation from
source to target. The deformation gradients information can be
extracted from various deformation sources. For a mesh deforma-
tion sequence, the deformation gradients are calculated on groups
of selected vertices by shape matching technique [16], as shown
in Fig. 6(a). For the motion capture data shown in Fig. 7, the
deformation gradients can be the transformations of the selected
bones. It is also possible to extract the deformation gradient from
many other deformation representations. After the deformation
gradient sequences were got from the source, users can apply
them to drive the target model. Each deformation gradient
sequence will be assigned to one gradient constraint point in
the cage. Then the cage is deformed with the guidance of these
deformation gradient constraints.

Taking Fig. 6 for example, we transfer the horse running gaits
from the given mesh sequence to another horse model. Eight
vertex groups on the legs of the source model are selected to
extract the deformation gradients. Then we put the corresponding
gradient controls in the leg parts of the cage, and this step could
be considered as setting up correspondence.

Actually, users can choose deformation from different defor-
mation sources and combine them into one target model. Fig. 7
shows such an example that we extract the deformations from
two different motion capture sources and transfer to one target
model, thus a new animation is generated.

3.1. Adapt gradient sequence to the target model

Sometimes, because the local frames of the source and target
model are not consistent, the deformation gradients extracted
from the source model cannot be used directly and we may need
to adjust them by some extra transformations when applying
them on the gradient control. For this, we introduce a pre-
procedure operation and a post-procedure operation which apply
the gradient data on the corresponding controls, respectively.

Without loss of generality, we assume that all the input
deformation gradient sequences contain the data with the same
frame number. Denote the input deformation gradient sequences as
Sﬁ(i el,... kg, jel,... . kp) (kg is the number of gradient control and
ks is the frame number), where S} is @ 3 x 3 matrix. As shown in
Fig. 8(a), the target right arm’s orientation is not consistent with the
static pose of the motion capture. In our method, we complement
this orientation difference by a deformation procedure. The users
can deform the model’s right arm by rotating the gradient controls
on the arm interactively (Fig. 8(b)). When the deformed pose is

Fig. 5. The deformation result of the armadillo model.

L. Chen et al. / Computers & Graphics 34 (2010) 107-118 113

Shape N Deformation
Deform - Deformation

Matching Gradient Tr

Fal

Fig. 6. (a) The left four figures show the procedure of shape matching [16]. The right two figures show the target model with the cage and the constraint controls we used
for this case. The highlighted gradient controls are used for the gradient transfer and the color indicates the corresponding mapping. (b) The top row is the original mesh
sequence with extracted gradients. The bottom row is the target model poses after gradient transfer. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

AARRS
A

Fig. 7. The walking bubble man with waving hand. The two rows on the top left show the source motion capture data and the red bones are selected. The figure on the top
right corner shows the cage and constraint controls (gradient and length controls) used for this demo. The figure on the bottom right corner shows the rest target model in
the cage. The other six figures in the bottom row show the transfer result. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

114 L. Chen et al. / Computers & Graphics 34 (2010) 107-118

Deformation

e

Transfer

A
A

Fig. 8. The process of user interactions for adapting deformation gradient to the target model (the right arm only). The right two figures show the static and deformed pose
in motion capture data and two deformation gradients of bones on the arm are extracted. (a) Rest target model with the gradient controls used for deformation transfer.
To make more concisely, we hide the other constraints which are set for the deformation. (b) The pre-procedure operation: deforming the rest shape to match the reference
skeleton. (c) Apply the deformation gradients. (d) The post-procedure operation: adjusting the orientation of the arm with transferred data.

consistent with the source model, the adjusted transformation B; is
recorded on the corresponding gradient control, where B;is a3 x 3
rotate matrix. Now the target model is actually deformed according
to the gradient constraints G; = B; After this pre-procedure
operation, the deformation gradient S is applied on each gradient
control for transferring the deformation (Fig. 8(c)) and the gradient
constraints are G;=SB;. However, the transferred gradients may still
not be suitable to the model. As shown in Fig. 8(c), because the body
of motion capture source is toward a different direction with the
target model, the transferred arm’s orientation does not fit the target
body’s, thus causes intersections. This orientation difference can also
be complemented by a deformation procedure similar to the
previous one. The user rotates the gradient controls to deform the
model into a proper pose (Fig. 8(d)) and then the adjusted
transformation T;, which is also a 3 x3 rotation matrix, is
recorded on each gradient control. Finally, the target model is
deformed according to the gradient constraints G;=T; SB;.

