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Figure 1: A collection of quadrangulation results generated by the proposed method.

Abstract

This paper proposes a new method for remeshing a surface into
anisotropically sized quads. The basic idea is to construct a special
standing wave on the surface to generate the global quadrilateral
structure. This wave based quadrangulation method is capable of
controlling the quad size in two directions and precisely aligning
the quads with feature lines. Similar to the previous methods, we
augment the input surface with a vector field to guide the quad ori-
entation. The anisotropic size control is achieved by using two size
fields on the surface. In order to reduce singularity points, the size
fields are optimized by a new curl minimization method. The ex-
perimental results show that the proposed method can successfully
handle various quadrangulation requirements and complex shapes,
which is difficult for the existing state-of-the-art methods.

Keywords: anisotropic quadrangulation, standing wave, feature
alignment, size control

1 Introduction

Surface quadrangulation is a useful modeling tool for many applica-
tions, such as finite element analysis and B-spline fitting. However,
it is very challenging to convert a surface into a pure quadrangular
mesh. The first challenge is how to create a global quadrilateral par-
tition of the input mesh, which determines the overall quality of the
final quadrangulation result. Many earlier methods without such
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global partition can only obtain quad dominant remeshing results.
The second challenge is how to meet various local quadrangula-
tion constraints desired by the users/applications. For example, the
edges of the quads should be aligned with the nearby feature lines
of the input mesh, particularly when remeshing CAD models. And
it is desired that the size of the quad can adapt to the local geom-
etry details, or can be adjusted as freely as possible for particular
application purposes. At last, the shape complexity, such as small
handles and large number of genus, brings some extra issues for
remeshing methods. Most of the previous methods [Alliez et al.
2003; Boier-Martin et al. 2004; Dong et al. 2005; Ray et al. 2006;
Bommes et al. 2009] can handle soft orientation control by using
direction field to guide the quads. However, they can only generate
nearly uniform sized quads. Dong et al. [2006] partition the surface
into quadrangular charts using the Morse-Smale complex (MSC) of
a scalar function. Huang et al. [2008] extended this method to con-
trol the quad size. However their size control method is limited to
square quads and not intuitive.

In this paper, we propose a new anisotropic quadrangulation
method based on standing wave construction and quasi-dual MSC
extraction [Dong et al. 2006]. Our goal is to develop a method
that can precisely align the quads with the geometric feature lines
or the user specified directions, and provide a flexible anisotropic
size control on the quads. Since the final quadrangulation result is
essentially determined by the quasi-dual MSC, we formulate these
requirements as a single optimization problem when constructing
the wave function. Similar to the previous methods, we define a
vector field to control the quad orientation. In addition, we define a
pair of size fields to control the size of the quads. However, some
arbitrarily specified size fields may lead to unnecessary singularity
points in the remeshing results. To address this issue, we describe a
curl minimization method to optimize the size fields.

The technical contributions of our work include a wave construction
method and a curl correction method for the size fields. Our wave
based quadrangulation method is featured by: 1) It can remesh a
surface into anisotropically sized quads. 2) It can control the quad
orientation and size, and align the quad with feature lines in a uni-
form and flexible way. 3) It can remesh complex shapes with vari-
ous features, such as small handle/ring, which has been very diffi-
cult for previous methods.
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2 Related Work

A comprehensive survey on quadrangulation methods can be found
in [Alliez et al. 2005; Hormann et al. 2008]. We will review some
of the most related ones by how a global quadrilateral structure is
constructed, since it is a very important issue for quadrangulation.

Structure from Heuristic Procedure Marinov and Kobbelt
[2006] developed a variational shape approximation method to par-
tition the input mesh into nearly developable regions. The regions
are then individually remeshed into quads with constraints on the
region boundaries to ensure a consistent remeshing. This method
handles CAD models well, but doesn’t optimize the singularity po-
sitions. [Lai et al. 2008] used local topology operation to incre-
mentally convert triangles into quadrangles. The quad orientation
aligned to the principal curvature directions, and the quad size is
adaptively adjusted according to the local curvature. A major draw-
back of these heuristic based methods is that they can only obtain
quad-dominant remeshing results. In addition, there is no control
for the singularity points.

