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Abstract—Many natural and man-made objects consist of simple primitives, similar components, and various symmetry

structures. This paper presents a divide-and-conquer quadrangulation approach that exploits such global structural information.

Given a model represented in triangular mesh, we first segment it into a set of submeshes, and compare them with some

predefined quad mesh templates. For the submeshes that are similar to a predefined template, we remesh them as the template

up to a number of subdivisions. For the others, we adopt the wave-based quadrangulation technique to remesh them with

extensions to preserve symmetric structure and generate compatible quad mesh boundary. To ensure that the individually

remeshed submeshes can be seamlessly stitched together, we formulate a mixed-integer optimization problem and design a

heuristic solver to optimize the subdivision numbers and the size fields on the submesh boundaries. With this divider-and-conquer

quadrangulation framework, we are able to process very large models that are very difficult for the previous techniques. Since the

submeshes can be remeshed individually in any order, the remeshing procedure can run in parallel. Experimental results showed

that the proposed method can preserve the high-level structures, and process large complex surfaces robustly and efficiently.

Index Terms—Quad remeshing, divide-and-conquer, segmentation, mixed-integer optimization

Ç

1 INTRODUCTION

QUAD mesh is very useful for its bilinear nature and
superior performance in many graphics and scientific

computing applications. However, it is very challenging to
remesh a surface into a provably high-quality quad mesh,
because there are very diverse requirements on the shape,
the orientation and the size of the quads, the alignment of
features, and the regularity of the mesh in term of
singularity points. Some of the recently developed methods
[1], [2] take into account these low-level requirements via
global optimization techniques; however, the optimization
cost may increase rapidly, and even become unacceptable,
when processing large complex models.

On the other hand, many natural and man-made objects
consist of simple primitives, similar components, and
various symmetric structures. Taking advantages of the
high-level structural information would be helpful for
developing a better quadrangulation method. However,
the previous methods are not aware of such high-level
structural information. They conduct the same kind of
computation on all components, which wastes a lot of
computation resources. Moreover, the global structure
might not be preserved because different results might be
generated for those similar parts.

In this paper, we propose a top-down quadrangulation
method that exploits the high-level structural information.
Our primary goal is to develop a practical solution to robust
and efficient remesh large complex surfaces with many

components and regular structures. The basic idea to

achieve this goal is “divide and conquer,” i.e., segmenting
the input surface into small, easy-to-remesh submeshes, so
as to reduce the complexity of the problem and reuse the

quadrangulation results on the other similar parts. For the
submeshes, we developed two remeshing techniques. One

is template based, which remeshes a submesh by subdivid-
ing a predefined quad mesh template. The benefits of

templates include: 1) saving on computation cost, 2) control
of the quad mesh structure, and 3) ability to generate the
same quad mesh for similar and repeated components. The

other is an extension of the wave-based quadrangulation
method [2], which can preserve symmetric structures and

generate compatible boundaries.
A key issue in developing a divide-and-conquer quad-

rangulation method is how to ensure that the individually

remeshed submeshes can be stitched together seamlessly.
As a technical contribution, we formulate a mixed-integer
optimization problem by a set of novel stitching constraints,

and design a heuristic solver to optimize the subdivision
numbers and the size fields on the boundaries of the

submeshes, such that a seamless stitching can be guaran-
teed. The proposed stitching technique allows us to convert
a large quad remeshing task into many small remeshing

tasks, and is substantially different from the previous
stitching techniques [1], [2], [3], which find some proper

transition functions across the cutting boundary to obtain
global parameterizations.

The proposed method runs in a top-down manner, thus

is suitable for processing large complex models, particularly
CAD models. Besides, it has several useful features:

1. It can generate the same quadrilateral structures for
similar components.

2. It can preserve the symmetry structures in the model.
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3. Its quadrangulation ability can be extended by
predefining richer quad mesh templates.

4. It can run in parallel to remesh the submeshes.

2 PREVIOUS WORK

Surface quadrangulation has received a lot of attention in
geometry related fields. A direct approach to quadrangula-
tion is by parameterization and regular grid sampling [4].
To deal with models of complex topology, Marinov and
Kobbelt [5] partition the input mesh into nearly developable
regions via variational shape approximation. Lai et al. [6]
developed a local updating technique to incrementally
transform triangles into quads. Though conceptually
simple, it cannot transform all triangles. Recently, Remacle
et al. [7] find the set of triangle pairs that forms the best
possible quadrilaterals with the constraint of not leaving
any remaining triangle in the mesh based on the Blossom
algorithm [8].

To generate high-quality quad meshes, many methods
directly trace a network of curves on the surface. For
example, Alliez et al. [9] trace the minimum and maximum
curvature lines. Marinov and Kobbelt [10] improved this
algorithm with an efficient proximity query method for
tracing. Ray et al. [11] and Kälberer et al. [3] proposed two
globally smooth parameterization methods for arbitrary
surfaces, which can be naturally applied in tracing the curve
network. Since these methods construct the quad incremen-
tally, pure quad mesh is not guaranteed.

Recently, some global chart creation techniques were
proposed for pure quad remeshing. Dong et al. [12]
developed the first automatic algorithm to partition the
input mesh into a set of quadrilateral charts using the
Morse-Smale complex (MSC) of Laplacian eigenfunctions.
Huang et al. [13] extended this method to enable the control
over the chart size. Their results showed that the MSC
produces high-quality quadrilateral charts. Creating a
global quadrilateral charting is equivalent to determining
the singularity points. Tong et al. [14] introduced a user-
assisted method to interactively identify the singularity
points, while Bommes et al. [1] developed a mixed-integer
solver to automatically optimize the singularity points.
Myles et al. [15] used quadrilateral T-mesh to partition the
input surface into smaller number of charts and achieved
better feature alignment result. Tierny et al. [16] transfer the
global structure (singularity and patch layout) from a
quadrilateral mesh to another mesh to be remeshed as the
domain of cross parameterization.

