
An Efficient GPU-based Approach for Interactive Global Illumination

Rui Wang∗ Rui Wang† Kun Zhou∗ Minghao Pan∗ Hujun Bao∗

∗State Key Lab of CAD&CG, Zhejiang University †University of Massachusetts Amherst

Abstract

This paper presents a GPU-based method for interactive global il-
lumination that integrates complex effects such as multi-bounce in-
direct lighting, glossy reflections, caustics, and arbitrary specular
paths. Our method builds upon scattered data sampling and inter-
polation on the GPU. We start with raytraced shading points and
partition them into coherent shading clusters using adaptive seed-
ing followed by k-means. At each cluster center we apply final
gather to evaluate its incident irradiance using GPU-based photon
mapping. We approximate the entire photon tree as a compact illu-
mination cut, thus reducing the final gather cost for each ray. The
sampled irradiance values are then interpolated at all shading points
to produce rendering. Our method exploits the spatial coherence of
illumination to reduce sampling cost. We sample sparsely and the
distribution of sample points conforms with the underlying illumi-
nation changes. Therefore our method is both fast and preserves
high rendering quality. Although the same property has been ex-
ploited by previous caching and adaptive sampling methods, these
methods typically require sequential computation of sample points,
making them ill-suited for the GPU. In contrast, we select sample
points adaptively in a single pass, enabling parallel computation.
As a result, our algorithm runs entirely on the GPU, achieving in-
teractive rates for scenes with complex illumination effects.

Keywords: global illumination, GPU, photon mapping, final
gather, k-means, illumination cut.

1 Introduction

Interactive computation of global illumination is a major challenge
in computer graphics research today. Effects such as multi-bounce
indirect lighting, caustics, and complex surface reflections are im-
portant visual cues for the perception of photorealism in synthe-
sized images. However, with conventional CPU-based algorithms
the simulation costs of such effects are often too high to permit dy-
namic interactions, where the user can simultaneously change the
lighting, viewpoint, materials, and geometry, and expect accurate
real-time feedbacks of such changes.

With the rapidly increasing computation power of modern GPUs,
much attention has been directed to exploiting the GPU to achieve
interactive global illumination. Existing methods, however, typi-
cally focus on a very limited set of illumination effects. For in-
stance, GPU-based ambient occlusion [Shanmugam and Arikan
2007] simulates global shadowing effects but ignores interreflec-
tions. Approaches based on instant radiosity and shadow map-
ping [Keller 1997; Dachsbacher and Stamminger 2005] com-

Figure 1: Global illumination result rendered using our algorithm.
The user can dynamically manipulate any part of the scene, includ-
ing lighting, viewpoint, materials, and geometry, at 1.5 fps.

pute single-bounce indirect lighting but ignore caustics and multi-
bounce interreflections. Precomputed radiance transfer [Sloan et al.
2002] incorporates many illumination effects but entails a large
amount of precomputed data and is inefficient for dynamic geome-
try and materials.

The goal of our work is to study a GPU-based global illumination
method that integrates a wide range of illumination effects in a sin-
gle algorithm. To allow for sufficient flexibility, we build upon kd-
tree based photon mapping. Recent work has successfully imple-
mented fast kd-trees on modern GPUs [Zhou et al. 2008], achieving
interactive caustics and specular reflections. However, incorporat-
ing full global illumination effects remains challenging. The main
difficulty resides in the final gather step, which involves comput-
ing a large number of secondary rays that can quickly saturate the
GPU’s computation power.

It is well-known that the final gather step can benefit greatly from
exploiting the spatial coherence in illumination changes, such as
by using irradiance caching [Ward et al. 1988; Tole et al. 2002].
Unfortunately, irradiance caching is not naturally amenable to the
GPU’s data-parallel processing model because it requires sequen-
tial computation of spatial sample points and frequent updates to a
spatial structure that stores these points. As a result, even though
irradiance caching is a common practice in CPU-based ray tracing,
very few GPU-based solutions have been able to utilize it; those that
do typically have to re-formulate the algorithm and ignore indirect
shadows [Gautron et al. 2005].

Similar to irradiance caching, our solution builds upon spatial data
caching and interpolation to reduce sampling cost. However, to
derive a practical GPU-based solution, our main contribution is a
robust method that selects irradiance sample points before the final
gather starts. This allows us to perform all steps of global illumina-
tion in parallel. To do so, we start by partitioning raytraced shad-
ing points into spatially coherent clusters. We introduce a method
based on adaptive sample seeding and k-means to compute this par-
titioning efficiently on the GPU. Each cluster center now becomes a
spatial irradiance sample point, and our results show that the distri-
bution of these points conforms with the actual irradiance changes.

Next, at each cluster center, we perform final gather to sample its

incident radiance field due to indirect lighting. This step uses a fast
GPU-based photon mapping algorithm [Zhou et al. 2008]. To ac-
celerate the density estimation in final gather, we approximate the
entire photon tree as a compact illumination cut that is computed
dynamically on the GPU. We then interpolate the sampled irradi-
ance values at each shading point to produce the final rendering re-
sult. Our method also handles one-bounce of low-frequency glossy
reflections by approximating both the sampled radiance fields and
BRDFs onto a spherical harmonics (SH) basis set.

