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Analytic Double Product Integrals for
All-Frequency Relighting

Rui Wang, Minghao Pan, Weifeng Chen, Zhong Ren, Kun Zhou, Wei Hua, Hujun Bao*

Abstract—This paper presents a new technique for real-time relighting of static scenes with all-frequency shadows from complex
lighting and highly specular reflections from spatially-varying BRDFs. The key idea is to depict the boundaries of visible regions
using piecewise linear functions, and convert the shading computation into double product integrals – the integral of the product
of lighting and BRDF on visible regions. By representing lighting and BRDF with spherical Gaussians and approximating their
product using Legendre polynomials locally in visible regions, we show that such double product integrals can be evaluated in
an analytic form. Given the precomputed visibility, our technique computes the visibility boundaries on the fly at each shading
point, and performs the analytic integral to evaluate the shading color. The result is a real-time all-frequency relighting technique
for static scenes with dynamic, spatially-varying BRDFs, which can generate more accurate shadows than the state-of-the-art
real-time PRT methods.

Index Terms—analytic double product integral, all frequency relighting.
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1 INTRODUCTION
All-frequency direct illumination effects, such as
sharp shadows from environmental lighting and high-
ly specular reflections from spatially-varying BRDFs,
are very important for realistic image synthesis. These
effects, however, are difficult to achieve in interac-
tive applications due to the high computational cost
caused by the interactions of complex lights, occluders
and materials.

During the past few decades, Precomputed Radi-
ance Transfer (PRT) [1], [2] has achieved great suc-
cess in interactive rendering with natural lighting
and shadowing for static scenes by precomputing
the objects’ response to lighting represented in ba-
sis functions. In particular, the triple product inte-
gral technique proposed by Ng et al. [3] provides a
framework for fast rendering of sharp shadows and
specularities with changing view. In this framework,
the lighting, visibility and BRDF are all represented
in wavelets, and the outgoing radiance is comput-
ed as a triple product integral of the three terms.
Wang et al. [4] generalized this framework to render
dynamic, spatially-varying BRDFs by using spherical
Gaussians as the basis functions. Real-time frame rates
are achieved by approximating the triple product
(i.e., attenuating the product of lighting and specular
BRDF by the ambient term of visibility), leading to
inaccurate shadows cast on glossy surfaces (see Fig. 9).

In this paper, we aim at real-time relighting of stat-
ic scenes with all-frequency shadows from complex
lighting and highly specular reflections from spatially-
varying BRDFs. Our main contribution is an analytical
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double product integral technique for computing the
shading integral of the product of lighting, visibility
and BRDF. Unlike previous PRT methods that repre-
sent visibility in basis functions, our technique depicts
the boundaries of visible regions using piecewise
linear functions, and computes the shading as an
integral of the product of lighting and BRDF on vis-
ible regions described by the boundary functions. By
representing lighting and BRDF with spherical Gaus-
sians and approximating their product using Legen-
dre polynomials locally in visible regions, we show
that these double product integrals can be evaluated
analytically in a closed form of the visibility boundary
parameters and the coefficients of lighting and BRDF
approximations. Given the precomputed visibility, our
technique computes the visibility boundaries on the
fly at each shading point, and performs the analytic
integral to evaluate the shading color. The result
is a real-time all-frequency relighting technique for
static scenes with spatially-varying BRDFs, which can
produce more faithful shadows than the state-of-the-
art all-frequency PRT method [4].

In the rest of the paper, we first briefly review
related work. In Section 3, we introduce the analytical
double product integral formulation, followed by the
description of the visibility evaluation algorithms in
Section 4. Section 5 details the rendering algorithm
and Section 6 gives experimental results. The paper
concludes with some discussions about limitations
and future work in Section 7.

2 RELATED WORK
This paper focuses on interactive rendering of
spatially-varying BRDFs under environmental light-
ing. Here we briefly review techniques that are most
relevant to our work.
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Fig. 1: Results rendered at 10-23 fps using our technique under complex lighting. Interactive relighting of
static scenes with dynamic, spatially varying BRDFs are supported, and the shadowing effect is more accurate
than the start-of-the-art interactive techniques.