The ability to control the orientation and the size of the
quads is important for a quadrangulation method to align
the quads with the geometric features and sample the input
mesh adaptively. Most of existing methods can orient the
quads using a vector field over the surface. Such vector field
can be obtained by computing and optionally smoothing
the principal curvature directions [17], [18], [19]. The sharp
feature lines on the input mesh are then taken into account
during the smoothing step. Dong et al. [20] suggested to use
the gradient vectors of a harmonic scalar field to avoid the
noisy singularity points in the principal directions. To
control the size of the quads, Ray et al. [11] augmented the
surface with a scalar field to determine the spacing between

the adjacent iso-parameter lines. Zhang et al. [2] extended

this method to enable anisotropic control over the size. They

also proposed a wave construction method to exactly align

the quad mesh with the feature lines. Bommes et al. [1]

achieved feature alignment by using a mixed-integer solver

to determine the corresponding integer parameters. Kovacs

et al. [21] proposed a simple method to control the shape of

the quads by curvature to decrease the remeshing error.
A number of recent algorithms aim at simplifying and

optimizing a quad mesh [22], [23], [24]. Similar to triangle
mesh simplification, quad mesh simplification techniques
incrementally decimate some quads by applying some
decimation operators, e.g., polychord collapse, quadrilateral
collapse, and doublet collapse. These operators are carefully
designed to maintain the quadrilateral structure of quad
mesh. Bommes et al. [24] optimize the global quadrilateral
structure by detecting the topological helices and applying
a novel grid preserving simplification operator to remove
them. Li et al. [25] optimize the shape of faces by adjusting
the number and spacings of grid lines in each quad patch
extracted from the input quad mesh. However, these
methods do not optimize the global distribution of the
singularity points.
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Fig. 1. The Lucy model remeshed by our divide-and-conquer method.
The input model has 1; 413K vertices and are segmented into 10
submeshes. It takes about 35 minutes to remesh. The result consists of
37,794 quads, and 4,686 singularity points. Hausdorff distance is
dH ¼ 0:0028.



The latest work in above shows that significant pro-
gresses in quad remeshing have been made. Most of them
are bottom-up remeshing approaches. The two-step method
by Marinov and Kobbelt [5] can be considered as a top-
down approach; however, it is restricted to planar patch
approximation, and is not flexible to control. Lizier et al.
[26] decompose the surface into a set of triangular or
quadrilateral patches according to the features as the base
domain of global parameterization. As a major difference
with the previous work, we propose a flexible top-down
quadrangulation approach.

3 OVERVIEW

We begin with an overview to present our quadrangulation
method. As many previous methods did, we assume that
the input model is represented as a triangulated manifold
surfaceM. As shown in Fig. 2, our method consists of five
main steps.

3.1 Segmentation

First we segment the input model into a set of submeshes:
M¼ [fMig, and analyze their shape and structures. We
define a set of quad mesh templates to match with the
submeshes, e.g., the rectangle, disc, and cylinder templates
shown in Fig. 7 for the CAD models in our experiments.

If a submesh M is similar to a predefined quad mesh
template Q, and can be remeshed as Q up to a number of
subdivisions, then M is identified as a matched submesh. The
others that cannot be matched with any template are called
unmatched submeshes.

If a group of submeshes have very similar geometry and
can be remeshed in the same way up to small deformation,
then they are called repeated submeshes. For each group of
repeated submeshes, we randomly choose one as the
representative submesh of the group.

For convenience, the submeshes other than matched and
repeated are called misc submeshes. As segmentation and
submesh analysis is not the focus of this work, we postpone
the details to Section 6.

3.2 Initialize Vector Fields and Size Fields

After segmentation, we compute and smooth the principal
curvature directions [11], [17] to generate a pair of vector
fields ð~X; ~Y Þ for orienting the quads. To align the quads
with boundaries of the submeshes, we replace the corre-
sponding principal directions with the edge direction of the
boundaries before smoothing. Then, we adopt the curl
minimization-based method [2] to define a pair of size fields
ð�; �Þ for anisotropically controlling the size of the quads.

3.3 Set Up and Solve Stitching Constraints

Before remeshing, it is necessary to properly constrain the
boundaries of adjacent submeshes to have the same number
of quads, such that they can be seamlessly stitched together.

We propose four kinds of stitching constraints. The first
is defined between a matched submesh and an unmatched
submesh, which constrains the subdivision numbers of the
corresponding quad mesh template to be compatible with
the size fields of the unmatched submesh at the joint
boundary (see Section 4.1).

The second is defined for unmatched submeshes, which
constrain the size field on the boundary to be compatible
with quad mesh (see Section 4.2).

The third is defined between two adjacent matched
submeshes, which constrains the subdivision numbers for
the corresponding quad mesh to produce the same number
of quads at their joint boundaries (see Section 4.3).

The last is defined between two repeated submeshes,
which constrains their size fields to be compatible at the
corresponding boundaries, such that the quad meshing
result can be reused on both of them (see Section 4.4).

Combining these constraints with the wave-based quad-
rangulation method [2], we obtain a mixed-integer optimi-
zation problem. Then, we design a heuristic solver to the
optimization problem (see Section 4.6).

3.4 Remesh Submeshes

With the optimized subdivision numbers and size fields, we
then remesh the submeshes individually.

The matched submeshes are remeshed by subdividing
their templates. Since the template quad mesh can be
regarded as the parameterization space of the matched
submesh, we first subdivide the template, and then map the
new vertices and the new edges of the template onto the
matched submesh. To avoid introducing new singularity
points, we keep a simple rule to subdivide the quad mesh
templates: any two opposite edges of any quad must be
simultaneously subdivided into the same number of
subedges. Fig. 3 shows an example subdivided by this
rule, where �½�e�, called the subdivision number of edge �e,
denotes the number of the subedges that �e is subdivided
into. Under this rule, one can see that subdivision number
�½�e� has a transitive property along quad strips, as shown in
Fig. 3b. Therefore, the subdivision DoF of a quad mesh
equals the number of quad strips. In addition, for any open
quad mesh, their boundary edges can be grouped into pairs,
such that the two edges in every pair must have the same
subdivision number.

The repeated submeshes and the misc submeshes are
remeshed using an improved wave-based quadrangulation
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Fig. 2. The outline of the quadrangulation method.