By selecting irradiance sample points adaptively in a single pass,
we eliminate the sequential computation required by standard
caching based methods. As a result, our algorithm enables paral-
lel computation and is implemented entirely on the GPU, achieving
interactive frame rates for a variety of complex global illumination
effects. Figure 1 shows an example.

Our GPU-based solution can be easily adapted to other many-core
platforms such as Intel’s upcoming Larrabee [Seiler et al. 2008]. As
today’s chip design is quickly switching to streaming and massively
parallel processor models, we believe that it is essential to develop
new algorithms that exploit such architecture to achieve interactive
global illumination.

2 Related Work

CPU-based Global Illumination A fundamental difficulty in
global illumination is the high computation cost incurred by indi-
rect lighting, where all surfaces contribute illumination to the scene.
Instant radiosity [Keller 1997] is a popular technique that converts
indirect illumination to a small set of virtual point lights (VPLs).
This approach drastically reduces the computation cost, but is lim-
ited to a small number of VPLs and is only suitable for primarily
diffuse materials. Photon mapping [Jensen 2001] is another popu-
lar solution. It involves a photon scattering pass and a final gather
pass to accurately simulate indirect lighting. For complex scenes,
a large number of photons are needed, leading to high computa-
tion cost. In [2002], Wald et al. implemented interactive global
illumination using a cluster of PCs. Recently, [Walter et al. 2005]
presented LightCuts – a scalable method that computes illumina-
tion from a large number of point lights at sublinear cost. Their
work is aimed at high-quality rendering and runs offline.

Caching and Interpolation Since global illumination involves
computing many rays, it is common to exploit the coherence among
rays to reduce radiance sampling cost. This is especially true for
indirect illumination, which changes smoothly and makes a good
candidate for sparse sampling. Irradiance caching (IC) [Ward et al.
1988] is a popular technique that progressively caches diffuse ir-
radiance samples into an octree, and reuses them along the com-
putation. Radiance caching [Křivánek and Gautron 2005] extends
IC by recording directional radiance using spherical harmonics.
In [1999], Bala et al. presented a general approach to exploiting
both spatial and temporal coherence of rays for radiance interpola-
tion. Recently [Arikan et al. 2005] introduced a fast approximation
to global illumination by decomposing radiance fields into far- and
near-field components, which are computed separately to improve
efficiency. In general, these caching schemes require sequentially
inserting spatial sample points into a data structure, which has to be
frequently queried and updated during the computation. This makes
them unsuitable for the GPU’s data-parallel computation model.

The Render Cache [Walter et al. 1999] reuses radiance samples
from previous frames by reprojecting them to the current frame,
followed by the insertion of a small number of new samples. It
exploits temporal coherence but the rendering takes a long time to
converge. The Shading Cache [Tole et al. 2002] performs caching
and interpolation in object space, leading to faster convergence and

improved rendering quality. However, it requires scene geometry to
be subdivided into patches, which is unsuitable for complex mod-
els. Furthermore, lighting and geometry changes lead to noticeable
temporal artifacts.

GPU-based Global Illumination With the rapidly increasing
computation power of modern GPUs, much recent work has fo-
cused on GPU-based solutions for global illumination. [Nijasure
et al. 2005] sample incident radiance on the GPU at uniform 3D
grid points. By using a low-resolution of fixed samples, this method
does not provide high accuracy. Reflective shadow maps [Dachs-
bacher and Stamminger 2005] treat shadow map pixels projected
from the direct light source as indirect sources illuminating the
scene. Using image-space computation, this method enables fast
one-bounce indirect lighting, but does not handle multi-bounce in-
terreflections. Similarly, radiance cache splatting [Gautron et al.
2005] uses image-based final gathering to approximate irradiance
caching. While fast, these methods ignore occlusions in the final
gather step, which are important for producing indirect shadows.

Matrix row-column sampling [Hašan et al. 2007] converts illumi-
nation to many point lights, then exploits GPU shadow mapping
to cluster them into representative lights and compute shadowed
illumination from each. This method does not yet perform at inter-
active rates. Imperfect shadow maps [Ritschel et al. 2008] evaluate
approximate shadow maps for many point lights in a single pass on
the GPU, dramatically improving the computation speed. Due to
the lack of a ray tracing framework, these methods are only suit-
able for primarily diffuse surfaces, and cannot handle caustics or
perfectly specular materials.

Photon mapping was first implemented on the GPU in [Purcell et al.
2003] by using a uniform grid structure to store photons; their ren-
dering takes several seconds to converge. [Hachisuka 2005] intro-
duced a fast acceleration method for final gather by using GPU ras-
terization. This greatly improves offline rendering speed. [Wyman
and Davis 2006] proposed an image-space caustics algorithm, ca-
pable of simulating plausible caustics effects in real-time. This
method is not aimed to include other global illumination effects.
Recently [Zhou et al. 2008] introduced a fast GPU-based kd-tree
algorithm for real-time ray tracing and caustics. However, incorpo-
rating general illumination effects remains unsolved in their frame-
work. Our method builds upon this algorithm, and we extend their
work to include complex illumination effects such as multi-bounce
interreflections and caustics-incurred indirect lighting.

