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Figure 1: Snapshots of the optimization procedure to construct a boundary aligned 3D cross-frame field. The top row shows the internal
streamlines. The next row contains another visualization with cubes spread by a parameterization along the current cross-frame field and
rotated by the current local frame R(Φ). The corresponding number of iteration is shown at the bottom.

Abstract
In this paper, we present a method for constructing a 3D cross-
frame field, a 3D extension of the 2D cross-frame field as applied
to surfaces in applications such as quadrangulation and texture syn-
thesis. In contrast to the surface cross-frame field (equivalent to a
4-Way Rotational-Symmetry vector field), symmetry for 3D cross-
frame fields cannot be formulated by simple one-parameter 2D ro-
tations in the tangent planes. To address this critical issue, we rep-
resent the 3D frames by spherical harmonics, in a manner invariant
to combinations of rotations around any axis by multiples of π/2.
With such a representation, we can formulate an efficient smooth-
ness measure of the cross-frame field. Through minimization of
this measure under certain boundary conditions, we can construct
a smooth 3D cross-frame field that is aligned with the surface nor-
mal at the boundary. We visualize the resulting cross-frame field
through restrictions to the boundary surface, streamline tracing in
the volume, and singularities. We also demonstrate the applica-
tion of the 3D cross-frame field to producing hexahedron-dominant
meshes for given volumes, and discuss its potential in high-quality
hexahedralization, much as its 2D counterpart has shown in quad-
rangulation.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems;

Keywords: hexahedral, spherical harmonics, N-RoSy frame field
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1 Introduction

Many recent quadrangulation methods start by constructing a
smooth field of orientations determined up to a rotation of π or
π/2. Substantial progress has been made towards the generation
of quadrilateral meshes with controlled element sizes and edge di-
rections by optimizing such fields. However, many applications
require discretization of 3D volumes rather than just their bound-
ary surfaces. Applications such as simulated elasticity of 3D volu-
metric objects, computational electromagnetics, and computational
fluid dynamics require Finite Element, Finite Volume, or Finite Dif-
ference methods on a discretized domain. These methods benefit
from a high-quality hexahedral mesh, since hexhedral meshes offer
several numerical advantages over tetrahedral meshes due to their
tensor product nature. They are also desirable for applications such
as geometric design and B-spline fitting, and amenable to applica-
tions such as 3D texture atlases. In addition, hexahedral meshes
often capture the symmetries of 3D objects and domains better than
tetrahedral meshes, thus making the model more intuitive to design-
ers or animators. However, the automatic generation of a hexahe-
dral mesh for a given curved 2D boundary with feature alignment,
sizing, and regularity control remains far more challenging than au-
tomatic tetrahedralization.

In this paper, we focus on frame field construction, a critical step
towards automatic generation of hexahedral meshes that meet the
aforementioned requirements. We propose constructing a 3D local
frame field akin to the cross field in curved 2D surfaces. We use
a spherical harmonics-based optimization to obtain a smooth frame
field, which can be seen as three vector fields that are continuous up
to a simultaneous 3D rotation of all three fields composed of π/2
rotations around the orthonormal axes. We show as an example that
a 3D parameterization guided by the frame field can be constructed
and used to generate the final boundary- and feature-aligned mesh
with well-shaped hexahedral elements.
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1.1 Related Work