During this procedure, the users only need to set one B; and
one T; for each gradient control if necessary. It is worth to
emphasize that because the orientation differences B; and T; of
one gradient control are consistent for all the frames, only one B;
and one T; need to be adjusted for the whole sequence on each
gradient control for the deformation transfer. Besides, our method
is suitable to the case that the source data are given or difficult to
be modified. If there are any more convenient methods to modify
the source data (e.g. if it is easier to deform the static skeleton or
source mesh into the static pose of the target model, which is an
equivalent procedure to ours), the corresponding steps in our
procedure could be omitted.

4. Implementation details

We will introduce details about the weighting schema,
linearization techniques, pre-computation and convergence of
our method in this section.

Weighting schema: The weighting parameters of the energies
Wy, g, Wp, W in expression (12) can be used for adjusting the
balance between emphasizing of different constraints. According

to our experience, we found that a large range of values work well
and a minimal amount of example-specific tuning is required. In
this paper, we use the setting of w;=1.0, wg=5.0, w,=0.5,
w;=0.5 for most of the examples and it works well for our
deformation transfer application. One exception is that we use
w; =5 in Fig. 3(c) to emphasize the effect of length constraints.
Note that the Hessian matrices of the energies may have quite
different Frobenius norms and we re-scaled them? before
applying the above weighting.

Linearization: We use an iterative method to solve the non-
linear least square problem. At each iteration k, the algorithm
solves a subproblem of linearized least square for the new
deformed cage vertices vector Vj, while the scaled normal Ny is
treated as a function of V, and updated from V) after each
iteration. The linearization is done by the Taylor expansion at V._;:

Vi = argrr‘l/in wa;mooth + ngfgrad + wPE;Jos + le;en >
k

Emooth = (@ Vi1 + ¥ N 1)+ (@ + Wi)(Vi—Vie_1)I1%,

kg . . . N .
waa = N PiVie1+ PiNee1 =G +(@i+ Pl) (Vi—Vie)1,
i

kP
Epos = > I(@Vi1 + iNi_1 —P) +(Di+ P ifi)(Vie— Vi)12,
i

k o o o
en= > _((1BVi_ 1+ TiNe_1 1P =)+ 2(D;V, 4
i

+ PN) (@i+ P il) Vie— Vi), (13)

where | =0N/oV.

2 During the deformation, the Frobenius norms of the Hessian matrices may
change because the Jacobian matrix of the scaled normal updates and here we
always re-scale them according to the norms which are corresponding to the
Jacobian matrix of static pose.

L. Chen et al. / Computers & Graphics 34 (2010) 107-118

In addition, we find that based on the definition of N in the
Green Coordinates, here is the relation N=JV (detailed proof is
shown in Appendix A). Therefore, we can further simplify the
linearization expression by substituting equation Ny_;=J_.1Vi1:
E;mooth = ”(i)vk +‘i’]k—lka2»

ke y ;
wraa = »_NPVi+ Pifi 1 Vi—Gill?,
i

kp
Epos = > _ I ®iVi+ Wifi 1 Vi—PyI1%,
i

k,

fen=D_2PVi_1 + ¥iNe) (@i + Pifi1)Vi

1

—(1®Vie-1 + PiNe_1 12 + 1)), (14)

Because we use the first-order approximations of the expressions
in the least square, our solution is indeed equivalent to Gauss-
Newton method, while only the second and higher order
derivatives were ignored.