Structure from Curve Tracing By augmenting the surface with
direction field, several previous works [Alliez et al. 2003; Boier-
Martin et al. 2004; Dong et al. 2005; Tong et al. 2006] generate the
quadrilateral structure by directly tracing curves along the direction
field. The direction field is defined as the principal curvature direc-
tions [Alliez et al. 2003; Boier-Martin et al. 2004] or the gradient of
harmonic functions [Dong et al. 2005; Tong et al. 2006]. Though
they can naturally control the quad orientation, they usually pro-
duce too many singularities. Quad remeshing can also be achieved
by computing a global continuous parameterization for the input
mesh [Ray et al. 2006; Kälberer et al. 2007]. In these method, a
good direction field is required for a high quality quadrangulation,
since the singularities are mostly prescribed by the direction field.
Fortunately, many approaches have been proposed to design and
smooth direction fields for a variety of applications [Zhang et al.
2006; Palacios and Zhang 2007; Ray et al. 2008].

Structure from MSC Dong et al. [2006] proposed an excellent
method to generate the global quadrilateral structure by extract-
ing the quasi-dual MSC [Edelsbrunner et al. 2001; Bremer et al.
2004] from a spectral function on the input mesh. The MSC based
method can automatically optimize the distribution of the singular-
ity points. Huang et al. [2008] formulate a constrained generalized
eigen-problem to define the scalar function. The scalar function can
be regarded as a periodic function, and the period is prescribed by
choosing an appropriate eigenvalue. However, there is no guaran-
tee that the period determined in this way is compatible with the
orientation and alignment control. Thus, the spectral quadrangula-
tion method may fail to generate high quality quads when complex
alignment controls are imposed.

3 Standing Wave and Quadrangulation

In this section, we introduce a novel formulation for the scalar func-
tion based on standing waves. Let S be the input surface, repre-
sented by a triangular mesh M = (P,K), where P = {pi}

n
i=1 is

the vertex set of the mesh, and K represents the connectivity of the
mesh.

Let scalar function w on S be a standing wave and have a separated
representation: w(x, y, t) = f(x, y)ψ(t). According to the wave
equation, we have

∇2f

f
=

ψ̈

c2ψ
≡ −λ, (1)

where λ > 0 is a constant value.

In the spectral based method [Dong et al. 2006], the scalar function
used for extracting the MSC is the eigenvector of the Laplacian
matrix, i.e. the solution of ∇2f = −λf . In this sense, the spectral
based method actually adopted a special type of standing wave that
has the same time frequency all over the mesh. Huang et al. [2008]
generalize the spectral method with non-uniform λ. However, both
of these two methods can not perform anisotropic quadrangulation,
since there is no way to control the anisotropic quad size.

To enable anisotropic size control, we assume that the standing
wave can be further separated into f(x, y) = g(x)h(y). Then the
standing wave equation in Equation 1 can be rewritten as follows:

∂2g

∂x2
= −ω2

xg and
∂2h

∂y2
= −ω2

yh,

where ωx and ωy are two constant values satisfying ω2

x + ω2

y = λ.
As we know, the general solutions for g(x) and h(y) are:

g(x) = Ax cos(ωxx+ cx)

h(y) = Ay cos(ωyy + cy)

whereAx,Ay , cx and cy are constant values. We define θ = ωxx+
cx, φ = ωyy + cy , and assume Ax = Ay = 1 without loss of
generality. Then the standing wave f(x, y) can represented as:

f(x, y) = cos(θ) cos(φ). (2)

In [Huang et al. 2008], the same formulation is used to estimate
the orientation of quasi-dual MSC for orientation alignment. In this
paper, we will explore more properties of the wave function for
flexible quad remeshing. First, the θ, φ parameters of the wave’s
extreme points are integer times of π. Second, the θ, φ parameters
of the wave’s saddle points are π/2 plus integer times of π. Re-
call that the primal MSC is constructed by connecting each saddle
point to its neighboring extreme points, and the quasi-dual MSC is
constructed by connecting the minimum-maximum diagonal within
each Morse-Smale region of the primal MSC. Therefore, the quad
orientation of the quasi-dual MSC actually coincides with the di-
rection of iso-parameter lines, and the size of the quasi-dual MSC
is half of the wave period, i.e., (π/ωx, π/ωy).