Fig. 3. (a) A simple example of quad mesh subdivision. The original quad
mesh have five subdivision DoFs, namely �½�e1�; �½�e1�; . . . ; �½�e5�. Subdivi-
sion result is generated with �½�e1� ¼ 2, �½�e2� ¼ 3, �½�e3� ¼ 1, �½�e4� ¼ 3, and
�½�e5� ¼ 4. (b) A quad strip. By our subdivision rule, the edges
perpendicular to the strip direction have the same subdivision number.



method, which can generate prescribed number of quads
along the boundary for seamless stitching, and preserve
symmetric structures (see Section 5).

3.5 Optimize the Quad Mesh

Finally, we merge the remeshed submeshes together, and
adopt the iterative relaxation method [2] to optimize the
quadrangulation result, which is basically a Laplacian
smoothing.

Fig. 4 shows the workflow of remeshing a Fandisk
model. In the above steps, wave construction is divided to
the submeshes, while field smoothing, curl minimization,
and constraint system solving are performed globally.

4 STITCHING PROBLEM

In this section, we consider the stitching problem between
two adjacent submeshes M and M 0. Let C ¼ e1e2 . . . ek �
@M \ @M 0 be a boundary curve between M and M 0, where @
denotes the boundary of a mesh, and e1, e2, . . . , and ek are
the consecutive edges of both @M and @M 0.

Remember that we have constrained the vector fields to
be aligned with the direction of the boundary edges during
the initialization step (step 2 in Section 3). For convenience,
we assume that ~X is aligned with the boundary edge
direction. Then, the size field in the direction of an edge ei
on C is �½ei�.

To design the stitching method, we distinguish the
following three cases for M and M 0:

1. Case 1. M is not a matched submesh, but M 0 is.
2. Case 2. M and M 0 are not matched submeshes.
3. Case 3. M and M 0 are matched submeshes.

To ensure seamless stitching, we must generate the same
number of quads on curve C for M and M 0. For a matched
submesh, the number of quads on curve C is related to the
subdivision numbers. For an unmatched submesh, it is
related to the size field that we used to construct the wave
function. We will setup the relationships between these
variables in the following sections:

4.1 Constraints between Matched Submesh and
Unmatched Submeshes

In Case 1, M 0 is a matched submesh, but M is not. As
illustrated in Fig. 5a, Q0 is the quad mesh template for M 0.
For each boundary quad edge �e0i of Q

0, we can identify all of
triangle edges that have overlaps with it (Throughout this
paper, e without a bar denotes the edge of the triangle
mesh, while �e with a bar denotes the edge of the template
quad mesh).

Since the size field is an indication of the quad size, the
quad number on �e0i can be approximated by

P

ej��e0i

jejj
�½ej�

,
where jejj denotes the length of edge ej. Therefore, we have
the following stitching constraint:

�
�

�e0i
�

¼
X

ej��e0i

jejj

�½ej�
: ð1Þ

4.2 Constraints between Unmatched Submeshes

In Case 2, both M and M 0 are not matched submeshes.
Similarly to Case 1, the quad number on C can be also
approximated by:

Pk
j¼1 jejj=�½ej�. This number should be a

positive integer. Denote it by �½C�, then we have the
following constraint:

�½C� ¼
X

k

j¼1

jejj=�½ej�; �½C� 2 ZZ
þ; ð2Þ

where jejj denotes the length of edge ej.
Process all constraints in (1) and (2), and assemble them

into a matrix form, then we have

� ¼ C1�
�1 þC2�

�1 � Ce�x; ð3Þ

where C1 and C2 are the coefficient matrices, C ¼ ðC1C2Þ,
and x is the column vector composed of ~� and ~�, the
logarithms of the size fields that Zhang et al. [2] defined to
prescribe the size of the quad mesh.
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Fig. 4. Remeshing data flow. (a) Segment the original model into
submeshes (shown in different color); (b) unmatched submeshes;
(c) matched submeshes; (d) a solution to seamless stitching;
(e) remeshing the unmatched submeshes; (f) remeshing the matched
submeshes; (g) the final result.

Fig. 5. Illustration of joint boundary of two submeshes. (a) A matched
submesh and a unmatched submesh; (b) two matched submeshes.



We assume that the boundary edge ej either completely
lie in a quad edge or completely outside of it without loss of
generality. If there is an edge crossing two quad edges, we
can presplit it such that this assumption holds. Therefore,
each column in matrix C has at most one nonzero value.

In addition, as pointed out in some previous work [22],
[27], it is impossible to quadrangulate a surface with an odd
number of vertices on the boundary. This can be shown by
considering an opened quad mesh with Nq quads and Ni

internal edges. Then, the number of the boundary edges is
4Nq � 2Ni, which is obviously an even number.

Therefore, for each unmatched submesh M, we set up
the following integer constraint:

X

C�@M

�½C� ¼ 2�½M�; �½M� 2 ZZ
þ; ð4Þ

where �½M� denotes the integer variable associated with
submeshM, which equals a half of the boundary quad edge
number of M.

4.3 Constraints between Matched Submeshes

In Case 3, both M and M 0 are matched submeshes. As
illustrated in Fig. 5b, Q and Q0 denote the quad mesh
templates of M and M 0.

According to the 1-1 correspondence between Q and M,
we can find all of the boundary quad edges that overlap
with curve C. Denote the edges by �e1, �e2, . . . , and �em in
consecutive order. Without loss of generality, we assume
that these edges are all in curve C, i.e., �e1 [ � � � [ �em ¼ C, as
illustrated in Fig. 5b. Otherwise, we can presubdivide quad
mesh template Q by subdividing �e1 and/or �em at the end
point of C to clip the edges, such that this assumption
holds. When Q is subdivided, the number of the subquads
connected with curve C equals the summed subdivision
numbers of the quad edges, i.e.,

Pm
i¼1 �½�ei�.

