
Frame Field Generation through Metric Customization

Tengfei Jiang Xianzhong Fang Jin Huang∗ Hujun Bao∗

State Key Lab of CAD&CG, Zhejiang University
Yiying Tong

Michigan State University
Mathieu Desbrun

Caltech

No metric customization

With metric customization

Figure 1: Overview. Frame field design over surfaces is typically guided by constraints on (an)isotropy, lengths, and feature alignments
(left). While current methods (e.g., MIQ [Bommes et al. 2009]) use the Euclidean-induced metric to find an appropriate frame (and further
derive a quadrangulation, top), our method (bottom) first customizes a Riemannian metric from the design requirements, then generates a
frame field that is a smooth cross field in this new metric—thus offering a more flexible and more intuitive design process producing high
quality frame fields. Metrics are visualized using their local unit circles (middle left); the resulting frame’s sizes and directions are indicated
as color isocurves (middle right); and a quadrangulation based on the frame field is then automatically extracted (right).

Abstract

This paper presents a new technique for frame field generation. As
generic frame fields (with arbitrary anisotropy, orientation, and siz-
ing) can be regarded as cross fields in a specific Riemannian metric,
we tackle frame field design by first computing a discrete metric on
the input surface that is compatible with a sparse or dense set of in-
put constraints. The final frame field is then found by computing
an optimal cross field in this customized metric. We propose frame
field design constraints on alignment, size, and skewness at arbi-
trary locations on the mesh as well as along feature curves, offering
much improved flexibility over previous approaches. We demon-
strate the advantages of our frame field generation through the au-
tomatic quadrangulation of man-made and organic shapes with con-
trollable anisotropy, robust handling of narrow surface strips, and
precise feature alignment. We also extend our technique to the de-
sign of n-vector fields.

CR Categories: I.3.3 [Computer Graphics]: Computational Ge-
ometry & Object Modeling—Curve & surface representations.

Keywords: Frame field generation, metric customization, n-vector
field design, geometry processing.

∗Corresponding authors: hj@cad.zju.edu.cn, bao@cad.zju.edu.cn

1 Introduction

Frame fields on discrete 2-manifolds are key to a wide range of
applications in computer graphics, including texture mapping and
quadrangulation remeshing, as they induce a smoothly-varying as-
signment of a basis for all the tangent spaces of the surface. While
orthonormal frame fields (also called 4-symmetry direction fields
or cross fields) are most common due to the convenience afforded
by unit and orthogonal bases, the need for non-uniform, anisotropic,
and skewed frame fields has grown tremendously in recent years due
to their versatility in geometry processing.

However, the design of generic frame fields remains a challeng-
ing task: one has to balance user-input or application-driven re-
quirements (such as alignment to given directions and sizing con-
straints) with the resulting smoothness of the frame field and its in-
evitable singularities. Depending on the targeted application, input
constraints can be either under- or over-constrained, as smoothness
and direction constraints may conflict and interfere with sizing con-
straints, and vice-versa. This renders any user-guided design process
long and tedious: automatic frame field generation can result in in-
accurate alignments, requiring constraints to be interactively added
or removed until the final frame field is acceptable.

In this paper, we argue that frame field design is best accomplished
by first designing a non-Euclidean metric on the surface based on the
input constraints, and then deriving the frame field as an orthonor-
mal frame field in this computed metric. Abandoning the viewpoint
that the surface is embedded in Euclidean space and considering in-
stead the more general case of Riemannian manifolds significantly
increases flexibility in the design of frame field, resulting in a tighter
control over directional and sizing constraints.

1.1 Related work

We first review the key previous works that we will build upon or
extend in our metric-based approach to frame field generation.

Orthonormal frames. Initially proposed by Hertzmann and Zorin
[2000] for cross-hatching rendering, cross field design has been ex-
tensively studied ever since [Palacios and Zhang 2007], whether
through connections derived from the specification of the cross field
singularities [Ray et al. 2008; Crane et al. 2010], or through a
smooth interpolation of a sparse set of directional constraints [Ray
et al. 2009; Bommes et al. 2009; Knöppel et al. 2013]. However,
cross fields do not encode local scale or anisotropy, which is a se-
vere limitation in the context of meshing where control over sizing
and shape of elements is paramount.