To generate high-quality feature-aligned and boundary-sensitive
hexahedral meshes for domains with irregular boundaries, either
explicit or implicit smooth and boundary-aligned orientation fields
for the edges of the cube-like cells are necessary. For 2D meshes,
it has been shown that it is often convenient to obtain a smooth
field of orientations determined up to a rotation of π or π/2. For
example, Quadrangulation methods such as [Bommes et al. 2009;
Zhang et al. 2010b] usually have the quadrilateral edges aligned to
such fields. Recently, this concept has been generalized to N-Way
Rotational-Symmetry (N-RoSy) fields [Palacios and Zhang 2007;
Ray et al. 2008; Lai et al. 2010], with those used in quadrangula-
tion classified as 4-RoSy vector fields. For hexahedral meshing, we
extend this notion to 3D by allowing irregular edges so as to obtain
better element shapes while conforming to an irregular boundary.
However, the extension of such symmetry to 3D is nontrivial. Al-
though a few works have touched on the topic of 3D vector field
or frame field (represented as a tensor field) generation [Takayama
et al. 2008; Zhang et al. 2010a; Vyas and Shimada 2009; Yamakawa
and Shimada 2003], none of them specifically address a symmetry
property. 3D rotational-symmetry frame fields remain hitherto an
unexplored area. In this paper we constructed a description of local
frames using the spherical harmonic basis. Spherical Harmonics
(SH) have been used for 3D-rotation estimation in [Makadia and
Daniilidis 2003] and for optimal rotation alignment of 3D models in
[Kazhdan 2007], which we adapt for the purpose of 3D rotational-
symmetry.

In curved surface quadrangulation, the quad edges are often ex-
tracted as isocurves of a piecewise or periodic parameterization
given a cross field [Ray et al. 2006; Kälberer et al. 2007; Bommes
et al. 2009; Zhang et al. 2010b]. Our 3D parameterization can be
seen as an extension of [Bommes et al. 2009] and [Zhang et al.
2010b].

Theoretically, given a quadrilateral mesh with an even number of
quadrilaterals representing the boundary of a domain homeomor-
phic to a sphere, it is known that a topological hexahedral mesh
exists [Eppstein 1996]. It is further proved by [Carbonera and
Shepherd 2010] that the quadrilateral mesh can be turned into the
boundary of a hexahedral mesh with all edges being line segments,
although the faces are not guaranteed to be planar. Given recent ad-
vances in quadilateral meshing (e.g., [Bommes et al. 2009; Zhang
et al. 2010b]), it is conceivable that we can turn any triangle mesh
that bounds a simply connected domain into a hexahedral mesh
by first constructing a quadrangulation of the boundary. How-
ever, to get high quality hexahedral meshes with feature alignment,
well-shaped hexahedra, and sizing control, experienced engineer-
ing may prefer user-guided or semi-automatic decomposition of the
3D shape into simple sub-volumes, which can then be automati-
cally decomposed into hexahedral meshes [Roca 2009]. Simple
sub-volumes generated by divide-and-conquer can be decomposed
by algorithms such as mapping [Cook and Oakes 1982], submap-
ping [Ruiz-Gironés and Sarrate 2010], and sweeping [Scott et al.
2005], which work only on specific topological and geometric types
of volumes. Multi-block approaches rely on user-input (e.g. [Point-
wise 2009]) to create a very coarse hexahedral mesh, with each hex-
ahedron subdivided into a structured hex mesh subsequently. Fully
automatic hexahedral meshing methods, such as grid-based meth-
ods, decomposition-based approaches, and outside-in algorithms,
generally cannot achieve high mesh quality and boundary sensitiv-
ity with reasonable speed (cf. surveys such as [Tautges 2001; Shep-
herd 2007]). Our hexahedron-dominant meshing uses the Morse-
Smale Complex to construct the surface quadrangulation, then fol-
lows the framework presented in [Meshkat and Talmor 2000].

2 Cross-Frame Field in SH Representation

As in recent approaches to surface quadrangulation, we explicitly
construct a smooth frame field for orientation of the edges in the tar-
get mesh. N-RoSy surface vector fields and cross fields have been
successfully used as the frame fields on surfaces. It is a natural
idea to extend the cross frame representation used in the method by
[Bommes et al. 2009] to 3D. However, the integer problem involved
in the 3D case is much more complicated than in the 2D case. For
the extension of a 4-Symmetry field, there are 24 possible transfor-
mations in the symmetry group. It also requires at least two vector
fields (orthogonal to each other) to determine the directions of the
three axes instead of the single vector field in 2D. Unlike rotations
in 2D, 3D rotations form a noncommutative 3 dimensional group
(SO(3)), rendering the optimization procedure much more diffi-
cult than rounding floating point numbers in 2D. Thus, instead of
the explicit representation, we propose a spherical harmonics-based
representation, which handles the desired symmetry implicitly.