PRT achieves realtime rendering under dynamic
environment lighting by precomputing and storing
object’s response to lighting in a low order spherical
harmonics (SH) basis [1] or a wavelet basis [2]. A lot
of follow-on techniques have been proposed to render
glossy effects with changing view [3], [5], [6], dynamic
BRDFs [7], [8], [9], and soft shadows in dynamic
scenes with moving or deformable objects [10], [11],
[12]. See the recent survey by Ramamoorthi [13] for a
comprehensive review.

The triple product wavelet integral technique pro-
posed by Ng et al. [3] is able to render all-frequency
shadows and highly-specular reflections at interactive
frame rates without any restrictions on viewing direc-
tions. It represents the lighting, visibility and BRDF in
a wavelet basis. Due to the huge data size of wavelet-
represented BRDFs, it is not practical to handle dy-
namic and spatially varying reflectance. Recently, in-
spired by the Lightcuts approach [14], [15], Cheslack-
Postava et al. [16] proposed visibility cuts to compute
the triple product integral of lighting, visibility and
dynamic BRDF samples to achieve interactive per-
pixel shading. This method, however, cannot handle
highly-specular surfaces.

More recently, Wang et al. [4] proposed a real-
time all-frequency rendering algorithm for spatially-
varying BRDFs. They also employ the triple product
integral framework, but used different basis functions
(i.e., spherical Gaussians), which are more compact,
allow detailed textures, and are closed under products
and rotations. To achieve real-time frame rates, the
triple product is approximated by attenuating the
product of lighting and specular BRDF by the ambient
term of visibility, leading to inaccurate shadows cast
on glossy surfaces.

Xu et al. [17] and Wang et al. [4] represent spatially-
varying visibility with a nonlinear representation
called spherical signed distance function (SSDF), which
is stored at each mesh vertex and is interpolated per-
pixel over triangles. The benefit of this representation
is that it provides ghost-free interpolation. We also use
SSDFs, but only as an intermediate representation. At
runtime, a boundary extraction method is performed
to extract the piecewise-linear boundary functions of
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Fig. 2: (a) The hemispherical coordinate of ω, i.e.
ω = (cosφsin θ, sinφsin θ, cos θ). The y+ axis is taken
along the normal. (b) An example visible region on the
hemisphere. (c) The visible region in the (θ, φ) space.
(d) The subdivided visible region.

visibility boundaries from SSDFs.

3 ANALYTIC DOUBLE PRODUCT INTEGRAL-
S

In this section, we formulate the shading computation
as a sum of analytical double product integrals.

The direct lighting at point x in viewing direction
ωo can be computed by the following integral:

Lo(x, ωo) =
∫
Ω2π

Li(x, ω)f(x, ω, ωo)V (x, ω) (n · ω)dω,

(1)
where Lo is the outgoing radiance, Li is the inciden-
t lighting, f(x, ω, ωo) is the spatially-varying BRDF,
V (x, ω) is the visibility function, and (n · ω) is the
cosine term. The visibility is a binary function that
indicates whether the incident direction ω is blocked
by scene geometry or not. For notation simplicity,
we will omit the dependency on the shading point
x hereafter.
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Fig. 3: The linear approximation of an
1D Gaussian. The example Gaussian is
G(x) = e10(cos(x)−1),where cos(x) = p · ω. We
uniformly partition the Gaussian in the angular
space, i.e. x space, and use linear functions defined
in cos(x) space, i.e. αi + βi cos(x), to approximate
the Gaussian. (a) The range [−1, 1] in the x space
is uniformly partitioned into eight regions. In
each region, the Gaussian is approximated by a
linear function, depicted as a red curve. (b) The
approximation is a piecewise linear function in the
cos(x) space.

Suppose that (θ, φ) is the hemispherical coordinate
of direction ω, i.e. ω = (cosφsin θ, sinφsin θ, cos θ),
where the normal is taken along the y-axis, Fig. 2(a).
Let us consider the integral on a visible region Φ,
which is enclosed by two boundary curves, θ =
ψ0(φ) and θ = ψ1(φ), defined within the range of φ0

and φ1. See Fig. 2 (b) and (c) for an illustration. The
integral can thus be computed as

LΦ
o (ωo) =

∫ φ1

φ0

∫ ψ1(φ)

ψ0(φ)

Li(ω)f(ω, ωo)(n · ω)sin θdθdφ.