3 Algorithms

This section provides an overview of our algorithm. We focus on
scenes where the direct light source is a point light, so the direct
illumination can be computed in real-time using GPU-based ray
tracing. Incorporating area or environment lighting is possible but
would require efficient methods to compute shadowed direct illu-
mination from them. Therefore in the following we focus on dis-
cussing the computation of indirect illumination. We assume the
scene materials to be either diffuse or perfectly specular. As in stan-
dard methods, we can extend diffuse reflections to one final bounce
of glossy reflections using spherical harmonics.

According to the rendering equation [Kajiya 1986], the outgoing
radiance Lo at a shading point x in view direction ωo is computed
by the following integral:

Lo(x) = ρ(x)

∫
H2

Li(x, ~ωi) (~ωi · ~n) d~ωi = ρ(x) · E(x) (1)

where Li is the incident radiance due to indirect illumination, ~ωi

is an incident direction, ρ is the surface BRDF, H2 is the hemi-

Figure 2: A diagram showing our main building blocks. The shaded box marks the main contributions of this paper.

sphere centered around the surface normal ~n, and E is the irradi-
ance. Using photon mapping [Jensen 2001], we can evaluate E in
two passes. The first pass emits and scatters photons from the main
light source, building a global photon map and a caustics photon
map. Each photon map is stored in a kd-tree for efficient access.
The second pass performs final gather by sending many secondary
rays at x to sample its incident radiance fieldLi. The radiance along
each ray is evaluated using density estimation in the photon map,
and then integrated with the cosine function according to Eq 1.

For accurate rendering, a large number of final gather rays needs
to be computed. As a result, evaluating this integral at every shad-
ing point is impractical for interactive settings. Our goal is to re-
duce spatial sampling cost by evaluating incident radiance only at
a small number of shading points. As indirect illumination changes
smoothly over the scene, these sparse samples provide a good ap-
proximation for interpolation at the remaining shading points.

While the idea of spatial caching has long been exploited in irra-
diance caching and adaptive sampling methods, these methods re-
quire sample points to be progressively inserted into a spatial struc-
ture (i.e. kd-tree), which is repeatedly updated during the com-
putation. This computation model is unsuitable for a direct GPU
mapping. To avoid the sequential computation, we select irradi-
ance sample points ahead of time in a single pass, allowing us to
perform the subsequent computation in parallel on the GPU.

Even with spatial caching, the density estimation for each sec-
ondary ray is still quite expensive, due to the large number of pho-
tons stored in the kd-tree. To reduce this cost, we introduce an
efficient approach that approximates the photon tree as an illumina-
tion cut which is dynamically constructed on the GPU. The center
of each cut node represents an illumination cluster, and we use ra-
dial basis functions (RBFs) to smoothly interpolate between them.
As the illumination cut size is much smaller than the total number
of photons, we achieve significant speedup in density estimation.

Figure 2 shows the main building blocks of our algorithm. First, we
build a kd-tree of the scene on the GPU, and utilize it for ray trac-
ing and photon mapping. These steps follow the kd-tree algorithms
presented in [Zhou et al. 2008]. Next, we take the shading points
computed from ray tracing, and partition them into 1000 ∼ 6000
shading clusters based on each point’s geometric information. This
clustering is computed using GPU-based adaptive sample seeding
followed by k-means. We then perform final gather at each clus-
ter center to sample its incident radiance field. In order to reduce
the cost of density estimation, we approximate the global photon
map as a compact illumination cut containing 4000 ∼ 8000 nodes.
At each node’s center we evaluate and cache an irradiance value
by using density estimation in the global photon map. As a result,
performing density estimation with the illumination cut is signifi-
cantly faster than with the full photon tree. Finally we interpolate
the sampled irradiance values at all shading points to produce indi-
rect lighting. The results are further combined with direct lighting

and caustics to produce the final image.

3.1 GPU-based KD-Tree

Our algorithm requires the use of kd-tree in a number of steps, in-
cluding ray tracing, photon mapping, k-means clustering, and radi-
ance interpolation. Therefore an efficient kd-tree implementation is
important. We follow the method in [Zhou et al. 2008] to build kd-
trees in real-time using NVIDIA’s CUDA. This method constructs
the kd-tree in breadth first order (BFS) using a greedy top-down
approach, which recursively splits the current kd-tree node into two
sub-nodes. For efficient GPU processing, nodes are classified as
either large or small based on the number of geometric primitives
belonging to them. For fast traversal in the kd-tree, a standard stack-
based method is implemented by maintaining a local stack for each
thread in the GPU’s shared memory. Using this algorithm, Zhou et
al. achieved real-time performance for direct lighting and caustics.

Direct Lighting Following [Zhou et al. 2008], we use ray tracing
to compute direct lighting with the following steps: 1) build a kd-
tree of the scene, and trace eye rays in parallel; 2) collect rays that
hit non-specular surfaces using a parallel list compaction [Harris
et al. 2007]; 3) similarly, collect rays that hit specular surfaces, and
then spawn reflected and refracted rays for them; 4) repeat steps
2 and 3 for additional bounces; 5) for all non-specular hit points,
perform shadow tests and compute direct shading in parallel.

Shading Points The collection of non-specular hit points in step 5)
above defines our shading points: they represent all the points that
are either directly visible, or are visible after specular paths. Note
that in the absence of specular objects, we can directly produce
shading points via rasterization. However, with specular objects,
computing shading points requires ray tracing.