2.1 Cross-Frame in the Volume

Analogous to the 2D cross-frames (4-RoSy vectors) used for quad-
rangulation of surfaces, a 3D cross-frame field should possess the
following properties:

1. Cubic symmetry: the frame produced by rotating around any
of its axes by multiples of π/2 is treated as an equivalent
frame.

2. Smoothness: The frame fields have small spatial gradients,
which implies that the resulting edge orientation would be
smooth.

3. Normal alignment: at the boundary, one of the frame’s axes
is parallel to the normal of the boundary, which forces the
cells of the hexahedral mesh to align properly with the given
boundary surfaces.

Cubic symmetry is the key to frame field optimization. A 3 × 3
rotation matrix R = [x, y, z] applied to the standard global refer-
ence frame is a straightforward choice for the representation of a
local reference frame, where x, y, z ∈ R3 are the axes of its lo-
cal frame. We define a 3D cross-frame to be the equivalence class
of frames which can be obtained from R through rotations in the
rotation symmetry group of a cube,

F (R, r1, r2, r3) = RR
r1 π/2
X R

r2 π/2
Y R

r3 π/2
Z (1)

where Rr∗ denotes the matrix for the rotation around Euclidean
axis ∗ by r (i.e., a permutation matrix with possible changes to
the signs when r is a multiple of π/2). We denote all of the ro-
tation matrices associated with R by this symmetry group as a set
[R] = {F (R, r1, r2, r3)|r1, r2, r3 ∈ {0, 1, 2, 3}}, and define a
cross-frame by such a set. Therefore, [R] = R[I], where I denotes
the identity matrix and [I] the rotation matrices associated with I
by this symmetry group. Thus, each cross-frame contains the same
number of frames as [I]. For each R ∈ [I], we can choose x from
positive and negative directions along axes X , Y , or Z, and choose
y from any four of those orthogonal to x. As z is completely de-
termined by z = x × y, we have 6 × 4 = 24 possibilities in each
cross-frame.

2.2 Descriptor Function

To avoid mixed integer programming for the optimization in the
above representation, we need an equivalent descriptor for all the
elements in [R]. Such a descriptor leads to a proper difference
measurement between two cross-frames for optimization of the
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Figure 2: The visualization of the spherical function defined in
Equation 2 and the spherical basis functions involved in its SH rep-
resentation.

smoothness. For efficiency and the simplicity in handling bound-
ary conditions as we discuss in Section 2.4, the descriptor that we
designed for [R] is a function f[R](s) defined on the unit sphere
S2 = {s ∈ R3| ‖s‖ = 1}:

f[R](s) = h(RT s), (2)

where h(t) = t2xt
2
y + t2yt

2
z + t2zt

2
x. For any M ∈ [I], h(MT t) =

h(t), because M only changes the orders and signs of tx, ty , and
tz . Given any R1, R2 ∈ [R], we have M = R−1

2 R1 ∈ [I]. Thus
h(RT1 s) = h(MTRT2 s) = h(RT2 s), and the above definition does
not depend on the choice of R. Through examining the first and
second derivatives, it can be observed that the maxima are located
in directions towards the eight corners of the axis aligned cube cen-
tered at the origin, and the minima are located in directions towards
the centers of the faces of the same cube. As shown in Figure 2, it
resembles a cube with a smooth chamfer angle.

The difference between two cross-frames [Ra] and [Rb] can be for-
mulated naturally as an integration over the sphere,∫

S2

(
f[Ra](s)− f[Rb](s)

)2
ds. (3)

The difference is 0 if and only if [Ra] = [Rb], since the maxima of
the two functions will not be aligned if [Ra] 6= [Rb], resulting in a
non-zero integral.

2.3 A Primer on Spherical Harmonics

The above function f[R](s) can be converted to a spherical har-
monic representation for efficiency. Before we discuss the actual
representation, we briefly go over the relevant basics of spherical
harmonics. For a more detailed exposition, see [Green 2003].