(2)
This is a double product integral of the lighting and

BRDF since the visibility function is no longer in the
integral. We can compute the outgoing radiance Lo
by adding up the integrals on all visible regions. In
the following, we first introduce a cell-based visibility
boundary representation, and then give the analytic
form of the double product integral.

Visibility Boundary Representation We subdivide
the complex visible regions into simpler cells with-
in which double product integrals are computed.
As shown in Fig. 2(d), the 2D space spanned by
(θ, φ) is recursively subdivided into cells until the
boundary of the visible region within each cell can
be accurately approximated by a linear function, i.e.,
θ = ψj(φ) = kjφ+ bj , for the j-th cell. We will detail
the subdividing algorithm in Section 4. For now let
us assume the visible regions are readily subdivided.

As illustrated in Fig. 2(d), the visible region within
a cell is bounded by the cell boundaries and the linear
function. Therefore, Eq. (2) can be written as

Ljo =

∫ φj
1

φj
0

∫ kjφ+bj

θj0

Li(ω)f(ω, ωo)(n · ω)sin θdθdφ, (3)

where φj0 and φj1 are the minimum and maximum
values of φ of the cell respectively, and θ0 is the

minimum or maximum of θ of the cell, depending on
the relative position between the visible region and
the linear function. The overall shading integral on
visible regions is thus the sum of the double product
integrals on all cells. To make the notation clearer, we
will drop the j superscript in the following discussion.

Analytic Double Product Integral Following [4],
we represent the incident lighting and BRDF in spher-
ical Gaussians

Li(ω) =
∑
lGl(ω;pl, λl, µl),

f(ω, ωo) =
∑
mGm(ω;pωo

m , λωo
m , µωo

m ).
(4)

G has the following form

G(ω;p, λ, µ) = µeλ(p·ω−1),

where p is the lobe direction, λ is the lobe sharpness
and µ is the lobe amplitude.

Substituting Eq. (4) into Eq. (3), we get

Lo =

∫ φ1

φ0

∫ kφ+b

θ0

∑
l,m

Gl(ω)Gm(ω)(n ·ω)sin θdθdφ. (5)

According to the derivation in [4], the vector product
of two spherical Gaussians yields another spherical
Gaussian

G(ω;p1, λ1, µ1)G(ω;p2, λ2, µ2) = G(ω;
p′

||p′||
;λ′||p′||;µ′),

where p′ = (λ1p1 + λ2p2)/(λ1 + λ2), λ′ = λ1 + λ2 and
µ′ = µ1µ2e

λ′(∥p∥−1).
Therefore, we can rewrite the integral in Eq. (5) as

Lo =

∫ φ1

φ0

∫ kφ+b

θ0

∑
l,m

Gl,m(ω)(n · ω)sin θdθdφ. (6)

Now we approximate the spherical Gaussian locally
within each cell using linear functions (an approxima-
tion in 1D case is visualized in Fig.3).

G(ω;p, λ, µ) ≈ α+ β(p · ω). (7)

Substituting Eq. (7) into Eq. (6), we get

Lo ≈
∫ φ1

φ0

∫ kφ+b
θ0

∑
l,m(αl,m + βl,m(pl,m · ω))

· (n · ω)sin θdθdφ

=
∫ φ1

φ0

∫ kφ+b
θ0

(α∗ + (p∗ · ω)) · (n · ω)sin θdθdφ,

(8)

where α∗ =
∑
l,m αl,m, p∗ =

∑
l,m βl,mpl,m. It is

true, of course, that a higher order approximations
would be more accurate. However, the first order
approximation leads to a simple analytic form for the
integration in Eq. 8 that we can sum different lobe
centers, p∗

l,m, to a new direction p∗ before taking the
dot operation.

It can be easily proven that the integral in Eq. (8)
has an analytical solution, and can be evaluated as

Lo ≈ α∗A(φ0, φ1, θ0, k, b,n) +B(φ0, φ1, θ0, k, b,n,p∗),
(9)
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(a) Visibility (b) Distance field (c) Cells and visibili-
ty boundary

Fig. 4: (a) The original sampled binary visibility func-
tion. (b) The SSDF of such a visibility. (c) The extracted
adaptive boundaries from the SSDF. The SSDF is
represented in (θ, φ) space. The red color indicates
positive distance value and blue color indicates neg-
ative one.

where A(φ0, φ1, θ0, k, b,n) and B(φ0, φ1, θ0, k, b,n,p∗)
are analytical functions of parameters of
φ0, φ1, θ0, k, b,n and p. Please refer to the appendices
for the exact formulas and derivation.