In the following sections, we will present our quadrangulation
method, which consists of 5 main steps:

1. Prepare the vector/size fields for quad orientation and size.
2. Construct a standing wave function on the mesh.
3. Extract the quasi-dual MSC of the wave.
4. Optimize the quasi-dual MSC and parameterize the mesh.
5. Subdivide the mesh into quads by the parameters.

The Step 3 and Step 5 are almost the same as the previous algo-
rithms in [Dong et al. 2006]. We will detail the Step 1, 2, and 4 in
turn in the following sections.

4 Vector/Size Field Preparation

We use a pair of orthogonal unit vector fields ( ~X, ~Y ) to guide the
quad orientation. We define the vector fields by computing and
smoothing the principal curvature directions [Cohen-Steiner and
Morvan 2003; Ray et al. 2006]. We can also draw some desired
vectors to replace the principal directions in the region of inter-
est. In this case, the user specified vectors are assigned with large
weights so that it can be maintained during the smoothing step. We
also define a pair of size fields, (µ, η), to guide the size of the quads.
Different from the previous works, we generate non-square quads,
therefore each quad needs two length values to determine its size.
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As shown in Figure 2, we record the vector fields and the size fields
on the mesh edges [Bommes et al. 2009], since it is convenience for
approximating the curl in Equation 4 and the angles in Equation 15.

For any edge e ∈ K, we denote the corresponding vectors by ~X[e]

and ~Y [e], and the corresponding size values by µ[e] and η[e].
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Figure 2: The vector/size fields in a triangle. The vector fields are
defined on the edges, and the size fields are defined at the middle
points of the edges.

In our wave construction method described in Section 5, ( ~X, ~Y )
prescribes the local coordinate frame, and (µ, η) prescribes the
wave length. When there is a curl in the scaled vector field

(µ ~X, η~Y ), the state of the wave will change after traveling along a
loop. Therefore, it is desired to reduce the curl. Ray et al. [2006]
proposed an optimization method to reduce the curl for isotropic
size fields. In the following, we will present a new method to deal
with anisotropic size fields.

4.1 Size Field Optimization

Let T = (pi, pj , pk) be a triangle of the input mesh. As shown in
Figure 2, the edges of T are denoted by {ei, ej , ek}, and the middle
points of the edges are denoted by {qi, qj , qk}.

We first consider vector field µ ~X . In order to compute the curl

of µ ~X , let u − v be a local coordinate frame of triangle T , and
~X = (Xu, Xv) in the local frame. By the curl definition, we have

curl(µ ~X) =
∂(µXv)

∂u
−
∂(µXu)

∂v
= curl( ~X)µ− ~X⊥ · ∇µ.

Thus, the curl free requirement, curl(µ ~X) = 0, is equivalent to:

curl( ~X) =
1

µ
~X⊥ · ∇µ = ~X⊥ ·

„

1

µ
∇µ

«

= ~X⊥ · ∇µ̃, (3)

where µ̃ = log(µ). In the following two paragraphs, we will show
how to approximate the curl and the gradient in above.

Curl Approximation By the relationship between the curl and the
circulation density [Polthier and Preuß 2003], the curl in triangle T
can be approximated as:

curl( ~X) |T ≈
1

|T |

Z

∂T

~X · ds ≈
1

|T |

X

e=ei,ej ,ek

~X[e] · ~e, (4)

where |T | denotes the area of triangle T , and ~e denotes the vector
of edge e. Specifically, let v1 and v2 be the end points of edge e in
counter-clockwise order in T , then ~e is defined as ~e = v2 − v1.