In the classical Fourier transformation of periodic 1D functions (or
equivalently functions defined on the unit circle), one represents a
smooth function by a linear combination of basis functions that are
eigenfunctions of the Laplace operator ∆ (i.e., the second deriva-
tive), i.e., solutions to ∆f + λf = 0. If we parameterize the unit
circle using angle θ, the basis functions are simply sin(lθ)’s and
cos(lθ)’s, where l is a non-negative integer, and l2 is the eigenvalue
λ associated to sin(lθ) and cos(lθ).

Extending to the unit sphere S2, we can construct an orthogonal
basis for spherical functions using eigenfunctions of the Laplace-
Beltrami operator ∆S2 (which is, again, a mixture of second deriva-
tives). It can be shown that the eigenvalues are l(l + 1), where l is
a non-negative integer. The eigenspace associated with band l is
spanned by the mutually orthogonal eigenfunctions Y ml (called the
spherical harmonics), where m = −l, ..., 0, ..., l. In the following,

we use the real number version of the spherical harmonics Y ml . See
[Green 2003] for the actual expression of Y ml .

We may regard l as the “frequency” of the basis function, and re-
gard the representation of a function f by its spherical harmonics
coefficient f̂ as decomposing the signal into components of differ-
ent frequencies. Since ∆S2 is rotation-invariant, we will not change
the frequencies by rotating any spherical function. Thus, a spher-
ical function rotated by R has its spherical harmonics coefficients
mapped to another set of spherical harmonics coefficients by a lin-
ear transformation denoted by R̂, which is block diagonal, as band
l coefficients are mapped to band l coefficients.

In practice, R̂ for an arbitrary rotationR is often performed through
its ZYZ Euler angles representation for the following reasons. First,
a rotation around the Z axis by an arbitrary angle RθZ assumes a
simple form due to the symmetry of Y ml . Second, a rotation around
the Y axisRθY can be achieved byR−π/2X RθZR

π/2
X , and the rotation

around the X axis by ±π/2 is also of a simple form.

2.4 Spherical Harmonics Representation

Given a rotation matrix R(α, β, γ) = RγZR
β
YR

α
Z represented in

ZYZ Euler angles, we can compute the corresponding spherical
harmonic coefficients for f[R](s) as follows,

f̂[R] =
(
R̂γZR̂

−π/2
X R̂βZR̂

π/2
X R̂αZ

)
ĥ

= R̂(α, β, γ)ĥ,
(4)

where f̂[R] (ĥ, resp.) denotes the SH transformation of f[R] (h,
resp.). Thus, we obtain the following easy-to-compute equivalent
difference measurement,∫

S2

(
f[Ra](s)− f[Rb](s)

)2
ds = ‖R̂aĥ− R̂bĥ‖2 (5)

Note that the function f[I](s) = h(s) can be losslessly projected
onto three spherical harmonics bases in band 0 and band 4:

f[I] = −2
√
π

15

(
Y 0

4 +

√
5

7
Y 4

4 + 16
√
πY 0

0

)
. (6)

The shape of Y 0
4 and Y 4

4 is shown in Figure 2. If we omit the
band 0 component Y 0

0 , which is constant on the sphere and has
zero contribution to the difference measurement, the above equation
implies that any function obtained from a rotation also only has
coefficients in band 4. Thus, we only need the band 4 coefficients
in Equation 5, which means that the dimension of the vector f̂ to
store the coefficients is 9, and R̂ can be stored as a 9 × 9 matrix.
After scaling it for simplicity, we can replace the original f[I] by
the following form without changing the difference measurement
(except for a constant factor),

f[I] =
√

7Y 0
4 +
√

5Y 4
4 . (7)

This simplification further reduces the computational cost signifi-
cantly, because we only need to evaluate two columns in R̂ for the
smoothness optimization procedure based on the difference mea-
surement.