4 VISIBILITY EVALUATION

In this section, we describe how to compute the
visibility boundary for static scenes.

We use the spherical signed distance function (SS-
DF) [4] as an intermediate visibility representation.
The SSDF at a surface point stores the signed angular
distance to the closest visibility boundary at each
direction ω (see Fig. 4). The function’s sign encodes
whether the direction ω is occluded or not. More
precisely, the SSDF is defined as:

D(ω) =


+ min
V (ω′)=0

arccos(ω′ · ω), if V (ω) = 1

− min
V (ω′)=1

arccos(ω′ · ω), if V (ω) = 0
,

Compared to the piece-wise linear visibility represen-
tation, SSDFs are easier to interpolate and compress.

Given a static scene, we first precompute the binary
visibility function at each surface vertex and convert
it to an SSDF. The precomputed SSDFs are then
compressed using PCA and stored at vertices as that
in [4]. At runtime, the SSDF at each shading point
is obtained via interpolation over the triangle which
the point lies in, and is used to extract the visibility
boundaries.

Visibility Boundary Extraction The visibility
boundaries of the scene might be very complex. To
extract the visibility boundaries from an SSDF, we
employ an iterative subdivision scheme in the (θ, φ)
space.Our approach is similar to that used in [18].
The (θ, φ) space is recursively subdivided into smaller
cells until the linear boundary extracted in each cell
is a sufficiently accurate approximation of the actual
visibility boundary determined by the SSDF. The ap-
proximation accuracy is controlled by a user-defined
threshold.
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Fig. 5: In each of the above cases, black refers to
occluded region. Each term on the right of a equal
sign corresponds to one double product integral. The
equation for the green line is given by θ = kφ + b
and the integral on each red region can be computed
according to Eq. (3).

For each cell, we first extract an isoline from the
SSDF using the marching squares algorithm, the 2D
analog of the marching cubes algorithm [19], then
evaluate the closeness between the extracted line and
the actual visibility boundary. This is done by sum-
ming up at a set of sample points within the cell the
squared difference between the distance reconstructed
from the extracted line and the exact distance. In our
current implementation, we use the squared differ-
ences at sample points in the cell – the cell center
and the midpoints of cell edges – to determine further
subdivision.

If the sum of the squared differences is greater than
a threshold, indicating that the extracted line does
not match the actual boundary well, we subdivide
the current cell into four equally-sized sub-cells. This
subdivision scheme will be described in details in
Section 5.

Determine Integration Ranges: Given the linear
boundary function of a cell, the integration ranges
in Eq. (5) can be determined by the intersections as
well as the relative position between the line and the
cell. Five basic cases of visibility regions in a cell are
depicted in Fig. 5. In each case, the double product
integral can be decomposed into integrals formulated
in Eq. (3) and computed respectively. All cases of the
isoline and cell can be derived from one of the above
cases.

5 RENDERING

During a preprocess, the environment lighting and
BRDFs are approximated with a set of spherical
Gaussians using nonlinear optimization [20]. And the
SSDF is precomputed at each vertex of the mesh and
compressed using PCA.

The runtime rendering pipeline consists of three
parts: deep frame buffer generation, visibility bound-
ary extraction and analytic double product integral
accumulation.

Deep frame buffer generation. Shading computa-
tion is performed per pixel. The position, local coor-
dinate frame, texture coordinate, material index and
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PCA coefficients for the SSDF are first interpolated
from the vertices of scene objects and rasterized into
a deep frame buffer.