Building Photon Maps We shoot photons from the direct light
source, scatter them in the scene, and store them in photon maps
when they hit non-specular surfaces. A photon is stored in the
global photon map if its immediate previous hit is on a non-specular
surface, otherwise we store it in the caustics photon map. We build
a kd-tree for each photon map afterwards.

3.2 Selecting Irradiance Sample Points

Our next step is to select, among all shading points, a small set
of representative points for sampling incident irradiance. Because
these points will be used for interpolation at the remaining shading
points, they need to be carefully selected to preserve the underly-
ing illumination changes. In standard caching based schemes, this
is achieved by progressively inserting sample points into an exist-
ing set; and the decision to insert more samples is based on the
local variations of irradiance samples already stored in the set. This
reduces data parallelism since the insertion of samples and the irra-
diance evaluation are dependent upon each other. In [Hašan et al.

2006], an importance sampling method is introduced to distribute
gather points for direct-to-indirect transfer computation. It uses a
variation of photon mapping to estimate the importance of trian-
gles in the scene. While not requiring progressive insertions, this
method is unsuitable for on-the-fly sample generation due to the
expensive computation.

Our solution is to find an error metric that can reliably predict the
actual irradiance changes based on the scene’s geometric informa-
tion. This allows us to select sample points in advance, before the
irradiance evaluation step begins. Using this metric, we can parti-
tion shading points into coherent shading clusters, and the center of
each cluster then becomes an irradiance sample point. To do so, we
use a modified version of the illumination change term introduced
in irradiance caching [Ward et al. 1988] to define our error metric:

ε = α ||xi − xk||+
√

2− 2(~ni · ~nk) (2)

where xi is a shading point to be classified, xk is the center position
of a cluster Ck, and ~n denotes a surface normal. α is a weighting
factor that determines the relative importance of position and nor-
mal incurred changes, and it typically varies between 0.1 ∼ 0.5 in
our experiments (after the scene geometry scale is normalized).

Similar to irradiance caching, this metric is computed purely from
geometric properties. The intuition is that points that are geometri-
cally close to each other are likely to receive similar incident illumi-
nation. Note that we have omitted the harmonic distance term Rk

in the original definition from [Ward et al. 1988]. This is because
evaluatingRk requires final gathering, which is what we would like
to avoid computing at this stage. However, we introduce an adap-
tive sample seeding approach to account for the effect of the Rk

term, as explained below.

Adaptive Seeding of Sample Points The Rk term in the origi-
nal irradiance cache formulation accounts for the effect that areas
close to other surfaces are likely to experience rapid illumination
changes, therefore more sample points should be distributed there.

To account for this effect, we use an approximation that distributes
initial sample points according to the local geometric variations in
the scene. In order to seed K sample points, we use a hierarchical
histogram-based method to evaluate the geometric variations in im-
age space. We start by constructing a static, screen-space quadtree
of all the shading points. This can be done trivially since the shad-
ing points have a one-to-one mapping to screen pixels. For each
quadtree node q, we compute its geometric variation εq according
to Eq 2 by treating all shading points belonging to quadtree node q
as a cluster. We initialize xk and ~nk to be the average position and
normal at each node q. We compute this efficiently on the GPU by
evaluating εq for all quadtree nodes in parallel.

Following this step, we seed K initial sample points hierarchically
according to the magnitude of εq . Specifically, we start from the
root node of the quadtree, and at each node we distribute sample
points to its four children nodes in proportion to the εq of its child
nodes. When a node has only one sample to distribute, we use
jittered sampling to randomly select a sample point within the quad.
We process each level of the quadtree in parallel.

K-Means Clustering After the initial seeding, we refine the sam-
ple points by using k-means to partition all shading points into co-
herent clusters. To do so, we treat the seeded points as our initial
cluster centers, and follow standard k-means to classify every shad-
ing point to its closest center using the metric defined in Eq 2. After
every shading point is classified, we recompute the cluster center
by averaging the position and normal of all cluster members. We
then repeat the these steps until either the clustering converges or a
maximum number of iterations has been reached. Finally, in each

Figure 3: (a) shows our clustering result for the Cornell box scene
computed with 1600 clusters; (b) displays the cluster centers on top
of a raytraced reference showing the actual irradiance values.

cluster, we pick the shading point with the smallest error as our
irradiance sample point.

Even on the GPU, the above algorithm is still quite expensive to
run. The main bottleneck is in finding the nearest cluster center
for every shading point, which incurs a computation cost linear to
K using the brute-force approach. To reduce this cost, we need to
avoid searching among all cluster centers. To do so, we build a kd-
tree of all cluster centers at the beginning of each k-means iteration;
then for every shading point to be classified, we utilize the kd-tree
to constrain the search within a small Euclidean distance to that
shading point, thereby significantly reducing the search range.

Figure 3(a) shows our clustering result for a Cornell box scene com-
puted with 1600 clusters; (b) shows the cluster centers on top of an
accurate irradiance image computed using offline raytracing. Note
that areas with rapid illumination changes are sampled densely with
small clusters, while those with slow changes are sampled sparsely
by large clusters. This example demonstrates that the samples we
select conform with the underlying illumination changes.