The requirement of normal alignment leads to the following simple
equation using our spherical harmonic representation.
Lemma. The corresponding frame is aligned with z direction, iff
f̂(4), i.e. the coefficient for Y 0

4 , is
√

7.
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Here, we use f̂(4 + m) to denote the coefficient in front of Y m4 .
The proof of the Lemma is provided in the Appendix.

Thus, the alignment of the cross-frame F with normal n can be
expressed as

f̂[Rn→z ](4) = (R̂n→z f̂[I])(4) =
√

7 (8)

where Rn→z is a rotation which rotates n to axis z, and the
ZYZ angle (α, β, γ) can be found from the equation n =
Z(−α)Y (−β)Z(−γ)z, with one of solutions being

α = −atan2(ny, nx), β = −acos(nz), γ = 0 (9)

2.5 Discretization and Numerical Method

The given volume Ω is first tessellated into tetrahedra {TETj} using
NETGEN [Schöberl 1997]. To precisely define the surface align-
ment constraints, especially when there are sharp surface features,
we sample the fields at the (bary)center of each face in this tetra-
hedral mesh. In such a discretization scheme, we denote the cen-
ter of face i as a face node pi, and associate it with ZYZ angles
Φi = (αi, βi, γi) to represent the cross-frame at pi.

Simply summing up the cross-frame difference for each pair of im-
mediately adjacent variable nodes into the global smoothness mea-
surement may lead to improper weighting, especially for meshes
with non-uniform sampling densities. We instead use the L2-
integral of the gradient of the spherical harmonic coefficient over
the whole volume as follows, similar to the Dirichlet energy∫

Ω
|∇ψ|2 of scalar field ψ.

For each tetrahedron TETj with nodes {pi}, i = 1, · · · , 4 on its
four faces, we evaluate their spherical harmonic representation of
the cross-frame from {Φi}. We use a piecewise-linear spheri-
cal harmonic coefficients field f̂ , linear within each TETj . Thus,
∇f̂ [k], the gradient of its kth coefficient, is constant within each
tetrahedron. Given the values at the barycenter of each face, we
can obtain the same constant gradient using the piecewise-linear
(Crouzeix-Raviart) basis wi associated to pi,

∇f̂(k) =

4∑
i=1

f̂pi(k) ∇wi. (10)

The point-wise smoothness measurement can be evaluated as

Es(TETj) = Es(p) =

8∑
k=0

∥∥∥∇f̂(k)
∥∥∥2

, p ∈ TETj , (11)

which is constant within each tetrahedron.

The global smoothness measurement is therefore

Es =

∫
Ω

Es(p)dp =
∑

TETj

volume(TETj)Es(TETj). (12)

In this discretization scheme, the alignment energy can be formu-
lated as

Ea =

∫
∂Ω

‖(R̂np→z f̂p)(4)−
√

7‖2dp

≈
∑

TRIi∈∂Ω

area(TRIi)‖(R̂ni→z f̂pi)(4)−
√

7‖2,
(13)

where TRIi is the ith surface triangle, and ni and pi are its normal
and center position respectively.

Since Es and Ea are integrated over the volume and surface re-
spectively, to make the result independent of scaling, we balance
them by a weighted average: (Note that the volume integral of the
gradient squared is of the unit of length)

Ef =
Es

volume(Ω)1/3
+ wa

Ea
area(∂Ω)

, (14)

where wa is the relative weighting for the alignment constraint.

As an initialization to the non-linear optimization, we first opti-
mize Equation 14 with respect to arbitrary f̂ (i.e., the band 4 SH
coefficients). This amounts to solving a linear system akin to a
Laplace equation of f̂ . We then compute the rotation generating the
SH coefficients closest to the solution of the linear system for each
node. The choice on the relative weight for surface (wa) can lead to
less/no internal singularities (polycube-like topological structure) at
around 10−2, or more internal singularities at around 102. With this
initial cross-frame field, we employ the L-BFGS method (an imple-
mentation based on alglib [Bochkanov n.d] and dlib [dlib n.d]) to
minimize the above energy (wa = 103) with the variables {Φi}.
The solver converges to a minimum in about 1000 iterations in most
cases (see Figure 3). We illustrate the convergence behavior in Fig-
ure 1 with the example on the sculpture model with a simple uni-
form initial frame field. In the top row, we use the ZYZ angles at
each node to rotate the standard cube with one constant color per
face. Although adjacent cross-frames are similar, the representa-
tive frame chosen out of the 24 possible frames may result in very
abrupt changes in color in such a visualization. This shows that
our cross-frame representation in spherical harmonics is superior to
common local frame representation, because the latter representa-
tion requires one to align adjacent local frames before measuring
their differences. It could also be noticed in this figure that the
boundary constraints for normal alignment properly guide smooth-
ing of the internal 3D cross-frame. Note that the residual will not
be reduced to zero for smoothly changing frame field, since it is the
integral of the squared gradient field.