Pre-computing: As mentioned in Section 2.1, the matrices ®
and ¥ are of high dimension 27mg x 3|ly|,27ms x 3|Iy|. It is
expensive to calculate and store these matrices. On the other
hand, the gradient of the approximated smoothness energy is

oF;

smooth

oot = 2D+ W) (D + ¥V

T . T AT o AT oo
=2(@ ®+® Y+ ¥ O+ ¥ Y])Vi. (15

where (i)T(i). (i)T‘i’. ‘i’T(i> and ‘i‘T‘i‘ are 3|Iy| x 3|ly|, 3|Iy| x 3|It],
3|It| x 3|ly| and 3|It| x 3|It|, respectively. So we pre-compute and
reuse these matrix products instead of ®,W. Other variables
(®;, ¥, @;, Vi, D; and ¥;) in the constraint energies can be
precomputed after the constraints are set. At each step of
iteration, we only need to assemble them with the updated Ny,
and Ji_1, then solve a dense 3|Iy| dimensional linear system to
get V.

Convergence: To ensure the stability of the iteration procedure,
we shorten the step size according to a coefficient o« =0.2, i.e. the
actual output of the k th iteration is (1—o)V_; +aV,. As shown in
Fig. 9, our solver converges fast and stably during the iteration
procedure. In typical cases, the procedure converges into a visually
stable state within about 20 iterations. Our Gauss-Newton solver
has super-linear convergence rate, which is over the linear
convergence rate of steepest descent method. Besides, the cost of

Energy

115

each iteration of our method is cheaper than the steepest descent
method, since we do not need to calculate the total energy several
times to determine the step size.

5. Results

We perform our method for transferring the deformation from
different sources to the geometric models in variant representa-
tions. As shown in Fig. 1, the deformation of the cable in the
physical simulation is transferred to the deer-beam model.

Fig. 6 shows that we transfer the gaits of a running horse from
a mesh sequence to another horse model composed of discon-
nected mosaic blocks. All the mosaic blocks are deformed by rigid
transformations during the deformation, where the rotations of
each block are extracted from the deformation gradients on the
block centroids by polar decomposition and the translations are
calculated by the Green Coordinates interpolation. The gradient
controls on the feet use the same data with corresponding shanks.
The actions of the stifles and the gaskins are also consistent by
using the same gradients. The length constraints are applied on
the legs, head and neck, which are denoted by the yellow bars in
the figure.

Fig. 7 shows the case of transferring deformation from
multiple motion capture data to the bubble man model. In this
example, we transfer the motion of the legs in the upper motion
capture data and the motion of the arms in the lower data to a
single model simultaneously. The highlighted gradient controls
are used for transferring the deformation gradients while the
others are used for fixing the orientations of the chest and head.
The gradient sequences for the gradient controls on the feet are
the same as the ones for corresponding calves. The gradient
controls on the hands are used in the same way. Length
constraints are applied on the arms and legs to prevent
undesirable shrinkage under large deformation.

Fig. 10 shows the case of transferring a jumping motion from
motion capture data to a robot model. In this example, we select
12 bones for the gradient transfer. The corresponding gradient
controls are highlighted in the figure. The two gradient controls
on the chest and the stomach share the same data from one bone
of the source. One position constraint is set on the left foot and
used for setting the translation during the jumping action. The
translation sequence is calculated from position sequence of the
left toe in the motion capture data. Two length constraints are
applied on the hands making these parts as-rigid-as-possible
during the deformation.

Table 1 shows the statistics of the demo scenes in the paper,
including the complexity of the scenes and the performance of the

0.1

20 25

30

35 40 45 50 55

lterations

Fig. 9. The convergence curve of the solver. The asian dragon is deformed with the same constraints shown in Fig. 4. One of the position controls (the highlighted ball) is
used to uplift the dragon. The curve shows the variety of the total energy (log-plot) of the system over the iterative solving procedure. The horizontal axis indicates the
number of iteration, and the green points on the curve indicate the energies corresponding to the poses shown above. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

116 L. Chen et al. / Computers & Graphics 34 (2010) 107-118

T

ij‘

Fig. 10. The demo of the robot model. The top row shows the static model with the cage and the constraints we used for the demo. The middle row shows the original
motion capture data. The red bones are the gradient sources. The bottom row shows the transferred animation. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Table 1
The statistics of demos shown in the paper.