Similarly, the number of the subquads connected with
curve C equals

Pm0

i¼1 �½�e
0
i�, where �e0i 2 @Q0 and �e01 [ � � �

[�e0m0 ¼ C.
To ensure that Q and Q0 can be seamlessly stitched

together after subdivisions, the subdivided quad meshes
must have the same number of edges on the boundary curve
C. Therefore, we set up the following subdivision constraint:

X

m

i¼1

�½�ei� ¼
X

m0

j¼1

�½�e0j�: ð5Þ

It is obvious that the above constraint is homogeneous
and the possible solution space for these variables is large.
Meanwhile, the subdivision numbers are better to meet the
size requirements on the corresponding edges. Therefore,
we find the quad edges whose subdivision number have not
been related to the size fields, and apply the same type of
constraints in (1) on these edges:

�½�e0i� ¼
X

ej��e0i

jejj

�½ej�
; �½�ei� ¼

X

ej��ei

jejj

�½ej�
: ð6Þ

When apply the constraints in above for all of the quad

edges on the interface curve of Q and Q0, we have
Pm

i¼1 �½�ei� ¼
P

ej2C
jejj
�½ej�

and
Pm0

i¼1 �½�e
0
i� ¼

P

ej2C
jejj
�½ej�

. Then,

we have
Pm

i¼1 �½�ei� ¼
Pm0

i¼1 �½�e
0
i�, which implies the subdivi-

sion constraint in (5) becomes redundant. However, the

subdivision constraint cannot be replaced, because the

alternatives in (6) may not be satisfied accurately enough

for producing the same number of subdivided edges along

the interface curve, due to the possible numerical error of

the solver (see Section 4.6).
Process all constraints in (4) and (5), and assemble them

into a matrix form, then we have:

A � ¼ 0; ð7Þ

where A is the coefficient matrix, � is the vector composed
of the subdivision variable of the boundary edges and the
joint curves (see (2)), and the integer variable associated
with the unmatched submeshes (see (4)).

By (4) and (5), we know that the coefficients in A can
take only four possible values: f�2;�1; 0; 1g. Since any
boundary quad edge belongs to only one boundary curve,
each column of A has only one nonzero coefficient. In
addition, the subdivision numbers are not all independent
variables, since the subdivision rule (Section 3, step 4)
indicates that the boundary edges of the same quad strip
must have equal subdivision numbers. Therefore, we can
condenseA and �, and the condensed matrixA satisfies the
following: 1) All the coefficients are integers in ½�2; 2�;
2) each column has at most two nonzero values. In the
following, we still denote the condensed matrix and vector
by A and � without confusion.

A� ¼ 0 is a set of hard constraint on the integer
variables, which must be satisfied first of all. However, as
the number of matched sum-meshes increases, the neigh-
boring relationship may become more and more complex,
such that it is possible that A� ¼ 0 cannot be satisfied. To
help the user to find this situation and avoid it, we must
check whether there is a positive solution to fulfill A� ¼ 0.
Note thatA� ¼ 0 is a linear system with integer coefficients,
which is also called linear Diophantine equations. We first
conduct a series of unimodular row operations and column
swaps to reduce the matrix into an upper triangular form.
Then, we can divide the � variables into two sets, the
dependent variables �0 and the free variables �00, and
rewrite the equations as the following equivalent form:

ðA0 �A
00Þ

�0

�00

� �

¼ 0;

where both A
0 and A

00 are integer matrices, and A
0 is full

rank and upper triangular.
If the free variable set �00 is empty, thenA� ¼ 0 cannot be

satisfied. In this case, we find the matched submesh that
corresponds to the last variable in �0, remove it from the set
of matched submeshes and treat it as an unmatched
submesh. Then, we update the linear Diophantine equa-
tions accordingly.

Otherwise, �00 is not empty. Then, we have �0 ¼
ðA0Þ�1A00�00. Since the entries in ðA0Þ�1 are rational numbers,
let g be the smallest positive integer g such that gðA0Þ�1 is an
integer matrix. Then, we have g�0 ¼ ðgðA0Þ�1ÞA00�00. It is
easy to see that g�0 ¼ ðgðA0Þ�1ÞA00�00 and �0 ¼ ðgðA0Þ�1ÞA00�00

have the same number of solutions, because they are
homogenous systems. Therefore, solving the original
Diophantine equations is equivalent to finding positive
integer �00 that satisfy gðA0Þ�1A00�00 > 0. Note that these
inequations define some hyperplanes in the space of �00, and
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the solution is a hyper polyhedron. Then, we can find if the
solution space is empty or not by linear programming. If the
solution space does not contain any positive integer point,
we find the matched submesh that corresponds to the
first variable in �0 that cannot be satisfied (i.e., the first
hyperplane that reduces the solution space to zero), remove
it from the set of matched submeshes, and treat it as
an unmatched submesh. Then, we update the linear
Diophantine equations accordingly.

We repeat these examinations and updates until the
integer hard constraints are all compatible.

4.4 Constraints between Repeated Submeshes

At last, we consider the corresponding boundaries of two
repeated submeshes M 0 and M, and describe the size field
constraints between them. To generate the same quad mesh
for the repeated submeshes, it is natural to require their
corresponding edges to have the same size fields. To reduce
computation cost, we remesh only one submesh and
transfer the result to the others. Therefore, we constrain
their size fields only on their boundaries instead of the
whole submeshes.

For each mesh edge e 2 @M, we can find an edge e0 2
@M 0 by the correspondence between @M and @M 0. Then, we
constrain their size fields to be as close as possible using the
following least squares energy:

EM;M 0ðxÞ¼
X

e2@M

~�½e� � ~�½e0�ð Þ
2
þ
X

e2@M

~�½e� � ~�½e0�ð Þ
2
; ð8Þ

where we use the logarithm of the size fields to have a
quadratic function in (10). By summing the above energy
terms over all pairs of repeated submeshes, we define the
following energy function:

ErðxÞ ¼
X

M;M 0

EM;M 0ðxÞ: ð9Þ

4.5 Mixed-Integer Problem

Now, we describe a constrained mixed-integer problem for
optimizing the subdivision numbers and the size fields.
First, we add the energy term in (8) into the size field
optimization energy function Etotalð~�; ~�Þ (see [2, (14)]),
defining a new objective function as follows:

EðxÞ ¼ EtotalðxÞ þ ErðxÞ; ð10Þ

where the terms are all quadratic functions of x. Then, take
into account all of the constraints in (3) and (7), we
formulate a minimization problem as follows:

argmin
x;�

EðxÞ s:t:
A� ¼ 0

� ¼ Ce�x

�i 2 ZZ
þ; i ¼ 1; 2; . . .