Visibility boundary extraction. The adaptive al-
gorithm described in Section 4 is implemented in
CUDA and the pseudo-code is given in Algorithm 1.
The SSDF at the shading point is obtained by a dot
product of the PCA coefficients and the eigenvector
textures. The whole boundary extraction process is
performed in several iterations. In each iteration, cells
in active cells list are processed in batch. Not all cells
are subdivided. We only extract visibility boundaries
for cells that are neither completely inside nor out-
side the visible region. To determine the relationship
between cells and visible regions, we take a simple
but conservative test. We compute the SSDF distance
at the cell center which is compared with the spher-
ical distances from the cell center to cell corners. If
the center’s absolute SSDF value is greater than all
distances to cell corners, the closest visible region
boundary must be completely outside the cell, which
means we can compute the double product integral
over the whole cell. Otherwise, the cell is considered
to be subdivided into smaller cells which are stored
in next cells for the next iteration.

The subdivision process is determined by two fac-
tors. One is er, the closeness between the extracted
line and the actual visibility boundary as described in
Section 4. The other one is ea, the approximation error
of our linear approximation. While the nonlinearity of
spherical Gaussians may lead to inaccurate approxi-
mations in large cells, they can be locally approximat-
ed very well in small cells. The analytic expression
of the approximation error is given in Appendix A.
For each vector product of the spherical Gaussians of
the incident lighting and BRDF, we evaluate the ap-
proximation error in the cell, and subdivide the cell if
the error exceeds a threshold. er and ea are evaluated
sequentially and subdivision will be triggered once
one error test fails.

Analytic double product integral. The shading
integral is computed according to Eq. (8). The spher-
ical Gaussians used to approximate the environment
lighting and BRDF are iterated, and their vector prod-
uct Gaussians are determined and their parameters
are substituted into Eq. (9) to compute the shading
integral on each cell. The contributions of all cells
are finally summed up to yield the overall shading
integral at the shading point.

5.1 Optimizations and Implementation Details

Narrow spherical Gaussians often require intensive
subdivision and generate a large number of cells,
leading to high rendering cost. We separately process
the narrow Gaussians with λ > 400 from the result
of the nonlinear optimization [20]. This set of narrow
spherical Gaussians is referred to as Λ.

Algorithm 1 Adaptive Visibility Boundary Extraction

//SPLITCELL(parentCell, nϕ, nθ): divides
// parentCell into nϕ× nθ cells uniformly
// along the θ and ϕ axes.
//CELLRADIUS(cell): calculates the radius of cell.
//EVALUATEEr(cell,liso) computes the reconstruc-
// tion error of isoline liso in cell.
//EVALUATEEa(cell,lobes) computes the approxi-
// mation error of lobes in cell.

procedure VISIBILITYBOUNDARYEXTRACTION()
in in lobes, //in lobes list of all lobes of pixels.
in in cells, //in cells list of initial cells of pixels.
out out cells, //out cells stores cells for taking

// analytic double product integral.
begin
active cells← in cells
next cells← new list
// adaptive cell partition
for level j = 0 to maxLevel − 1
next cells.clear()
for each cell i in active cells in parallel

// sample at cell center
disc ← sample SSDF at center of celli
radius← CELLRADIUS(celli)
if disc >= radius then

// celli is entirely in visible region
out cells.add(celli,NULL)

else if disc > −radius || disc < radius then
if j==0 then

//generate 2× 4 top-level cells
next cells.add(SPLITCELL(celli, 2, 4))

else
liso = EXTRACTISOLINE(celli)
er = EVALUATEEr(celli,liso)
ea = EVALUATEEa(celli,in lobes)
if er > tr || ea > ta then

//errors exceed thresholds
next cells.add(SPLITCELL(celli, 2, 2))

else
out cells.add(celli, liso)

active cells← next cells
end

Let us first consider the diffuse component of the
BRDF. The vector product of a spherical Gaussian
with the diffuse component of the BRDF only changes
the lobe amplitude of the original Gaussian. For each
Gaussian in Λ, we define the local coordinate system
by aligning the z axis with its lobe direction. The
energy of the Gaussian in Λ is centralized in a nar-
row band of θ < θ0. In practice, we set the cut-off
inclination θ0 to preserve 95% of the Gaussian energy
and initialize the subdivision in this narrow band of
θ.

This optimization requires that a separate visibility
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(a) Reference (b) 1×1, vis. approx. (c) 1×1, difference×2 (d) 1×1, poly. approx. (e) 1×1, difference×32

(g) 2×8, vis. approx. (h) 2×8, difference×2 (i) 2×8, poly. approx. (j) 2×8, difference×32

(l) 4×16, vis. approx. (m) 4×16, difference×2 (n) 4×16, poly. approx. (o) 4×16, difference×32

(q) Adaptive,vis. approx.
17.5 Ave. cells.