Cage verts. Embed verts. Sample-pts. Pre-compute time (s) Run time (ms)
li)TCiD, ete) Green coords. Solver Green interp.
Bubble man 106 52736 24319 57.5 90.3 102.25 14.35
Deer beam 40 72116 2891 2.0 44.8 7.01 9.74
Armadillo 120 172962 22499 59.0 336.8 52.9 50.75
Asian dragon 126 249934 9356 26.5 509.3 72.19 77.16
Tetra dragon 126 57816 9356 26.5 118.2 72.19 20.00
Mosaic horse® 88 3076 19760 37.8 29.7 49.13 83.01
Robot 162 20556 6367 233 53.8 114.45 9.87

The second, third and fourth columns show the vertices number of the cages, the vertices number of the embedded models and the number of sample points we used for
the numeric integration (Eq. (8)), respectively. The two columns of pre-compute time show the precomputed time of calculating the second derivative terms like @ @ and
the Green Coordinates. The two columns under run time show the run-time performance of our subspace solver and Green Coordinates interpolation, respectively.

@ In the row of the horse demo, the embed vertices’ number is the number of the mosaic blocks and the second column of run-time contains the time for driving the

mosaics using the deformation gradients.

algorithm. The computation time, including both pre-computation
and run-time, can be divided into two parts: the time of our subspace
method spent on deforming the cage and Green Coordinates
interpolation for driving the embedded object. The pre-compute
time of our subspace method, mainly used on calculating the

derivative terms & @, &' W, W' d and ¥ W, is related to the
sample points’ number we use for the numeric integration of
Eq. (8). Running time column lists the time of one iteration of
the solver and embedded mesh interpolation but does not include
the normal calculation for rendering. The runtime cost of our
subspace solver is related to the complexity of the cage and the
constraints used for the deformation. All the timings in the table
are measured on an Intel Pentium Dual 2.0 GHz, 3.0GB RAM
machine with a NVIDIA GForce 9800GT graphics card.

CUBLAS library was called by the Green Coordinate interpola-
tion and the subspace solver in the runtime computing to

accelerate matrix multiplication. Here, we convert the sparse Jacobi
matrix J into a dense one for the multiplication calculation using
CUBLAS on GPU, because it is faster than the CPU sparse matrix
multiplication on our machine when the cage vertices’s number is
between 30 and 200, which covers most common cases in our
application. When the vertices number is greater than 200, the
computation complexity of the dense matrix multiplication is too
high to be complemented by the parallel ability of the GPU and
when the vertices number is smaller than 30, the GPU multi-
plication is slower due to the data transmission between memories.

6. Conclusion

We present a method for transferring the deformation from
animation sequences to a target model. A new cage-based

L. Chen et al. /| Computers & Graphics 34 (2010) 107-118 117

subspace deformation method is brought forward to handle the
target model in variant geometry representations. We employ
deformation gradient as the transfer proxy, which is easy to
extract from various animation sources. The subspace spanned by
Green Coordinates preserves the shape inherently, thus we can
achieve high quality deformation results with interactive frame
rate by solving a non-linear optimization problem which is in
terms of a few variables.

The major limitation of our method is that the deformation
result depends on the shape and tessellation of the cage. Users
should have some knowledge about building a proper cage
for given animation sequences. It is not always an easy job
for users to build a good cage, especially when the cage is
extremely coarse. Detailed deformation in the animation
sequence cannot be transferred to the target model because
a coarse cage cannot provide enough DOFs, which is also a
limitation of our algorithm. Both limitations are common
problems of subspace methods. In the future, we would like to
develop a post-processing method to complement the lost DOFs
to overcome the above limitations.

Acknowledgements

This work is supported in part by National Natural Science
Foundation of China (No. 60703039, 60933007), 973 program of
China (No. 2009CB320801), Chinese Universities Scientific Fund
(No. 2009QNA5023) and Hangiu Sun is supported by RGC
research grant (no. 416007), UGC direct grant for research (ref.
2050423). We also thank the anonymous reviewers for their
helpful comments and suggestions.