Gradient Approximation Recall that the size values are de-
fined at the middle points of the edges. Consider the size field

on a triangle T̂ = (qi, qj , qk) formed by the middle points of

the edges, as shown in Figure 2. For any point p ∈ T̂ , we in-
terpolate the logged size field using the barycenteric coordinates:

µ̃(p) =
P

ν=i,j,k µ̃[eν ]BT̂ ,ν(p). Since the barycenteric coordi-

nates BT̂ ,ν(p) are linear functions of p in T̂ , their gradients are

constant vectors. Therefore, the gradient of µ̃(p) is also constant in

T̂ and can be expressed as:

∇µ̃ =
X

ν=i,j,k

µ̃[eν ]∇BT̂ ,ν . (5)

Combine Equations 3, 4 and 5, then we have the following equation
for the curl free requirement in triangle T :

X

ν=i,j,k

bν1T µ̃[eν ] − c1T = 0, (6)

where bν1T = ~X⊥ · ∇BT̂ ,ν and c1T = curl( ~X)|T .

Vector Alignment Note that, the above curl and gradient approx-
imation methods are valid only when the vectors of the triangle
edges are properly aligned in terms of continuity. Let the vector
~X[ei] of edge ei be the reference. Whether the vector of edge ej is
consistently aligned can be determined by examining the dot prod-

uct of ~X[ei] and R
r
90
~X[ej ], r = 0, 1, 2, 3, where R

r
90 represents

r times of 90◦ rotation around the surface normal [Ray et al. 2006;
Ray et al. 2008]. Let

κ = arg max
r∈{0,1,2,3}

n

~X[ei] ·
“

R
r
90
~X[ej ]

”o

. (7)
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Figure 3: Cases in vector field alignment.

As shown in Figure 3, when κ 6= 0, the vector field is not well
aligned, and we need to change the vector field at edge ej by the
following rules:

(µ[ej ], ~X[ej ]) =

8

>

>

<

>

>

:

(ηold[ej ], ~Yold[ej ]), if κ = 1.

(µold[ej ],− ~Xold[ej ]), if κ = 2.

(ηold[ej ],−~Yold[ej ]), if κ = 3.

(8)

In other words, we only need to substitute the variables of the
size/vector field in Equations (4, 5 and 6) with the corresponding
ones according to the above permutation rules when κ 6= 0. For
clarity, we will omit such permutation in the following description.

Applying the above approximation approach to the orthogonal vec-

tor field η~Y in triangle T , we have:
X

ν=i,j,k

bν2T η̃[eν ] − c2T = 0, (9)

where bν2T = ~Y ⊥ · ∇BT̂ ,ν and c2T = curl(~Y )|T .

Curl Energy Now, we are ready to define a energy term of summed
squares to measure the curl of the vector field:

Ecurl(µ̃, η̃) =
X

T∈K

0

@

X

ν=i,j,k

bν1T η̃[eν ] − c1T

1

A

2

+

X

T∈K

0

@

X

ν=i,j,k

bν2T µ̃[eν ] − c2T

1

A

2

.

(10)
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However, the size field µ that satisfies curl(µ ~X) = 0 is not
unique. First, it can be uniformly scaled by any global factor

α, since curl((αµ) ~X) = α curl(µ ~X) = 0. Second, it can be

multiplied by any size field ξ that satisfies ~X⊥ · ∇ξ = 0, since

curl((ξµ) ~X) = curl(ξ(µ ~X)) = curl(µ ~X)ξ − µ ~X⊥ · ∇ξ = 0.
So, the minimizer of the above curl energy is not unique, and the
vibration of the minimizer may be arbitrarily large (since ξ can be
multiplied by any times). Therefore, we can add extra constraints
to obtain the optimal size field.