Temporal Coherence Since we recompute irradiance sample
points among shading points at every frame, our method is view-
dependent and is subject to temporal artifacts. For example, if the
camera moves quickly, the selected irradiance sample points will
differ from frame to frame, causing potential flickering artifacts. To
reduce such artifacts, we attempt to preserve the temporal coher-
ence among sample points. At the beginning of each new frame,
we fix cluster centers xk computed from the previous frame, then
estimate whether every shading point in the new frame can be clas-
sified into an existing cluster xk. To do so, we keep at each cluster
the largest error (Eq 2) of its current members with the cluster cen-
ter, then use this value as a threshold to check whether new shading
points can be classified into this cluster. At the end of this estima-
tion, we eliminate those clusters in xk that do not have any shad-
ing point associated with them. On the other hand, we create new
clusters for all shading points that cannot be classified. The new
clusters are generated using the same algorithm described above.
Overall we maintain roughly the same number of shading clusters
(hence irradiance sample points) at each frame.

3.3 Reducing the Cost of Final Gather

Once the irradiance sample points are selected, we sample their
incident radiance fields by sending 250 ∼ 500 final gather rays
distributed according to the PDF of a cosine function. To evalu-
ate the radiance for each final gather ray, standard photon mapping
requires density estimation, which performs a KNN search in the
photon tree to find nearby photons around a ray’s hit point. Due to
the large number of photons, the search cost is typically quite high.

To reduce this cost, our goal is to use a smaller set of samples to ap-
proximate the illumination represented by the large number of pho-
tons. The idea is that performing KNN search with this reduced set

of points significantly improves the search speed. We achieve the
reduction by dynamically computing an illumination cut from the
photon tree. Although [Walter et al. 2005] have introduced an effi-
cient method for computing cuts from a set of diffuse point lights,
here we present a new approach that computes an illumination cut
directly from the photon map, and is more amenable to the GPU. To
do so, we first estimate an approximate irradiance for each photon
tree node p by computing its illumination density, defined as:

Ẽp =

∑
i∈p(~ωi · ~np) Φi

rp
2

(3)

where Φi is the power of a photon belonging to node p, ~ωi is the
incoming direction of the photon, ~np is the normal at the node cen-
ter, and rp is the maximum side length of the node’s bounding box.
This is equivalent to performing a density estimation but using all
the photons in p and rp

2 as the area for estimation. This over-
estimates the search neighborhood but reduces the estimation cost.
Note that Ẽp is computed and stored when the kd-tree of the photon
map is built, thus we do not have to compute it separately.

Our next step is to find a cut through the tree to approximate the illu-
mination. Given the approximated irradiance at each node, a coarse
tree-cut is selected from the photon tree in parallel: first, nodes with
irradiance larger than a predefined threshold Emin are selected and
added in the cut. Then, different levels of the tree are traversed iter-
atively to ensure the construction of a valid and complete tree-cut.
This is done by deleting nodes whose children are already in the
cut, and adding nodes to cover leaf nodes that do not have parents
representing them in the cut. We pick the threshold Emin as the
average Ẽp of nodes at the 12∼13-th level of the photon tree. This
is based on the heuristic that the initial illumination cut should be
close to its target size, which is approximately 4K∼8K.

Given the coarse tree cut, we perform an optimization to improve
its accuracy. This is done by comparing the accurate irradiance,Ep,
evaluated at node p’s center using standard density estimation, with
the approximated irradiance Ẽp computed above. If the difference
between the two is larger than a user defined threshold ∆E (which
we typically set to 1.2 Ẽp), the node is removed from the cut and
replaced by its children nodes, thereby improving its accuracy. We
perform 3∼5 iterations of this refinement. During each iteration,
nodes are independently computed in parallel.

Once the cut is selected, each node of the cut becomes a sample
point for illumination. We therefore cache the accurate irradiance
valueEp at the center of each node and use these values for smooth
interpolation. We use a set of spatial radial basis functions (RBFs)
centered at each cut node as an interpolation basis. Specifically,
given a hit point y of a final gather ray, the radiance of the ray is
evaluated by locating a set of nearby cut nodes pj , and interpolating
from them using the following weight:

wj = K(
‖pj − y‖
r(pj)

) ·max(0, ~n(pj) · ~ny), (4)

K(r) =

{
1− r2, r ≤ 1

0, r > 1
(5)

where r(pj) is the maximum side length of node pj’s bounding box.
Note that the subtree defined from the root of the photon tree to the
illumination cut can be used directly as a kd-tree for neighborhood
search. Intuitively, each node pj influences its surrounding space,
up to the size of its bounding box, by a quadratic falloff weight.

3.4 Interpolation and Rendering

Representing Radiance Fields using SH In order to allow for
glossy BRDFs in the final bounce, similar to previous work, we ap-
proximate the directional information of the sampled radiance fields

Direct + Caustics

Indirect lighting Global illumination
Figure 4: Glass cube with embedded torus in a Cornel box scene.

Direct + Caustics

Indirect lighting Global illumination
Figure 5: Cornell box with an animated water surface.

Li(x, ~ωi) using a spherical harmonics (SH) basis Y m
l (~ωi), where

l and m are the degree and order of an SH function respectively.
We use 4-th order SH in our experiments, resulting in 16 projected
coefficients, represented as a vector Ll,m

i (x). For diffuse materials,
we can treat their sampled irradiance value as an SH vector with a
non-zero DC term while all other terms are zero.