Appendix A. Derivation of scaled normal equation

Here we will prove the equation N=JV, which is referred
in Section 4. Without loss of generality, we consider the case of
one single triangle. The V and N stand for the vertices and normal
of one single triangle, respectively, in the following proof. Denote
the vertices of the triangle as V =[vI,vL,vi]" (9 x 1 vector) and
two edge vectors a=v,—vi,b=v3—v,. The scaled normal is
N=sn=sn/lfil, where fi=axb. Denote edge variable
D=[a”,b"]" (6 x 1 vector) and because D is linear to the vertices V,

ON oD 8N<—I I O> oN
V:a

oD oV oD D

Now, consider the right part of the last equation:
oN o(sn) D— (

os on
D 2D —~D>n+s—D. 17

oD oD

From definition of the scale

\/HaIIZHbOHZ—Z(a - b)(ao - bo)+ IbI%lag?
S= .

J/8area(t)

The partial derivative of the scale is

o5
os oa a 0s s
o P=|as | (1,) ~aa %P

ob

_ Hbo“zaT—((lo . bo)bT .a
\/garea(t)\/\\a\FHbo\lz—Z(a -b)@ag - by)+ IbIllag?
— . T 2pT
i (ag - bo)a' +llagll“b b

«/garea(t)\/l\al\zHb0|\2—2(a -b)(ag - bo)+ bl llay?

Iboli2a”a—2(ay - bo)b"a+ llagI2bb

- =s.
Jﬁarea(t)\/HaH2||bo||2—2(a -b)(@ag - bo)+1bI%llagl?
(18)
The partial derivation of the normal is
on onon I—-nn" a
P =amap? = Tar P [“]X)
I-nn" T T
=2W(a x b)=2(I-nn")n =2(n-n(n"n)) =0. 19)
Substitute Eqs. (18) and (19) into Eq. (17),
oN
@D_sn-i—s-o_sn_N. (20)
Thus, N=JV.

Appendix B. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cag.2010.01.003.

References

[1] Au OK-C, Fu H, Tai C-L, Cohen-Or D. Handle-aware isolines for scalable shape
editing. ACM Trans Graph 2007;26(3):83.

[2] Bergou M, Wardetzky M, Robinson S, Audoly B, Grinspun E. Discrete elastic
rods. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 papers. New York, NY, USA:
ACM; 2008. p. 1-12.

[3] Botsch M, Kobbelt L. Real-time shape editing using radial basis functions. In:
Computer Graphics Forum, 2005. p. 611-21.

[4] Botsch M, Pauly M, Gross M, Kobbelt L. Primo: coupled prisms for intuitive
surface modeling. In: SGP ’'06: proceedings of the fourth Eurographics
symposium on geometry processing. Eurographics Association, Aire-la-Ville,
Switzerland, 2006. p. 11-20.

[5] Botsch M, Pauly M, Wicke M, Gross M. Adaptive space deformations based on
rigid cells. Comput Graph Forum 2007;26(3):339-47.

[6] Choi MG, Ko H-S. Modal warping: real-time simulation of large rotational
deformation and manipulation. IEEE Trans Visualization Comput Graph
2005;11(1):91-101.

[7] Der KG, Sumner RW, Popovit]. Inverse kinematics for reduced deformable
models. ACM Trans Graph 2006;25(3):1174-9.

[8] Guskov I, Sweldens W, Schréder P. Multiresolution signal processing for
meshes. In: SIGGRAPH ’99: proceedings of the 26th annual conference on
computer graphics and interactive techniques. New York, NY, USA: ACM
Press, Addison-Wesley Publishing Co.; 1999. p. 325-34.

[9] Hauser KK, Shen C, O'Brien JF. Interactive deformation using modal analysis
with constraints. In: Graphics Interface. Halifax, Nova Scotia: CIPS, Canadian
Human Computer Commnication Society, 2003. p. 247-56.