Size Constraints We define the following energy term to softly
constrain the size field at some desired or randomly picked edges:

Ez(µ̃, η̃) =

nc
X

i=1

(µ̃[eci ]−log(si))
2+

nd
X

j=1

(η̃[edj
]−log(tj))

2, (11)

where si is the constrained value of µ at edge eci , and tj is the
constrained value of η at edge edj

.

Smoothness Constraints In order to suppress rapid vibration in
the size field for generating smoothly sized quads, we define the
following energy tern to minimize the Laplacian of the size field:

Es(µ̃, η̃) =‖ LPµ̃ ‖2 + ‖ LPη̃ ‖2, (12)

where L is the Laplacian matrix of the input mesh defined by the
non-area weighted cotangent form Laplacian [Meyer et al. 2002],
and P is a matrix defined to estimate the size value of each mesh
vertex as the average of its incident edges.

Anisotropic Constraints We can also control the anisotropic de-
gree of the quadrangulation results by constraining the ratio of the
size field. For example, if the quad in the vicinity of edge e is ex-
pected to have a size ratio of γe, then we can constrain the size field
at edge e by µ[e]/η[e] = γe. Therefore, we define the following
energy for anisotropic constraints:

Ea(µ̃, η̃) =
X

e∈Γ

(µ̃[e] − η̃[e] − log(γe))
2, (13)

where Γ denotes the set of edges with anisotropic constraints.

It is interesting that the effect of the anisotropic constraint actually
constrains the quad to be isotropic when all γe = 1. A typical
application of the anisotropic constraint is to guide the quad size by
ratio of the principal curvatures, as shown in Figure 9.

Total Energy Taking a weighted sum of the above energy term in
Equations (10, 11, 12, 13), we define the following total energy
functional for optimizing the size field:

Etotal(µ̃, η̃) =
1

B2
Ecurl(µ̃, η̃) + wzEz(µ̃, η̃)

+ wsEs(µ̃, η̃) + waEa(µ̃, η̃),
(14)

where B is the length of the model’s bounding box, and wz/s/a are
the weighting coefficients. We empirically set wz = ws = 1.0
and wa = 0.3 as the default weighting values. Note that Ecurl is
weighted by 1

B2 to eliminate its dependence on model size. Equa-
tion 14 is linear least squares, which can be solved very efficiently.
Finally, µ and η are obtained by taking the exponential of µ̃ and η̃.

5 Wave Construction

In this section, we use the vector field as the local coordinate frame
to construct a wave function on the input mesh. As shown in Sec-
tion 3, the sizes of the quasi-dual MSC of the wave function are

equal to (π/ωx, π/ωx). We convert the size field to the angular
speed by ωx = π/µ and ωy = π/η.

Our goal is to compute the wave values on the mesh vertices.
We first explore the relationship between the wave values of the
neighboring mesh vertices. Consider an edge eij =< pi, pj >
on the mesh. The local coordinate frame around edge eij is

( ~X[eij ], ~Y [eij ]). Let the angle parameters of pi and pj be (θi, φi)
and (θj , φj), respectively. Then, we have the following first order
approximations by the relationship between the angle parameters
and surface parameters:

(

θj − θi ≈ ωx
~X[eij ] · (pj − pi)

φj − φi ≈ ωy
~Y [eij ] · (pj − pi)

(15)

Please note that the above approximation holds only when the vec-
tor field of edge eij is aligned with the local coordinate frames of
pi and pj . Similar to the vector field alignment discussed in Section
4.1, we can permutate the angles θ and φ according to the alignment
configurations, so that Equation 15 will hold. For clarity, we will
assume that the vector field is well aligned with the local coordinate
frames in the following description without loss of generality.