8

<

:

ð11Þ

This is a large optimization problem, where the number of
variables is the order of the edge number of the input triangle
mesh. Though the objective function EðxÞ is quadratic,
the constraints consist of exponential functions and positive
integer variables,whichmake it very challenging to solve.We
note that Bommes et al. [1] developed an effective greedy
solver for mixed-integer optimization problem for their
quadrangulation technique, but their solver does not deal
with the positive integer constraints that we have in (11). In

the following section, we will describe a heuristic solver to
approximate the solution based on Gurobi optimizer [28], a
commercial mixed-integer quadratic optimizer.

4.6 A Heuristic Solver

The basic idea of the heuristic solver is to first solve the

continuous relaxation problem, then solve for the integer

variable to satisfy thehard constraints. It has threemain steps:

1. Initialization. First solve the following continuous
relaxation problem without the constraints:

arg min
x

EðxÞ ð12Þ

to obtain an initial solution x0 for x.
2. Rounding by MIQP. Then, we initialize � as

�0 ¼ Ce�x
0

. Note that �0 is not integer. To round
�0 into integers, we would like to minimize its
impact to the objective function EðxÞ. By the hard
constraint of � ¼ Ce�x, we have the following
approximation:

�� � CE�x ¼ D�x;

where �� ¼ �� �0, �x ¼ x� x0, E is the diagonal

matrix composed of �e�x
0

, and D ¼ CE. Let G ¼

D
tðDD

tÞ�1 be a pseudoinverse of D. Then, the

changes in x due to the rounding error �� can be

computed as follows:

�x ¼ G��: ð13Þ

Remember that EðxÞ is quadratic, its change by �x

can be expressed using the Hessian matrixH of EðxÞ

as: �E ¼ 1
2
�xt

H�x. Then, we have

�E ¼
1

2
ð�� �0ÞtGt

HGð�� �0Þ:

Therefore, we formulate the following con-
strained mixed-integer minimization problem to
obtain �:

argmin
�

�E s:t:
A� ¼ 0

�i 2 ZZ
þ; i ¼ 1; 2; . . .

�

ð14Þ

We used the MIQP Optimizer in Gurobi software

[28] to solve the above minimization problem.
3. Update the size fields. After getting the solution to �,

we update x at the boundary by x x0 þG��.
Since (13) is a first order approximation, this update
may not satisfy the hard constraints in � ¼ Cex. To
address this issue, we examine every constraint in
� ¼ Cex, and perform a uniform scaling on the size
fields of the corresponding boundary edges, such
that the constraint is precisely satisfied. At last, we
fix the values on the boundary edges, and propagate
the errors over the whole surface by minimizing the
objective energy function EðxÞ.

5 QUADRANGULATION OF SUBMESHES

After solving the stitching problem, the quad number on

each joint curve (the � variables) and the corresponding

size field are determined. Therefore, we can remesh the
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submeshes independently as long as we generate the

same number of quads along the joint boundaries as

prescribed in �. This allows to remesh complex models in

parallel fully taking advantage of the computing power of

multicore processors.
As introduced in the overview section, the matched

submeshes are remeshed by subdividing the correspond-

ing quad mesh templates and projecting the new vertices

to the submeshes.
For the unmatched submeshes, we adopt the wave-based

method [2] to remesh them, and extend it for generating

prescribed number of quads on the boundaries and

preserving the symmetry structure. When a repeated quad

mesh is remeshed, the generated quad mesh is then

transferred to the other instances. The transfer process is

the same as remeshing a matched submesh, except that it

does not need subdivision.
Fig. 6 shows the outline of the extended wave-based

quadrangulation method. In the following, we will present

the details in setting up the wave value constraint and the

symmetry preservation constraint.

5.1 Wave Value Constraint

An important step of the wave-based quadrangulation

method is to construct a wave function. As in previous

sections, let M denote a submesh to remesh, C ¼ e1 [ e2� � �

[em be boundary curve, and ei ¼ ðpi�1; piÞ, i ¼ 1; 2; . . .m.

Since we have determined �½C� (the quad number along

curve C) during the stitching step (step 3 in Section 3), we

need to ensure that the wave function on C will generate

�½C� quads. Otherwise, seamless stitching is not promised.

We achieve this goal by imposing extra value constraints for

the wave function.
Recall that the vector fields on M are aligned with the

direction of the boundary edges during the initialization

step. For convenience, we assume that ~X equals the edge

direction of the boundary C. Then, ~X½ei� ¼ ðpi � pi�1Þ=jeij.

Let ð�i; �iÞ be the phase angles of point pi. Then, by the

wave construction method in [2], we have

�i � �i�1 ¼ !x
~X½ei� � ðpi � pi�1Þ ¼

�

�½ei�
jeij ¼

jeij

�½ei�
�;

�i � �i�1 ¼ !y
~Y ½ei� � ðpi � pi�1Þ ¼ 0:

Then, �i ¼ �0 þ �i and �i ¼ �0, where �i ¼
Pi

j¼1
jeij
�½ei�

�. Then,

the wave function values at pi can be expressed as

fðpiÞ ¼

cosð�iÞ cosð�iÞ
cosð�iÞ sinð�iÞ
sinð�iÞ cosð�iÞ
sinð�iÞ sinð�iÞ

0

B

B

@

1

C

C

A

¼ Ti fðp0Þ ð15Þ

by trigonometry, where Ti is a constant matrix

Ti ¼

ci 0 �si 0

0 ci 0 �si
si 0 ci 0

0 si 0 ci

0

B

B

@

1

C

C

A

;
ci ¼ cosð�iÞ
si ¼ sinð�iÞ

�

: ð16Þ

Therefore, the wave function on curve C is completely
determined by its value at point p0. Then, we substitute all
fðpiÞ with (15) in the wave construction energy function
Ewave (see [2, (19)]) and construct the wave function.