(r) Adaptive,difference×2 (s) Adaptive,poly. approx. (t) Adaptive,
difference×32

Fig. 6: Error analysis of the piecewise linear visibility boundary approximation (”vis. approx.”) and the linear
approximation of spherical Gaussians (”poly. approx.”).

Scene BRDF Type #Pixels #Verts tI #Int. FPS
Fig. 9(b) Blinn-Phong (1 SG) 162486 46k 42ms 19.98 22.7
Fig. 1(b) Ward (1 SG) and measured card (1 SG) 184364 28k 45ms 22.8 21.2
Fig. 1(a) / Fig. 9(c) Ward (1 SG) and Cook-Torrance (1 SG) 173674 32k 58ms / 62ms 24.1 / 26.6 16.1 / 15.5
Fig. 1(c) Measured card (1 SG) and stain (5 SGs) 111147 21k 63ms / 69ms 35.7 / 38.1 14.9 / 13.7
Fig. 1(d) Ashikhmin-Shirley (7 SGs) and Phong (1 SG) 137799 30k 89ms 40.4 10.7

TABLE 1: Statistics of the test scenes. tI is the total time to extract the visibility boundary and compute the
analytic double product integrals. #Int. is the average integrals computed per pixel. We test our scenes under
under environment lighting and local lights. Performances with local lighting are listed after the slash.

boundary extraction pass for each narrow Gaussian,
and might not be a good trade-off if the support of the
Gaussian is wide. Therefore, for all the Gaussians not
in Λ, we still align the z axis with the normal of the
sample point, and initialize the subdivision from a 1×
4 grid of the entire [0, π2 ]× [0, 2π] space. Since the local
coordinate is independent of the spherical Gaussians,
only one visibility boundary pass is needed for all
these Gaussians.

For the specular component of the BRDF, we always
align the z axis with the lobe direction of the Gaussian
lobe of the BRDF. This is because the vector product
of the lighting Gaussians and the BRDF Gaussians
yields Gaussians whose lobe direction is near the lobe

direction of the BRDF Gaussian and lobe sharpness λ
is higher than the BRDF Guassian. We can also limit
the subdivision of cells within this narrow band of the
BRDF Guassian and cut off θ to preserve 95% of the
lobe energy.

6 EXPERIMENTAL RESULTS

We implemented the described algorithm on a PC
with Intel CoreTM2 Duo 2.8 GHz CPU and an NVIDIA
GeForce 280 GTX graphics card. All images are gen-
erated at a 800× 600 resolution.

The statistics of our test scenes are reported in
Table 1. The spatial varying BRDF textures are ob-
tained from the websites of the authors of [21], [22].
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(a) 1×1, 4.23ms (b) 2×8, 21.1ms (c) 4×16, 65.1ms (d) Adaptive, 24.1ms (e) Reference

Fig. 7: Comparing our rendering results (d) with uniform partitioning at similar performance (b) and similar
quality (c). The ray tracing reference (e) and the result obtained with only 1 cell are also provided. Note that
the (a), (b), (c), (d) uses different ways to extract visibility boundary only for the plane under the tweety, and
the reported timings only include the rendering of that plane. The average number of cells generated by the
adaptive partitioning is 13.8 in this case.

(a) Wang et al.’s method [4](a) W g e [4]

(b) Our method

Fig. 8: Comparison of the shadow quality of Wang et al.’s method [4] and ours in a scene with a rotating
environment light. The light rotates from right to left. Our method is able to capture the color transitions in
the penumbra region, which are missed in the results of Wang et al.’s method.

Based on our analytic double product integral, we
achieve real-time frame rates while handling dynamic
viewing, lighting, reflectance and high-frequency, per-
pixel shading. We precompute the SSDF at each vertex
at a resolution of 128×128 and compress them by PCA
of 10-30 eigenvector images. The precomputed data
size is 0.5MB to 5MB, comparable with that of [4].