Denote αij = θj − θi and βij = φj − φi. Then the wave value at
pj can be approximated by

f(pj) ≈ cos(θi + αij) cos(φi + βij) = cij · fi, (16)

where

cij =

0

B

@

cos(αij) cos(βij)
− cos(αij) sin(βij)
− sin(αij) cos(βij)

sin(αij) sin(βij)

1

C

A
, fi =

0

B

@

cos(θi) cos(φi)
cos(θi) sin(φi)
sin(θi) cos(φi)
sin(θi) sin(φi)

1

C

A
.

Note that cij consists of known values that can be directly com-
puted using the input mesh data and the vector field, while
fi consists of unknown variables including the wave value
cos(θi) cos(φi). Our wave construction method will solve for
f1, . . . , fn.

For convenience, we denote cci = cos(θi) cos(φi), csi =
cos(θi) sin(φi), sci = sin(θi) cos(φi), and ssi = sin(θi) sin(φi).
It is obvious that the four components in fi are dependent variables
satisfying:

cc2i + cs2i + sc2i + ss2i = 1 (17)

ccissi − csisci = 0 (18)

Let {ei}
4

i=1 be unit 4D column vectors whose i-th component is
1, and H = e1e

t
4 − e2e

t
3 be a 4 × 4 matrix. Then we can rewrite

Equations (16, 17 and 18) in vector-matrix forms: e1 ·fj −cij ·fi =
0, fi·fi−1 = 0, and f

t
i Hfi = 0. Similarly, we have e1·fi−cji·fj =

0 by swapping pi and pj in above approximations.

Taking all edges into account, we finally formulate the following
energy functional for constructing the wave:

Ewave(f1, . . . , fn) =
X

eij∈K

 

(e1 · fj − cij · fi)
2

+(e1 · fi − cji · fj)
2

!

+w1

X

pi∈P

(fi · fi − 1)2 + w2

X

pi∈P

(f t
i Hfi)

2,

(19)

where w1 and w2 are two weighting coefficients. We empirically
set w1 = w2 = 0.15 in our experiments.
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The above minimization problem is nonlinear with 4n variables (n
is the number of mesh vertices). We use Gaussian-Newton iteration
method to solve it. We set the initial value to be all 0 except for a
randomly picked vertex whose f vector’s initial value is set to be
(1 0 0 0). The result of the above minimization is a 4D vector f

for each vertex, but only the first component is the wave function
that we want to obtain.

Feature Line Constraint To quadrangulate a model with sharp
features, such as the CAD model in Figure 1, the quad edges are
often required to be aligned with the feature lines on the model.
Since the quad edges are mostly determined by the edges of the
quasi-dual MSC, we need to impose some constraints to the wave
function to align the quasi-dual MSC’s edges with the feature lines.

As shown in Section 3, the edges of the quasi-dual MSC are the
iso-parameter lines of θ = kπ or φ = kπ. So, a vertex pi lies
at an edge of the quasi-dual MSC if and only if sin(θi) = 0 or
sin(φi) = 0, i.e.,

ssi = 0. (20)

Therefore, we add the above hard constraints for vertices on the
feature lines.

If a vertex pi is the intersection of two feature lines, then the wave
function must take extreme value at pi. Such vertex is usually the
corner of the model, which should also be the corner of the MSC
chart. Therefore, we add the following three hard constraints:

csi = sci = ssi = 0. (21)

6 Parameterization and Quadrangulation

Once the wave is constructed, we adopt the same method in [Dong
et al. 2006] to extract the quasi-dual MSC, which generates a set of
quadrangular charts, {Ui}

m
i=1. These charts are then optimized it-

eratively by a globally smooth parameterization method and a node
relocation method. Dong et al. [2006] mapped each chart to a unit
square. To measure the parameterization smoothness between any
two neighboring charts Uα and Uβ , they defined a transition func-
tion φβα to transform the coordinates from patch Uβ to Uα by a
rotation and a translation:

φβα = R
rβα

90
+ Tβα, (22)

where the rotation time rβα and the translation vector Tβα can be
fully determined from the relative layout of the chart Uα and Uβ .