1000

2000

3000

4000

5000

6000

7000

8000

9000

100 101 102 103

bunny fandisk

rockarm sculpture

sphere

Figure 3: 1000 L-BFGS iterations are enough for our results.

Algorithm 1 Pseudocode for constructing the cross-frame field.

f̂0 ← arg minf̂ Ef (f̂)

for all rotation Φi = (αi, βi, γi) do
Φ0,i ← arg minΦi

‖f̂0,i − R̂(Φi)ĥ‖2
end for
repeat

L-BFGS iteration for arg minΦ Ef (f̂[R(Φ)])

until −∆Ef

Ef
< 10−5

143:4        •        J. Huang et al.
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Figure 4: The 3D cross-frames restricted to the surface in Line Integral Convolution visualization. Only the normal alignment constraints
are used for the results except the last one, which is constructed according to the surface 2D cross-frame field for comparison ([Ray et al.
2006]).

3 Results and Discussion

In this section, we first visualize the 3D cross-frame field, then
demonstrate its application to hexahedron-dominant mesh gener-
ation. The performance statistics for our algorithm can be found in
Table 1. Note that the memory and the time complexity for each
iteration is near linear in the number of the tetrahedrons.

model tetrahedron memory iteration time
sphere 194k 1.1G 838 21.8m
fandisk 301k 1.8G 536 27.3m
bunny 363k 2.3G 811 37.3m

sculpture 507k 3.0G 667 76.0m
rockarm 947k 5.8G 928 155.9m

Table 1: Performance statistics for our algorithm. The time is mea-
sured on a computer with Intel Core i7 920 processor and 18GB
memory using two threads.

3.1 Field Visualization

Visualization of a cross-frame field in 3D is much more challenging
than in 2D. Therefore, we convert our field into a 2D cross-frame
on the surface by restricting the 3D cross-frame to the local tangent
plane at each boundary point. Then the method in [Palacios and
Zhang 2011] is used to visualize the resulting 2D cross-frame field
in Figure 4 and the companion video. It can be observed that the
surface component is of high quality. This also indicates that the
normal alignment works well, otherwise the tensor field would have
been skewed or not aligned with the features.

In the last two fandisk results shown in Figure 4, we compare our
results to those of [Ray et al. 2006]. Since in our case the sur-
face cross-frame is also constrained inside of the volume, there are
some differences between our method and the results of existing 2D
cross-frame field generation methods. If required by the applica-
tion, we may enhance the alignment by setting a desired surface 2D
cross-frame field (generated by, e.g., an automatic quad meshing
method) as an additional constraint on the surface. We did not ap-
ply the additional 2D cross-frame boundary condition on any other
results in this paper.

To get a clear picture of the cross-frame field in the interior of the
object, we also visualize it by tracing the streamlines along six di-
rections from a seed point until they reach the boundary or exceed a
given length. In general, it is impossible to align the cross-frame
globally, therefore we only align the nearby cross-frame locally
when tracing the line. As shown in Figure 5, the internal cross-
frame is quite smooth, and intersects with the boundary surface ei-
ther perpendicularly or tangentially. Some streamlines may turn

through a large angle when in a singularity region. However, as
there are few singularities in our 3D cross-frame fields, this case
rarely occurs.