As shown in Fig. 6, we conducted an experiment to
analyze the errors introduced by the two approxima-
tions taken in our approach, i.e. the piecewise linear
approximation of visibility boundaries and the linear
approximation of spherical Gaussians. We intentional-
ly use diffuse objects to simplify the comparison – on-
ly the spherical Gaussians of lighting are approximat-

ed by polynomials. Note that as both approximations
are done *locally* within the cells of visible regions,
the errors heavily depend on the cell size. In our ex-
periment, the integration domain (the (θ, φ) space) is
divided into cells of three regular sizes (1×1, 2×8 and
4×16), and cells of adaptive sizes generated by our
method (17.5 cells per pixel on average). In each case,
two images are rendered which correspond to the two
approximations. Note that when one approximation is
taken, the other approximation is disabled. According
to the results, both approximation errors decrease
with the size of cells - the smaller the cell, the more ac-
curate the approximations. Furthermore, it can be seen
that the visibility boundary approximation produces
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(a) Wang et al.’s method [4] (b) Our method (c) Reference

(d) Wang et al.’s method [4] (e) Our method (f) Reference

Fig. 9: Comparison of shadow quality of the method [4], ours and the reference generated by ray tracing.

(a) (b) (c) (d)

Fig. 10: Interactively changing the shininess of BRDFs of (a), (b)Ward model or (c), (d)Ashikhmin-Shirley
model.

much larger errors than the linear approximation. This
is consistent with our observation that the runtime
adaptive cell subdivision process is mainly driven by
visibility boundary errors.

The performance comparison of our adaptive vis-
ibility boundary extraction algorithm and that ob-
tained by uniform partitioning is shown in Fig. 7.
When almost the same number of cells are used, our
result using adaptive partitioning (d), with 13.8 cells
per pixel on average, better captures the shadowing
effect than that obtained by uniform partitioning of
2 × 8 cells (b). The performance is almost identical
because the additional cost introduced by adaptive

partitioning is negligible in the overall rendering cost.
To achieve similar quality as our method, 4 × 16
uniform cells are needed (c) and the performance is
2.7 times lower.

We compare our method with Wang et al. [4]
in different scenes. In the first scene, a sphere is
positioned above a specular plane under a moving
environment light, which rotates from right to left.
Shadows generated by [4] and ours under three dif-
ferent lighting positions are shown in Fig. 8. There are
two main differences. First, it can be observed that our
method captures the color transition of the shadows
in the penumbra region, where there are smooth color
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(a) (b) (c) (d)

Fig. 11: More rendering results of bump map editing ((a), (b)) and local light sources ((c), (d)).

changes from green, yellow to red. By contrast, no
color transition in shadows is produced by [4]. Sec-
ond, while the environment light rotates, the shadows
generated by our method faithfully reflect the light
changes, whereas that of [4] does not. The main
reason is that in [4] the triple product integral is
approximated by attenuating the product of lighting
and specular BRDF by an ambient visibility term,
which is not able to reliably capture the occlusion
of all-frequency lighting. Our method better captures
these effects by more accurately accounting for the
visibility of the shading integral. More comparisons
of shadow quality are shown in the accompanying
video. Differences are more apparent in the video
under continuous changes of the lighting.

In Fig. 9, we show more comparisons on the quality
of shadows. In Fig. 9(a-c), we replace the sphere by a
bird and use a plane with more specular reflectance.
Fig. 9(d-f) show the shadows generated by a turtle
under the ”kitchen” environment light. It can be seen
that our method more faithfully captures the all-
frequency shadowing effect in these scenes than [4]. In
[4], the shadowing effect may be underestimated for
concave occluders, as can be seen from the shadows
cast by the mouth and cheek in Fig. 9(a), or overesti-
mated for convex occluders, as can be seen from the
shadows cast by the head of the turtle in Fig. 9(d).
This is because [4] approximates the occluders by a
hemisphere shape determined by the nearest spherical
distance from the lobe axis to the visibility bound-
ary, an approximation that is too coarse to capture
the shadows even of simple objects. On the other
hand, to achieve higher quality, our method requires
more computations and usually runs 3-5 times slower
than [4] in our experiments. For example, [4] achieves
95 FPS for the scene shown in Fig. 9(a) and 62 FPS in
Fig. 9(d), compared to 22.7 FPS in Fig. 9(b) and 16.7 F-
PS in Fig. 9(e) using our method. If we adjust the error
thresholds in the cell subdivision process and produce
less cells, our method can achieve 86 FPS in Fig. 9(b)
at the cost of lower quality, allowing users to trade off
between shadow quality and performance. We show
more results to demonstrate the speed/quality trade-
off achieved by our algorithm in Appendix D.