Interpolation To render, we interpolate irradiance values stored
at each irradiance sample point. For glossy materials, we interpo-
late the SH coefficients instead, and integrate the results with glossy
BRDFs (also projected onto SH). This step requires scattered data
interpolation, which involves finding the nearby irradiance sample
points for each shading point, and performing smooth interpolation.
As before, we use a kd-tree of the irradiance sample points for ef-
ficient neighborhood search. We then perform interpolation in the
same way as irradiance caching [Ward et al. 1988]:

Ll,m
i (x) =

∑
j∈S w(sj)Ll,m

i (sj)∑
j∈S w(sj)

where S is the set of nearby irradiance sample points located around
shading point x, sj is a sample in S, Ll,m

i (sj) denotes the SH co-
efficients, and w(sj) is the interpolation weight, computed by:

w(sj) =
1

||x−sj ||
Rj

+
√

2− 2 (~n(x) · ~n(sj))

where Rj is the harmonic mean distance to objects visible from
si. It is evaluated during final gather, by keeping track of the inter-
section distance of each final gather ray, and performing a parallel
reduction afterwards to compute the harmonic distance.

3.5 Implementation

We have implemented all our algorithms using BSGP [Hou et al.
2008] – a general-purpose C programming interface suitable for

(a) 5k Irradiance Samples (b) 16× Error Image (c) 4k Illumination Cut (d) 16× Error Image (e) Reference Image

(f) Ours (g) Reference (h) 8× Error Image (i) Ours (j) Reference (k) 8× Error Image
Figure 6: Comparison of indirect illumination results with reference images. The first row shows the kitchen scene: (a) is computed with 5k
irr-adiance samples and the full photon map; (c) is computed at every shading point with an illumination cut size of 4k; (b) and (d) show
magnified error images of (a) and (c) against reference (e). The second row shows the same comparison for two additional scenes where the
results used for comparison are computed using parameters listed in Table 1.

Scene Tris G/C photons S.C. I. cut FPS
Box w/ torus 0.6K 239k/100k 1.6k 4k 4.2
Box w/ water 17k 268k/277k 1.8k 8k 2.7
Elephant 1 87k 256k/24k 3k 4k 3.1
Elephant 2 84k 290k/107k 4k 4k 2.5
Kitchen 21k 470k/109k 5k 8k 1.5

Table 1: This table reports for each scene the number of triangles,
global/caustics photons, shading clusters (i.e. irradiance sample
points), illumination cut size, and rendering fps.
many-core architecture such as the GPU. BSGP builds on top of
NVIDIA’s CUDA, but is easier to read, write, and maintain. Our al-
gorithms make frequent use of standard parallel computation prim-
itives such as scan, reduction, list compaction, and segmented ver-
sions of them. These are directly available in the BSGP library. In
addition, we require an efficient GPU implementation of the kd-
tree, for which we follow [Zhou et al. 2008].

Most of our data elements are stored as dynamic arrays in the GPU
linear memory. To avoid the high overheads of repeated alloca-
tion of memory, we implement a standard dynamic array manage-
ment routine, which reserves an initial amount of memory on the
GPU, and doubles the array size whenever the space runs out. For
structures with many fields such as the k-means clusters, we use
structure of arrays (SoA) instead of array of structures (AoS) for
achieving global memory coalescing on the GPU.

Algorithm details and various parameters we use can be found in
Sections 3.1 to 3.4. For clarity, we have included pseudo-code of
our algorithms in the supplemental material attached to this paper.

Light Paths In general we can handle all light paths in the form
of L (S|D)* (S|D|G) where L, S, D, G stands for lighting, specular,
diffuse, and (low-frequency) glossy respectively. In practice, we
limit the number of indirect bounces to 2. Therefore we compute 3
bounces altogether, including the final gather bounce. Our results
show that the improvement in quality beyond 3 bounces is small.

4 Results

In the following, we present our results computed on a PC with
Intel 2.0 GHz CPU and an NVIDIA GeForce 280 GTX graphics
card. Since we compute everything from scratch in each frame, the

user can dynamically manipulate any element in the scene, includ-
ing lighting, viewpoint, material, and geometry. Unless mentioned
otherwise, all images reported are rendered at a supersampled res-
olution of 1024× 1024, and then downsampled to 512× 512 final
resolution. The direct light source is a point or spot light.

Demo Scenes Table 1 summarizes the 5 scenes used for demon-
stration. The first scene, a Cornell box with a glass cube and an
embedded torus (Figure 4), demonstrates complex caustics effects
from the cube and global illumination effects on the torus inside
the box. The second scene, containing an animated water surface
(Figure 5), demonstrates both reflective and refractive caustics ef-
fects from the water surface. Note that the illumination of objects
below the water comes entirely from caustics. This type of light
paths (L S+ D+) would be very difficult to simulate with previous
interactive methods. For both scenes we show the decomposition
of global illumination into a direct+caustics component, and an in-
direct lighting component, shown on the left of each image.

The third scene (Figure 8(a,b)) shows an elephant model with dy-
namically changing material properties. This scene demonstrates
the capability of our solution to handle view-dependent indirect
lighting at the final bounce. Glossy reflections are enabled by pro-
jecting both sampled incident radiance fields and BRDFs onto 4-th
order SH. Note the color bleeding effects from the elephant to the
wall and floor. Because the direct light source is pointing away from
the elephant, these color bleeding effects are only enabled through
multi-bounce interreflections. The fourth scene (Figure 8(c,d)) con-
tains an animated elephant model with rotating mirrors. It demon-
strates global illumination effects caused by photons reflected from
the mirrors and bounced inside the box.