[10] Huang], Shi X, Liu X, Zhou K, Wei L-Y, Teng S-H, et al. Subspace gradient
domain mesh deformation. ACM Trans Graph 2006;25(3):1126-34.

[11] Joshi P, Meyer M, DeRose T, Green B, Sanocki T. Harmonic coordinates for
character articulation. In: SIGGRAPH '07: ACM SIGGRAPH 2007 papers. New
York, NY, USA: ACM; 2007. p. 71.

[12] Ju T, Schaefer S, Warren J. Mean value coordinates for closed triangular
meshes. In: SIGGRAPH ’'05: ACM SIGGRAPH 2005 papers. New York, NY, USA:
ACM; 2005. p. 561-6.

[13] Kobbelt L, Campagna S, Vorsatz], Seidel H-P. Interactive multi-resolution
modeling on arbitrary meshes. In: SIGGRAPH '98: proceedings of the 25th
annual conference on computer graphics and interactive techniques. New
York, NY, USA: ACM; 1998. p. 105-14.

[14] Lipman Y, Levin D, Cohen-Or D. Green coordinates. In: SIGGRAPH '08: ACM
SIGGRAPH 2008 papers. New York, NY, USA: ACM; 2008. p. 1-10.

[15] Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rossl C, Seidel H-P. Differ-
ential coordinates for interactive mesh editing. In: Proceedings of shape
modeling international. IEEE Computer Society Press; 2004. p. 181-90.

[16] Miiller M, Heidelberger B, Teschner M, Gross M. Meshless deformations
based on shape matching. ACM Trans Graph 2005;24(3):471-8.

[17] Nealen A, Mueller M, Keiser R, Boxerman E, Carlson M. Physically based
deformable models in computer graphics. Comput Graph Forum 2006;25(4):
809-36.

[18] Pentland A, Williams J. Good vibrations: modal dynamics for graphics and
animation. SIGGRAPH Comput Graph 1989;23(3):207-14.

[19] Sederberg TW, Parry SR. Free-form deformation of solid geometric models. In:
SIGGRAPH '86: proceedings of the 13th annual conference on computer graphics
and interactive techniques. New York, NY, USA: ACM; 1986. p. 151-60.

10.1016/j.cag.2010.01.003

118 L. Chen et al. / Computers & Graphics 34 (2010) 107-118

[20] Shi L, Yu Y, Bell N, Feng W-W. A fast multigrid algorithm for mesh
deformation. ACM Trans Graph 2006;25(3):1108-17.

[21] Sumner RW, Popovi¢]J. Deformation transfer for triangle meshes. In:
SIGGRAPH ’04: ACM SIGGRAPH 2004 papers. New York, NY, USA: ACM;
2004. p. 399-405.

[22] Sumner RW, Schmid J, Pauly M. Embedded deformation for shape manipula-
tion. In: SIGGRAPH ’'07: ACM SIGGRAPH 2007 papers. New York, NY, USA:
ACM; 2007. p. 80.

[23] Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, et al. Mesh editing with Poisson-
based gradient field manipulation. In: SIGGRAPH '04: ACM SIGGRAPH 2004
papers. New York, NY, USA: ACM; 2004. p. 644-51.

[24] Zhou K, Huang], Snyder J, Liu X, Bao H, Guo B, et al. Large mesh deformation
using the volumetric graph Laplacian. In: SIGGRAPH ’'05: ACM SIGGRAPH
2005 papers. New York, NY, USA: ACM; 2005. p. 496-503.

[25] Zhou K, Huang X, Xu W, Guo B, Shum H-Y. Direct manipulation of subdivision
surfaces on gpus. ACM Trans Graph 2007;26(3):91.

	Cage-based deformation transfer
	Introduction
	Contribution
	Related works
	Overview

	Subspace deformation
	Green Coordinates subspace
	Constraints
	Position constraint
	Gradient constraint
	Length constraint

	Interactive deformation

	Deformation transfer
	Adapt gradient sequence to the target model

	Implementation details
	Results
	Conclusion
	Acknowledgements
	Derivation of scaled normal equation
	Supplementary data
	References