There is no problem in the above isometric transition function when
the charts are all expected to have the same isotropic size. But it will
cause undesired distortion when we apply it to parameterize charts
with different anisotropic sizes in our method. To address this
problem, we extend the transition function to include anisotropic
scalings. Specifically, we map each chart Ui to a quad domain:
Ui 7→ [wi, hi], and define a new transition function as follows:

φnew
βα = S(wα, hα)φβαS

−1(wβ , hβ), (23)

where S(·, ·) represents the 2D scaling transformation. The domain
sizes of chart Ui, wi and hi, are determined by computing the av-
erage of the size field in Ui.

We then adopt the iterative relaxation strategy in [Dong et al. 2006]
to optimize the charts, except that the transition function is replaced
by the new one defined in Equation 23. To accurately keep the fea-
ture lines during optimization, for any feature line L on the chart’s
MSC boundary, the parameter coordinates of the vertices on L are
forced to be on the corresponding parametric boundary.

Finally we generate the quads by uniformly subdivide all of the
charts using a user specified subdivision parameter.

7 Results

We have implemented the proposed algorithms and tested them on a
number of models. Figure 1 shows a set of quadrangulation results,
and Table 1 lists the computation time to generate them. The timing
is carried out on a PC with a dual-core CPU of 2.8 GHz and 2 GB
RAM.

Mesh Nv Nc twave tmsc tpara

Rockram (Figure 1) 37K 780 42.1 0.9 23.5
Fandisk (Figure 7) 25K 319 28.4 0.3 12.1
Fertility (Figure 9) 55K 1156 59.6 1.4 34.2
Buddha (Figure 10) 61K 4394 68.9 4.5 85.1
CAD (Figure 11) 136K 5915 121.6 6.8 459.8

Table 1: List of computation time in second. Nv is the vertex num-
ber, Nc is the MSC chart number, and twave/tmsc/tpara are the
computation time of wave construction/MSC extraction/ parame-
terization.

 

Figure 4: Some models with their feature lines overdrawn in red.
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Figure 5: Quadrangulation result of a model with many handles.
The histogram in the middle shows the distribution of the quad an-
gles. Nsp denotes the number of singularity points.

In the following we will presents more results shown in Figures
4∼11. In each quadrangulation result, we visualize the wave func-
tion and the corresponding quasi-dual MSC on the input mesh. The
red spots represent the maximum of the wave function, and the blue
spots represent the minimum. The red curves are the edges of the
quasi-dual MSC. We can see that the quasi-dual MSCs provide a
good quadrilateral partition of the surface. The angle distribution
of the quads and the number of the singularity points (Nsp) demon-
strate the quality of the quadrangulation results.

Feature Alignment Figures 6, 7 and 8 show some quadrangula-
tion results with feature line constraints. The feature lines and the
models are shown in Figure 4.

For the CAD models in Figure 4 (left) and (middle), we automat-
ically detect the feature lines by comparing the normal angle of
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Figure 6: Quadrangulation results with feature line constraints and
size controls. The feature lines are shown in Figure 4. the size
values specified by the user are labeled in the right column.

neighboring triangles with a prescribed threshold, say 45◦. The
corresponding quadrangulation results in Figures 6 and 7 show
that the feature line constraint works successfully.

By treating the boundaries as feature lines, our method can easily
deal with opened meshes, such as the car panel in Figure 4 (right).
Since feature line constraint is hard constraint, the quad edges are
well aligned with the boundaries, as shown in Figure 8.

Size Control Figure 6 demonstrates the application of size con-
straints. In the top row, we specified only one small size value to
take care of the smallest feature of the CAD part, yielding a nearly
uniform quadrangulation. In the bottom row, we manually speci-
fied three size values according to the local feature size, as labeled
in the figure. As we expected, the region with small size field is
finely remeshed, and vice versa. This example also shows a satis-
factory transition between the three parts.