Our final scene (Figure 1, 7) is a kitchen model with a moving robot
and dining table. Note the caustics effects cast from the dining ta-
ble, and the overall indirect illumination. In Figure 7 we also in-
clude four subimages showing the direct+caustics component, the
indirect lighting component, the shading clusters, and a visualiza-
tion of the cluster centers. For all scenes we achieve reasonable
frame rates, ranging from 1.5∼4.2 fps.

Parameters Table 1 lists the main rendering parameters we use
for each scene, including the number of global/caustics photons,
number of shading clusters, and the illumination cut size. Simple

Figure 7: The left image shows the global illumination result of the kitchen scene; the four subimages on the right show: direct light-
ing+caustics, indirect lighting, clusters of the shading points, and the distribution of cluster centers (i.e. irradiance sample points).

(a) (b) (c) (d)
Figure 8: (a) and (b) show a glossy elephant with a mirror as the user changes the material property of the elephant. (c) and (d) show an
animated elephant with two rotating mirrors in a Cornell box scene; note how the reflected lights from the mirrors illuminate the objects.

scenes that contain low visibility complexity require only a small
number of shading clusters; more complicated scenes such as the
kitchen require a larger number of shading clusters to more accu-
rately represent the underlying illumination changes. For all scenes
we compute final gather using 250 ∼ 500 final gather rays.

Accuracy Our algorithm consists of two main approximations: ir-
radiance sampling and interpolation, and the approximation of pho-
ton map as an illumination cut. In Figure 6 (a-e) we examine the ac-
curacy of each approximation individually. To focus on the analysis
of indirect illumination, we have changed all materials in this scene
to be entirely diffuse. (a) is computed with 5k irradiance samples
while the final gather is computed by accurate density estimation in
the full photon map; (c) is computed with an illumination cut size
of 4k while the final gather is evaluated at every shading point; (e)
shows a reference image computed by disabling both approxima-
tions, thus performing accurate final gather (with 1024 secondary
rays) at every shading point. In (b) and (d) we show magnified
absolute error images of (a) and (c) against (e).

In both approximations we found the rendering errors to be rel-
atively small. The errors in (b) occur primarily in places where
the irradiance is changing rapidly due to occlusion by nearby ob-
jects, such as in regions shadowed by adjacent geometry. Using a
higher number of shading clusters will help because more clusters
will be allocated to those regions, thereby improving the sampling
accuracy. Similarly, the errors in (d) occur primarily in occluded
regions where the incident radiance is low. This is mainly because
our illumination cut approximates strong source lighting (i.e. pho-
ton tree nodes with high powers) more accurately than weak source
lighting. Since occluded regions in an image are receiving most of
their illumination from weak source lighting, they get larger errors
which could be improved by increasing the illumination cut size.

Note that due to the limited number of shading clusters and the
granularity of our adaptive seeding method, our algorithm can un-
dersample areas with small nearby geometric elements that produce
occlusion. One example is the contact shadow regions at the bot-
tom of the chair and table legs. From the magnified error images, it
can be seen that these regions are computed with the highest errors
compared to other regions. In practice, however, we found the per-
ceived difference caused by such errors is relatively small, as can
be observed by directly comparing (a) and (e).

In Figure 6 (f-k) we perform similar accuracy comparisons for two
additional scenes, where our results are rendered with both approx-
imations enabled and with parameters specified in Table 1.

5 Discussions and Future Work

In summary, we have presented an efficient GPU-based method for
interactive global illumination. We partition shading points into
coherent clusters using adaptive sample seeding and k-means, and
then sample incident irradiance using final gather computed at each
cluster center. Compared to standard irradiance caching, we elimi-
nate the need for sequential computation of sample points, thereby
allowing us to perform final gather in parallel on the GPU. We also
present an approach based on approximating the photon tree as a
illumination cut to reduce the final gather cost.

As in many interactive rendering techniques, our algorithm presents
a tradeoff between rendering accuracy and efficiency. While our
method performs at interactive rates on modern GPUs, it has sev-
eral limitations. First, as we use a limited number of irradiance
samples, our method can miss small geometric details in indirect
lighting in a complex scene. While we could increase the number
of sample points, we believe a more appropriate approach would be

to combine ours with an image-based occlusion method [Ritschel
et al. 2009] or near-field illumination search [Arikan et al. 2005] to
better compensate for the missing local details.

Second, due to the use of low-order SH, our final gather step is lim-
ited to low-frequency glossy materials. In fact this happens to be the
reason why a low-dimensional illumination cut suffices to provide
high quality results. For semi to highly glossy materials, however,
our current approach is inefficient as these materials would require
a much longer illumination cut, causing reduced search speed. Note
that since we keep the full global photon map in memory, we could
use it to perform more accurate density estimations for these highly
glossy materials. This remains a direction for our future work.

In addition, as we recompute irradiance samples from scratch at
each frame, our method is subject to temporal flickering artifacts.
Although our clustering method has incorporated the temporal co-
herence of irradiance samples, such artifacts are still difficult to
avoid completely. One possible solution is to introduce a tempo-
ral filter that blends new irradiance values across adjacent frames.