Since �k � �0 ¼ �k ¼
Pk

i¼1
jeij
�½ei�

� ¼ �½C��, the wave func-
tion has �½C� half periods on curve C. By the MSC extraction
method, �½C� quads will be generated on C, which exactly
satisfies the stitching requirement mentioned above.

5.2 Symmetry Preservation

Many models contain symmetric or nearly symmetric
structures. In this section, we describe a method to preserve
the symmetric structures. Since the vector/size fields are
defined on the mesh edges and it is too strict to require two
edges to be symmetric, we set up the symmetric correspon-
dence by the mid points of the edges: For each point, we
compute the symmetric position, and then find the nearest
midpoint to the symmetric position.

Given a symmetric region � and the symmetry plane P ,
we first prepare symmetric vector fields and symmetric size
fields in �. During the vector field smoothing step, we
require the symmetric edges to have symmetric vector
fields. During the size fields optimization step, we add an
extra energy term to minimize the squared differences
between the size fields of the symmetric edges.

Then, we add a symmetry preservation energy term into
the wave construction energy Ewave to constrain the wave
function. Since both even and odd wave functions can
produce symmetric quad meshes, we define the symmetry
preservation energy term as follows:

E�ðf 1; . . . ; fnÞ ¼
X

ðp;p0Þ2V�

fðpÞ2 � fðp0Þ2
� �2

; ð17Þ

where V� denotes the set consisting of all symmetric vertex
pairs in �.

6 IMPLEMENTATION AND RESULTS

We have implemented the presented quadrangulation
method, and tested it on various models. Before going to
the experimental results, we first introduce how we
segment and analyze the submeshes for quadrangulation.

Segmentation and analysis. To automatically segment the
input model, we adopted the SDF-based consistent mesh
partitioning tool [29] (public downloadable from http://
www.cs.tau.ac.il/liors/research/projects/sdf/). With this
tool, we can segment a mesh in seconds. For large complex
models, we use a simplified proxy to perform the segmenta-
tion task, then map the result back to the original mesh and
smooth the cutting boundaries. After segmentation, we
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Fig. 6. Outline of the extended wave-based quadrangulation algorithm.



perform shape comparison on the submeshes to find
repeated components and match them with predefined
templates. Given twomeshes, we first compare the following
simple shape characteristics between them: The number of
the boundary curves, the relative length of the boundary
curves, and the aspect ratio ð	2=	1; 	3=	1Þ (where 	1 	 	2 	
	3 are the eigen values obtained by applying the PCA
method on the mesh vertices). When these simple compar-
isons pass, we try to build a 1-1 mapping based on heat
kernel signature [30] and spectral embedding [31]. If any step
in above fails, the two submeshes are regarded as different in
shape. This lightweight analysis method can efficiently
identify similar shapes up to small deformation. We leave
it to a future work to handle large nonrigid deformation.

Since CAD models usually consists of simpler patches
that we cannot segment out using the SDF-based method,
we developed another lightweight segmentation method.
Given a CAD model, we first find the sharp feature edges
where the adjacent triangles’ normal angle is greater than a
threshold of 45 degree, and connect them to create some
curves for segmentation. Then, we obtain a submesh by
randomly seeding a triangle and growing the region as far
as to the segmentation curves or the mesh boundaries. This
seeding-and-growing procedure is repeated until there is no
triangle left. At last, the user can optionally pick and merge
some submeshes to eliminate over segmentation. To
facilitate analyzing the CAD model submeshes, we define
three simple primitives for matching, namely disc, rectan-
gle, and open cylinder. Fig. 7 shows the quad mesh
templates of these primitives.

Experimental results. Now, we show some quadrangula-
tion results. In the following figures, RSD denotes the
relative standard deviation of the quad angles, Nsp denotes
the number of singularity points of the quad mesh, and dH
denotes the Hausdorff distance between the input model
and the remeshed model and is normalized by the
diagonal length of the input model’s bounding box. All
of the quad meshes shown in the result section are
available in the supplementary materials, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2012.301.
Fig. 8 plots the distribution of the scaled Jacobian
measurement to show the mesh quality of our quadrangu-
lation results.

First, we demonstrate the ability to remesh large complex
objects using the Lucy model shown in Fig. 1. This model
consists of 1; 413K vertices, which the previous wave-based
method cannot handle due to the huge memory require-
ment. In Figs. 9, 10, and 11, we test the divide-and-conquer
quad remeshing techniques on larger, more complex
models, which contain a great number of featured struc-
tures. The results showed that our method can successfully
deal with them.

Table 1 lists more timing results on a number of models,

where Nv is vertex number, Ns is submesh number, Nt and

Nr are the number of matched and repeated submeshes, tm
is the computation time in mixed-integer optimization, j�j is

the number of integer variables, tq is the computation time

for remeshing all submeshes, and Nq is the quad number

of the final result. The timing is carried out on a PC with a
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Fig. 8. Distribution of the scaled Jacobian measurement of the
quadrangulation results. The range ½0; 1� of the scaled Jacobian is
divided into 100 bins, and the number of the quads in each bin is
normalized by the total number of quads.

Fig. 9. The engine model. The input model is drawn with transparency to
show the internal structures. This model is segmented into 185 parts.
The right column show two repeated parts. Nsp ¼ 758, RSD ¼ 12:65%.
Hausdorff distance dH ¼ 0:0079.

Fig. 7. Primitives for CAD model analysis.



2.8-GHz dual core CPU of 2-GB RAM, but our program is
single threaded.