Anisotropic Control Figures 7 and 9 demonstrate the application
of isotropic and anisotropic constraints. In Figure 7 we set the ratio
to be 1 and change the weighting coefficient of the isotropic con-
straint between the columns. It is easy to see that, as the weight
increases, the quads become more and more isotropic. And in this
procedure, the singularity points are automatically re-distributed to
achieve the optimal results.

In order to measure how the final quad edge lengths fit the target
size ratio prescribed by the size field, we compute (Aq − Bq)/Bq

for each quad as the fitting error, where Aq is the edge length ra-
tio of the quad, and Bq is the target size ratio (averaged over the
corresponding quad). The bottom row of Figure 7 gives the distri-
butions of the fitting errors, where the vertical axis represents the
quad number divided by the total.
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(a) wa = 0.4 (b) wa = 0.8 (c) wa = 1.5

Figure 7: Quadrangulation results with feature line constraints and
isotropic constraints. The number wa is the isotropic weight for
results in the corresponding column.

In Figure 9 (top row), we compute the principal curvature of the
mesh, and use its inverse as the ratio of the anisotropic constraint
(γ in Equation 13). In Figure 9 (middle row), we set the ratio to
be γ = 1, achieving the effect of isotropic constraint. The fitting
errors of the anisotropic constraint and the isotropic constraint are
shown in the bottom row from left to right.

Complex Shapes We tested our method on some large and com-
plex shapes. Figure 10 shows a result on the Buddha model. This
model contains many handles of various sizes, including a very
small one on the left part of the waist. And there are many folds
and curling on the cloth. The shape complexity brings challenges
for the previous methods. The result in Figure 11 shows that our
method can deal with a lot of feature line constraints.

Comparison In our wave construction method, it is possible to
optimize cos(θ), sin(θ), cos(φ) and sin(φ) as Ray et al. did [2006],
then multiply cos(θ) and cos(φ) to obtain the final wave function.
This indirect method has almost the same computation cost as ours.
However, the wave function obtained by it usually gives greater
residual energy in Equation 19 than ours, which means that such
wave function is sub-optimal.

Figure 12 shows a comparison between the indirect method and our
method. One can see that the quadrangulation result by the indi-
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Figure 8: Quadrangulation result of an opened mesh with many
boundaries Figure 4 (right).

rect method is quite good in most places, except in the bottom part
where the orientation of some quad are distorted. This artifacts may
be explained as follows. Recall that | cos(θ)|=1 or | cos(φ)| = 1
at the chart boundaries. By directly optimizing the wave func-
tion cos(θ) cos(φ), our approach implicitly places relatively more
weighting at the MSC chart boundaries, and less weighting else-
where. This is very desirable, because the chart boundaries are very
important for our framework to extract the quasi-dual MSC. On the
contrary, the indirect method implicitly places uniform weighting
value, i.e. 1, everywhere, thus reduces the relative importance at
the chart boundaries.

8 Conclusion and Discussion

We have presented an anisotropic quadrangulation method, and
successfully applied it to many testing mesh models. The results
showed that the proposed method is very flexible, and provides a lot
of useful and intuitive constraints to meet the user requirements in
feature line alignment and anisotropic/isotropic size control, while
it dose not incur much user interactions. Thanks to the curl opti-
mization procedure and the MSC extraction method, the number of
the singularity points is minimized and the positions are automati-
cally well distributed. It is also robust in handling complex models.

In our current implementation, the input mesh must be tessellated
finely enough, such that the length of each mesh edge is much
smaller than the corresponding size fields. Otherwise, the wave
function will be under-sampled, and miss some extreme points.
This problem can be addressed by locally subdividing the input
mesh according to the size field.

To properly deal with small handles, the edge length of correspond-
ing quad must be smaller than the handle size. Otherwise, the ex-
treme points of the wave function may lie out of region of the han-
dle, and the corresponding quasi-dual MSC will fail to correctly
capture the topology of the handle. In the future, we would like
to automatically detected such degenerated case by computing the
Euler characteristic of the quasi-dual MSC, and locally reduce the
edge length of the corresponding quads by adding appropriate size
constraints.
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