Finally, in this work we encountered many engineering challenges
in successfully implementing our algorithms onto the GPU. We be-
lieve they are not because such algorithms are unsuitable for the
GPU, but rather because these are fundamental challenges in paral-
lelizing existing sequential algorithms. Given the emerging trends
of many-core architecture design, we believe that developing new
algorithms to exploit such architecture is no longer a mere engineer-
ing practice, but a necessity for continued performance improve-
ment on future generations of hardware.

Acknowledgements We would like to thank the SIGGRAPH re-
viewers for their thoughtful comments. This work was supported
in part by NSFC (No. 60825201), the 973 program of China (No.
2009CB320801), and NSF CAREER grant CCF-0746577. The au-
thors would like to thank NVIDIA for their generous donations.

References

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2005. Fast
and detailed approximate global illumination by irradiance de-
composition. ACM Trans. Graph. 24, 3, 1108–1114.

BALA, K., DORSEY, J., AND TELLER, S. 1999. Radiance inter-
polants for accelerated bounded-error ray tracing. ACM Trans.
Graph. 18, 3, 213–256.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
shadow maps. In Proc. SI3D ’05, 203–231.

GAUTRON, P., KŘIVÁNEK, J., BOUATOUCH, K., AND PAT-
TANAIK, S. N. 2005. Radiance cache splatting: A GPU-friendly
global illumination algorithm. In Proc. EGSR ’05, 55–64.

HACHISUKA, T. 2005. GPU Gems 2 – High-Quality Global Illu-
mination Rendering Using Rasterization. 615–634.

HARRIS, M., SENGUPTA, S., AND OWENS, J. 2007. GPU Gems
3 – Parallel Prefix Sum (Scan) with CUDA. 851–876.

HAŠAN, M., PELLACINI, F., AND BALA, K. 2006. Direct-to-
indirect transfer for cinematic relighting. ACM Trans. Graph.
25, 3, 1089–1097.

HAŠAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix
row-column sampling for the many-light problem. ACM Trans.
Graph. 26, 3, 26:1–10.

HOU, Q., ZHOU, K., AND GUO, B. 2008. BSGP: bulk-
synchronous GPU programming. ACM Trans. Graph. 27, 3, 1–
12.

JENSEN, H. W. 2001. Realistic image synthesis using photon map-
ping. A. K. Peters, Ltd.

KAJIYA, J. T. 1986. The rendering equation. In Proc. SIGGRAPH
’86, 143–150.

KELLER, A. 1997. Instant radiosity. In Proc. SIGGRAPH ’97,
49–56.

KŘIVÁNEK, J., AND GAUTRON, P. 2005. Radiance caching for
efficient global illumination computation. IEEE Trans. Visual-
ization and Computer Graphics 11, 5, 550–561.

NIJASURE, M., PATTANAIK, S. N., AND GOEL, V. 2005. Real-
time global illumination on GPUs. Journal of Graphics Tools
10, 2, 55–71.

PURCELL, T. J., DONNER, C., CAMMARANO, M., JENSEN,
H. W., AND HANRAHAN, P. 2003. Photon mapping on pro-
grammable graphics hardware. In Proc. Graphics Hardware,
41–50.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P.,
DACHSBACHER, C., AND KAUTZ, J. 2008. Imperfect shadow
maps for efficient computation of indirect illumination. ACM
Trans. Graph. 27, 5, 129:1–8.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approx-
imating dynamic global illumination in image space. In Proc.
SI3D ’09, to appear.

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T.,
ABRASH, M., DUBEY, P., JUNKINS, S., LAKE, A., SUGER-
MAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E., JUAN,
T., AND HANRAHAN, P. 2008. Larrabee: a many-core x86 ar-
chitecture for visual computing. ACM Trans. Graph. 27, 3, 1–15.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on GPUs. In Proc. SI3D ’07, 73–
80.

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precom-
puted radiance transfer for real-time rendering in dynamic, low-
frequency lighting environments. ACM Trans. Graph. 21, 3,
527–536.

TOLE, P., PELLACINI, F., WALTER, B., AND GREENBERG, D. P.
2002. Interactive global illumination in dynamic scenes. ACM
Trans. Graph. 21, 3, 537–546.

WALD, I., KOLLIG, T., BENTHIN, C., KELLER, A., AND
SLUSALLEK, P. 2002. Interactive global illumination using fast
ray tracing. In Proc. Eurographics Workshop on Rendering, 15–
24.

WALTER, B., DRETTAKIS, G., AND PARKER, S. 1999. Inter-
active rendering using the render cache. In Proc. Eurographics
Workshop on Rendering, 235–246.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K.,
DONIKIAN, M., AND GREENBERG, D. P. 2005. Lightcuts:
a scalable approach to illumination. ACM Trans. Graph. 24, 3,
1098–1107.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988.
A ray tracing solution for diffuse interreflection. In Proc. SIG-
GRAPH ’88, 85–92.

WYMAN, C., AND DAVIS, S. 2006. Interactive image-space tech-
niques for approximating caustics. In Proc. SI3D ’06, 153–160.

ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time
kd-tree construction on graphics hardware. ACM Trans. Graph.
27, 5, 126:1–11.