Now, we compare the computation time of this workwith
that of the wave-basedmethod (Zhang et al. [2, Table 2]). For
the Fandisk model, our method took 23.1 seconds of
computation time when segmenting the model into 12
submeshes, which is 17.7 seconds faster. For the fertility
model, our methods took 93.8 seconds to remesh with
symmetry preservation, which approximately equals to the
original wave-based method, showing that the symmetry
constraint does not incur significant computation cost. In
addition, the original waved-based method took about
586 seconds of computation to remesh a CAD model of
136 K vertices, while our method took about 140 seconds of
computation to remesh aCADmodel of 267Kvertices,which
indicates an acceleration of eight times. In summary, our
method can efficiently deal with large models by simply
segmenting them into smaller ones, thanks to its divide-and-
conquer nature. The last row in Table 1 shows that it takes
about 10minutes to remesh a largemodelwith 500Kvertices.

As shown in Table 1, the major computation cost of our
method is taken by the wave-based procedure. Compared
with the surface meshing techniques based on advancing
front, Delaunay and quadtrees [27], our method is much
slower, while it can simultaneously optimize the size and
the orientation of the final quads.

In Figs. 13 and 14, we demonstrate effects of symmetry
preservation. In these examples, the symmetry regions were
manually painted, while the symmetry plane is automati-
cally computed. As shown in the results, we successfully
obtain symmetric quad mesh in the identified regions. And
the comparison in Fig. 14 shows that preserving the
symmetry structure significantly improves the quality of
the quad mesh.

In Fig. 15, we test how much the granularity of the
segmentation affects the final result. As shown in this
example, while different segmentation will lead to different
quadrangulation, the overall quality are similar to each
other. The result in Fig. 15d shows that by identifying some
as matched submeshes with cylinder, we can significantly
reduce the number of the singularity points and thus
improve the result.

At last, we compare our method with CUBIT [32], an
industrial commercial software generating FEM meshes.
CUBIT requires to partition the input surface into a cover of
some quad patches, then uses the interval assignment
technique [33], [34] to determine the number of subdivided
mesh edges for each boundary curve. But it is a difficult
and manual task to produce a reasonable quad patch
decomposition. As mentioned in [35], among 10 steps of a
typical the model generation and analysis process, geome-
try decomposition is the most time consuming one (about
32 percent). In our method, we allow for arbitrary
segmentation, alleviating the constraints for geometry
decomposition and making it possible to take advantage
of the mesh segmentation techniques to automate the
decomposition step.

Moreover, CUBIT does not take into account the
distortion in the patches during the interval optimization,
while our method is aware of the relationship between edge
number and the quality related terms, such as curl-free
energy, orientation, mesh size, and so on. As shown in
Fig. 12b, the sizes of the subdivided edges (equivalent to the
numbers of the intervals) affects the curl energy very much.
Therefore, our method is likely to produce better results
than CUBIT. As shown in Figs. 12c and 12d, both
quadrangulation results satisfy the interval requirements,
but the slight difference in the intervals leads to great
difference on the quality.
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Fig. 11. Result of a complex CAD model. Nsp ¼ 148, RSD ¼ 5:37%.
Hausdorff distance dH ¼ 0:0031.

TABLE 1
Model Size and Computation Time in Seconds

Fig. 10. An example of a complex CAD model. Left: two views of the
quadrangulation result; Right: the input model and the angle distribution.
The input model is drawn with transparency to show the internal
structures. There are 279 submeshes. Nsp ¼ 1303, RSD ¼ 13:9%.
Hausdorff distance dH ¼ 0:0038.



7 CONCLUSION AND DISCUSSION

We have presented a top-down quadrangulation method,
and successfully tested it on many models. The experi-
mental results show that this method can generate high-
quality results and preserve high-level mesh structures.
Compared with the original wave-based method, the
proposed method not only improves the performance
very significantly, but also extends its ability and robust-
ness in dealing with huge and complex models, thanks to
its divide-and-conquer nature that avoids solving large
nonlinear systems for wave functions. When structure
information, e.g., symmetry and repetition, is provided,
our method can not only be faster, but also generate better
results. However, if there is no such structure information,
it may generate worse result than the original wave-based
method, because it is optimized under a specific segmen-
tation, while the original method is globally optimized.
This explains why there are more singularity points on the
Lucy model in Fig. 1 than we expected.

Although not the focus of this work, shape segmentation
and analysis play an important role in our divide-and-
conquer quad remeshing framework. We developed a
lightweight approach to automatic mesh segmentation
and analysis based upon existing techniques. It works for
our testing models, but is neither general nor robust enough
for arbitrary mesh models, because it has very limited
ability in matching submeshes with nonrigid deformation.
In addition, the segmentation results do not match with the
semantic meaning as the user perceived. In the future, we

plan to exploit more shape segmentation and analysis
techniques [36], [37], [38] to improve the robustness of our
quadrangulation method, particularly to develop a better
approach to dealing with more shape variations and
automatically identifying the symmetry structures [39],
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Fig. 12. Comparison with interval assignment technique. The decom-
position of the input model is visualized in Fig. 4a. (a) Nine curves on the
model. (b) The relationship between the curl energy and the size (in
logarithm) of the subedges on the curve. Each plot corresponds to a
feature curve on the model with the same color. (c) Quadrangulation
results by interval assignment technique. (d) Results by our method,
Hausdorff distance dH ¼ 0:0130.

Fig. 13. Quadrangulation with symmetry preservation. (a) The results
and the original model overlapped with the symmetry planes and
segmentation shown in the top-right corner. (b) Two zoomed views
showing the preservation result. Nsp ¼ 67, RSD ¼ 7:9%, Hausdorff
distance dH ¼ 0:0118.

Fig. 14. Quadrangulation with symmetry preservation. (a) The input
model overlapped with the symmetry plane. (b) and (d) The quad-
rangulation result in two views, Hausdorff distance dH ¼ 0:0090. (c) The
corresponding wave function and MSC charts. (e) and (f) The result of
Bommes et al. [1] and Zhang et al. [2] for comparison.



[40]. Our current approach requires the user input to

identify the region with symmetry structure. In addition,

we plan to create a rich data set of quad mesh templates to

improve the quality.
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Field Design,” ACM Trans. Graphics, vol. 27, no. 2, pp. 1-13, 2008.

[20] S. Dong, S. Kircher, and M. Garland, “Harmonic Functions for
Quadrilateral Remeshing of Arbitrary Manifolds,” Computer Aided
Geometric Design, vol. 22, no. 5, pp. 392-423, 2005.