Our method supports spatially-varying BRDFs with
multiple-lobe Fig. 1(c), as well as anisotropic mate-

rial Fig. 1(d), which uses Ashikhmin-Shirley BRDF
approximated by 7 spherical Gaussians. For multiple-
lobes BRDFs, instead of aligning the z axis with each
spherical Gaussian and running separate visibility
extraction passes, we use the average direction of
spherical Gaussian lobes as z axis to compute the
double product integral.

Material editing results are showin in Fig. 10
for objects with spatially varying Ward BRDF or
Ashikhmin-Shirley BRDF. In (a), (b) the shadows on
the ground becomes more blurry as the shininess
decreases. And in (c), (d) we change the anisotropic
degree from anisotropic to isotropic by moving multi-
ple spherical Gaussian lobe directions. Please see the
accompanying video for dynamic editing process.

More rendering results are shown in Fig.11. We can
support interactive editing of the bump map ((a) and
(b)). Local light source can also be naturally integrated
as spherical Gaussians whose parameters varies with
the shading point position ((c) and (d)), as in [4].

7 DISCUSSION AND CONCLUSION

We have presented analytical double product integrals, a
new technique for real-time relighting of static scenes
with all-frequency shadows from complex lighting
and highly specular reflections from spatially-varying
BRDFs. Our technique represents visibility in the inte-
gration domain by depicting the boundaries of visible
regions using piecewise linear functions, and convert
the shading computation into an analytic form. The
boundary representation of visibility is accurate and
the analytic form of integrals is fast to compute. They
make our technique generate more faithful shadows
than the state-of-the-art PRT method while still allow-
ing interactive performance. In contrast, previous PRT
methods (e.g. [4], [17]) represent visibility in some
basis functions instead of using boundaries, and need
to compute triple product integrals when handling
specular BRDFs.

Our method also bears some limitations. First, we
compute and store visibilities at vertices and inter-
polate them for the shading at pixels. In this way,
our method inherits the important limitation of the
distance field representation in dealing with high-
frequency visibility due to the interpolation of SSDFs.
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si si+1x

(a)

si si+1x

(b)

Fig. 12: Two failure cases that might be missed at
interpolating the visibility are illustrated in (a) and
(b).

(a) Our result (b) Reference

(c) Our result

(d) Reference

Fig. 13: The limitation of the visibility interpolation
from SSDFs. (a)∼(d) show a comparison of results
generated by our method and the reference ray tracing
method. It can be seen that shadows generated by
SSDF interpolation, shown in (a) with a close-up in
(c), do not faithfully reflect the gap between legs.

In Fig. 12(a) and (b), we illustrate such two failure cas-
es. The SSDF at shading point x is interpolated from
two adjacent vertices, e.g. si and si+1. If the gap or the
occluder is too small to be captured by the SSDFs at
si and si+1, it will not be reflected in the interpolated
SSDF at x. This results in incorrect shadows in the
rendered images. We show an example in Fig. 13.
The correct shadow cast from a walking man to the
plane is shown in Fig. 13(b) with an enlarged detail
image in Fig. 13(d). The shadow generated via the
visibility interpolation are shown in Fig. 13(a) with an
enlarged detail image in Fig. 13(c). Comparing these
two images, it can be seen that the gap between legs is
not correctly captured by the visibility interpolations.
This limitation can be alleviated via more intensive
sampling, which however results in more vertices
and consumes more memory. Besides such interpo-
lation errors, the adaptively sampled distance field
technique used in our method may also lose some
fine structures and details. In Fig. 6, we analyze the
errors introduced by such approximations. It can be
seen that smaller cell produce more accurate shadows.
However, smaller cells will require more computation
time both in extraction of visibility boundaries and
integration of double product integrals.

We hope our analytical double product integral

formulation would inspire further researches in all-
frequency rendering, even for dynamic scenes. An-
other interesting direction is to apply our visibility
representation to global illumination rendering.
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