Figure 5: Streamline tracing of the 3D cross-frame field. The seed
points are indicated by small black spheres. The fandisk result in
the upper row is applied with normal alignment constraints, and the
bottom one is created by fixing the cross-frame field on boundary
according to a surface 2D cross-frame field.

Similar to the definition in CubeCover [Nieser et al. 2011], we
call an edge singular if tracking a frame around a small closed loop
around the edge results in a nontrivial transformation. More pre-
cisely, we pick an arbitrary orientation for each cross-frame, find
the transition rotation in [I] that aligns the frames at each pair of
adjacent nodes best, evaluate the product of the transition rotations
along a closed loop around each edge formed by the nodes on the
faces adjacent to that edge, and mark the edge as a singularity if the
product is not the identity matrix. We visualize the singularities as
black edges in Figure 6. In some cases, the resulting cross-frame
field contains no internal singularity lines, which means that the
topology is similar to that of a volumetric polycube.

3.2 Hexahedral Dominant Meshing

Given the boundary aligned 3D cross-frame field from the op-
timization procedure, one may attempt to generate hexahedral
meshes by extending surface quadrangulation techniques. Consid-
ering the large number of cells in a volumetric mesh, we choose
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Figure 6: The singularity edges in the volume are rendered black.
The pseudo-color in the volumetric rendering indicates the local
residual ofEs (increasing from blue to red). The bottom left fandisk
result is constructed under the additional boundary constraint of
aligning to a 2D cross-frame field.

the mix-integer programming method [Bommes et al. 2009] over
the wave-based method [Zhang et al. 2010b] to avoid large-scale
non-linear optimization.

As in the mixed integer quadrangulation [Bommes et al. 2009],
the first step of the hexahedral remeshing is cutting the tetrahedral
mesh into a topological ball with all singularities located on the
new boundary. For this purpose, we interpolate the cross-frames
defined at the centers of triangles to cross-frames at the center of
the tetrahedron by simple averaging. Then, we construct a dual
minimal spanning tree (MST) with the cross-frame difference mea-
sure between the adjacent tetrahedra as edge weights. After that,
we start from a random tetrahedron, and choose a representative
frameR ∈ [R] in each tetrahedra by choosing the one closest to the
adjacent traversed tetrahedron in a breadth first search. For each
face not in the dual MST, we find the best rotation to align the two
local frames in its adjacent tetrahedra, and setup integer constraints
for the globally smooth parameterization. If the rotation is an iden-
tity matrix, we glue the adjacent tetrahedra as long as it keeps the
Euler characteristic to 2, which reduces the number of integer con-
straints as in [Bommes et al. 2009]. Integer constraints are also
introduced for the surface nodes to avoid incomplete cells near the
boundary. There may be conflicts in the constraints since we do not
perform a thorough topological analysis. So, the integer constraints
for the translational jump of parameter u after aligning the rotations
in tetrahedra p and q, up − uq = kpq, kpq ∈ Z is implemented as a
penalty added to the target function for the alignment of the frame
field and parameter gradients, in the form of w(up − uq − kpq)2,
where w is the penalty weight. We iteratively solve for the param-
eterization with mixed-integer programming similar to [Bommes
et al. 2009]. Note that in order to make the cubes in Figure 1 accu-
rately spread along the cross-frame field, we do not enforce any of
the afore-mentioned integer constraints.

Following [Lévy and Liu 2010], we use the method by [Meshkat
and Talmor 2000] to construct a hexahedron-dominant mesh. Given
the above volumetric parameterization, we use Morse-Smale Com-
plex (MSC) [Edelsbrunner et al. 2001; Dong et al. 2006] to con-
struct the surface mesh. To ensure the continuity of the scalar field
cos(πu) cos(πv) cos(πw) on the surface, we multiply the param-

0 60 120 180 0 60 120 180 0 60 120 180

1708, 153, 210 5103, 550, 579 2458, 417, 436

Figure 7: The sectional views of the hexahedral dominant meshes
generated from the 3D cross-frame field. The blue and red curves
indicate the angle distributions for all the triangular and quadrilat-
eral faces respectively. We list the numbers of hexahedra, pentahe-
dra and tetrahedra separately at the bottom.

eterization (u, v, w) by 2. Then we extract internal grid points
with integer parameterization coordinates, construct an intermedi-
ate tetrahedral mesh from the surface mesh and these interior points,
and finally merge sets of adjacent tetrahedra matching specific pat-
terns into a hexahedron-dominant mesh. The results are illustrated
in Figure 7.