[21] D. Kovacs, A. Myles, and D. Zorin, “Anisotropic Quadrangula-
tion,” Computer Aided Geometric Design, vol. 28, no. 8, pp. 449-
462, 2011.

[22] J. Daniels, C.T. Silva, J. Shepherd, and E. Cohen, “Quadrilateral
Mesh Simplification,” ACM Trans. Graphics, vol. 27, pp. 148:1-
148:9, Dec. 2008.

[23] M. Tarini, N. Pietroni, P. Cignoni, D. Panozzo, and E. Puppo,
“Practical Quad Mesh Simplification,” Computer Graphics Forum,
vol. 29, no. 2, pp. 407-418, 2010.

[24] D. Bommes, T. Lempfer, and L. Kobbelt, “Global Structure
Optimization of Quadrilateral Meshes,” Computer Graphics Forum,
vol. 30, pp. 375-384, 2011.

[25] Y. Li, W. Wang, R. Ling, and C. Tu, “Shape Optimization of
Quad Mesh Elements,” Computers & Graphics, vol. 35, no. 3,
pp. 444-451, 2011.

ZHANG ET AL.: A DIVIDE-AND-CONQUER APPROACH TO QUAD REMESHING 951

Fig. 15. Result comparison of using different levels of segmentation. The
segmentation is shown in the bottom right corner. (c) and (d) have the
same segmentation, but in (d) we use cylinder template to remesh 14
submeshes (shown in the red curves).



[26] J. Daniels II, M. Lizier, M. Siqueira, C. Silva, and L. Nonato,
“Template-Based Quadrilateral Meshing,” Computers & Graphics,
vol. 35, no. 3, pp. 471-482, 2011.

[27] S.J. Owen, “A Survey of Unstructured Mesh Generation Technol-
ogy,” Proc. Int’l Conf. Meshing Roundtable, pp. 239-267, 1998.

[28] Gurobi, Gurobi Optimizer 4.5, http://www.gurobi.com/, 2013.
[29] L. Shapira, A. Shamir, and D. Cohen-Or, “Consistent Mesh

Partitioning and Skeletonisation Using the Shape Diameter
Function,” Visual Computer, vol. 24, no. 4, pp. 249-259, 2008.

[30] J. Sun, M. Ovsjanikov, and L.J. Guibas, “A Concise and Provably
Informative Multi-Scale Signature Based on Heat Diffusion.”
Computer Graphics Forum, vol. 28, no. 5, pp. 1383-1392, 2009.

[31] V. Jain and H. Zhang, “Robust 3D Shape Correspondence in the
Spectral Domain,” Proc. Int’l Conf. Shape Modeling and Applications,
pp. 118-129, 2006.

[32] C.D. Team, S. Benzley, C.E. Department, R. Kerr, S.R. Jankovich,
and D.B. Mcrae, “Cubit Mesh Generation Environment Volume 1:
Users Manual,” technical report, 1994.

[33] S.A. Mitchell, “High Fidelity Interval Assignment,” Proc. Int’l
Conf. Meshing Roundtable, pp. 33-44, 1997.

[34] J. Shepherd, S. Benzley, and S. Mitchell, “Interval Assignment for
Volumes with Holes,” Int’l J. Numerical Methods in Eng., pp. 49-
277, 2000.

[35] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton,
M. Scott, and T. Sederberg, “Isogeometric Analysis Using T-
Splines,” Computer Methods in Applied Mechanics and Eng.,
vol. 199, nos. 5-8, pp. 229-263, 2010.

[36] S. Katz and A. Tal, “Hierarchical Mesh Decomposition Using
Fuzzy Clustering and Cuts,” ACM Trans. Graphics, vol. 22, pp. 954-
961, July 2003.

[37] X. Chen, A. Golovinskiy, and T. Funkhouser, “A Benchmark for
3D Mesh Segmentation,” ACM Trans. Graphics, vol. 28, pp. 73:1-
73:12, July 2009.

[38] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3D Mesh
Segmentation and Labeling,” ACM Trans. Graphics, vol. 29,
pp. 102:1-102:12, July 2010.

[39] N.J. Mitra, L.J. Guibas, and M. Pauly, “Partial and Approximate
Symmetry Detection for 3D Geometry,” ACM Trans. Graphics,
vol. 25, pp. 560-568, July 2006.

[40] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and T.
Funkhouser, “A Planar-Reflective Symmetry Transform for 3D
Shapes,” ACM Trans. Graphics, vol. 25, pp. 549-559, July 2006.

Muyang Zhang received the BS and PhD
degrees in computer science from Zhejiang
University in 2005 and 2011, respectively. He
is currently with the Search Technology Center
of Microsoft. His research interests are mainly in
geometry processing and remeshing, especially
for quadrangulation.

Jin Huang received the PhD degree from the
Computer Science Department, Zhejiang Uni-
versity in 2007 with Excellent Doctoral Disserta-
tion Award of China Computer Federation. He is
an associated professor in the State Key Lab of
CAD&CG of Zhejiang University, P.R. China. His
research interests include geometry processing
and physically based simulation. He has served
as a reviewer for ACM SIGGRAPH, Euro-
Graphics, Pacific Graphics, TVCG, and so on.

Xinguo Liu received the BS and PhD degrees in
applied mathematics from Zhejiang University in
1995 and 2001, respectively. He is a professor
at the School of Computer Science and Tech-
nology, Zhejiang University. He was with Micro-
soft Research Asia in Beijing during 2001-2006,
and then joined in Zhejiang University. His main
research interests are in graphics and vision,
particularly geometry processing, realistic and
image-based rendering, and 3D reconstruction.

Hujun Bao received the BS and PhD degrees in
applied mathematics from Zhejiang University in
1987 and 1993, respectively. He is a distinguish
professor at the School of Computer Science
and Technology, Zhejiang University and the
director of State Key Laboratory of CAD & CG.
His main research interest is computer graphics
and computer vision, including real-time render-
ing technique, geometry computing, virtual
reality, and 3D reconstruction.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

952 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 19, NO. 6, JUNE 2013