4 Conclusion

We present a 3D cross-frame representation and formulate a tar-
get function for the optimization of a boundary-aligned smooth 3D
cross-frame field. Our work extends the 4-RoSy vector field, or
cross-frame, on 2D surfaces to 3D through a novel spherical har-
monic representation. With such a representation, we can measure
the difference between two 3D cross-frames, each regarded as an
equivalence class containing 24 different frames. Furthermore, we
have proven that the boundary alignment constraint, which is rota-
tionally invariant in the normal direction, can be simply written into
a linear equation for the SH represenation. With these constraints
of object surface normal alignment alone, our method can gener-
ate high quality 3D cross-frame fields in the interior of a 3D object
with surface feature alignment. Additional constraints can certainly
be applied to further control the field generation, such as specifying
the orientation at certain locations.

We demonstrate the resulting cross-frame field using several visu-
alization methods. In addition, we extended [Bommes et al. 2009]
to apply the cross-frame field in automatic hexahedron-dominant
mesh generation. There can be conflicting integer constraints in the
parameterization equations due to the lack of a thorough topolog-
ical analysis. However, with just the cross-frame field, the mesh
contains non-hexahedron elements in a small percentage of the vol-
ume, and preserves the features well.

A major limitation of this work is a possible high computational
cost of the 3D cross-frame field optimization. There is no guar-
antee for finding the global minimum. We will explore alternative
optimization and initialization schemes for better performance and
result quality.

A relevant application worthy of further exploration is the auto-
matic generation of pure hexahedral meshes based on our 3D cross-
frame field. Most of the latest quadrangulation methods start from
a surface cross-frame field, and the quality of the field is crucial
for the final result. Our work provides a solution for the first
step in extending these methods to 3D. We will explore modifi-
cations to the optimization target function, to automatically gen-
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erate frame field applicable to the CubeCover hexahedralization
method [Nieser et al. 2011], or to automatically generate the ori-
entation field with all singularities restricted to the boundary for the
volumetric polycube method [Gregson et al. 2011].

In addition to the application to hexahedral remeshing, the 3D
cross-frame can also be used for solid texture synthesis and other
applications. As with the numerous applications of symmetric vec-
tor fields on surfaces, this new methodology may open a valuable
line of research into ways to control the cross-frame field with con-
straints designed for application-specific requirements.
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Appendix

Proof to the Lemma Given any rotation R(α, β, γ), using the
computer algebra system Maxima, it can be easily verified that
f̂ [4] =

√
7 is equivalent to:

(cos (4α) + 7) cos (4β) +

(4− 4 cos (4α)) cos (2β) + 3 cos (4α)− 11 = 0
(15)

From Equation 15, we have

(p+ 7)(2q2 − 1) + (4− 4p)q + 3p− 11 = 0

⇒p(2q2 − 4q + 2) + (14q2 + 4q − 18) = 0

⇒p(q2 − 2q + 1) = −(7q2 + 2q − 9)

⇒p(q − 1)2 = −(q − 1)(7q + 9),

(16)

where p = cos(4α), q = cos(2β).

One solution to the above equation is q = 1, i.e. β = nπ, rotating
around y axis by nπ. In this case, the frame is aligned with z axis.

If q 6= 1, we have,

p = −7q + 9

q − 1
. (17)

Since q ∈ [−1, 1), the only possible solution is q = −1, p = 1, i.e.
β = (n+ 0.5)π, α = 0.5nπ. In this case, the frame is also aligned
with z axis.

Therefore, if f̂ [4] =
√

7, the frame is aligned with z. The converse
is trivial.
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