Arbitrary frames. Cross fields were quickly extended to more gen-
eral frame fields. Liu et al. [2011] first proposed to use conju-
gate direction fields to handle frames with nonorthogonal vectors,
but failed to offer control over the lengths of basis vectors. Dia-
manti et al. [2014] generalized n-symmetry fields to n-vector fields
by removing the rotation symmetry assumption, while Panozzo et
al. [2014] introduced a more general frame field construction by
composing a stretching field and a cross field. However, when used
for parameterization or quadrangulation, their approach involves the
embedding in 3D Euclidean space of a deformation of the mesh.
This intermediary step imposes strong restrictions on the resulting
frame field, as only fields that can be warped into a cross field by de-
forming the input mesh in R3 can be obtained. The design space of
frame fields is thus unnecessarily restricted, since traditional appli-
cations of frame field design such as quadrangulation do not require
(or even benefit from) such constraints.

Metric optimization. Metric tensor fields have received increasing
attention in computer graphics [de Goes et al. 2014], in particular
for remeshing [Ling et al. 2014]. A first series of works looked to
equip a surface with a flat metric with singularities [Jin et al. 2007;
Ben-Chen et al. 2008]. Metrics that are conformal to the original
surface metric induced by R3 were also targeted [Jin et al. 2004;
Springborn et al. 2008; Myles and Zorin 2012], but offered very
limited user control. More recently, the interplay between metrics
and frame fields was leveraged to derive low-distortion parameteri-
zation with alignment constraints [Myles and Zorin 2013] and adap-
tive remeshing [Lai et al. 2010] through the computation of a flat
cone metric. Methods generating frame fields through harmonic in-
terpolation of symmetric matrices [Panozzo et al. 2014] or polyno-
mial coefficients [Diamanti et al. 2014] can also be regarded as ways
to approximate metrics satisfying user-specified constraints through
linear systems. These metrics are then further improved through ad-
ditional deformation steps for practical applications such as global
parameterization. Our work extends this line of work by directly
constructing a customized metric to offer much increased flexibil-
ity and user control in the frame field design. Additionally, our
logarithm-based formulation can handle rapid scale changes in the
metric, further improving upon the approach of [Panozzo et al. 2014]
whose deformation step already produced fewer additional singular-
ity than [Diamanti et al. 2014].

1.2 Contributions

In this paper, we approach the design of an arbitrary frame field
through the construction of an orthonormal frame field in a cus-
tomized metric. From input constraints on direction, size, and angle
for the frame field, we first construct a Riemannian metric g, dis-
cretized as a 2×2 matrix on each mesh triangle, which accounts for
angles and sizing constraints. Once the Riemannian metric has been
computed, robust state-of-the-art tools can be directly leveraged to
derive the final frame field since it amounts to finding a simple cross
field in this metric g; that is, the desired frame field is g-orthonormal
by construction of the metric. We demonstrate through a variety of
examples that the frame fields designed through our approach are

significantly more general than previous methods; in particular, fine
control over anisotropy and precise feature curve alignment can be
simultaneously enforced, unlike in previous approaches. We also
show the versatility of our method by extending it to n-vector fields.

2 Frame Field Design Principles
When designing a frame field, one needs to set constraints on di-
rection, size, angle, and combinations thereof. These (often sparse)
constraints will then guide the creation of the field by enforcing that
it tightly aligns to application-dependent or geometrically-relevant
directions, forms preset angles to accommodate acute corners, or
varies in size to better adapt to local features. Generating a frame
field from these constraints therefore requires to determine a well-
behaved (i.e., piecewise smooth and visually least-varying) frame
field fitting the constraints. As we mentioned early on, one of the
challenges for the user or any automatic application-specific assign-
ment of constraints is to define requirements that are not conflicting
with each other, so that the impact of each constraint on the result-
ing frame field is intuitive. We thus need to provide simple, atomic
primitives that one can automatically or manually input to guide the
generation of the desired frame field.

2.1 Design primitives

Whether it be for a user designing the properties of a parameteriza-
tion or for an automated creation of guiding fields to quadrangulate
a surface, we assume there are only two types of key primitives:
● Local primitives: automatic or user-specified requirements can

be formulated at various locations on the surface. One should
be able to indicate both the direction, and potentially the magni-
tude, of one or two of the basis vectors of the frame. Similarly,
the frame field could be required to be isotropic (i.e., a scaled Eu-
clidean orthonormal frame) at some key places over the surface.

● Curve primitives: design requirements should also accommodate
the specific layout of the frame field tangentially to 1D curves
such as boundary curves, sharp features, and user-sketched
curves with controllable skewness and sizing adaptation to, typi-
cally, local geodesic curvatures.

These two basic sets of design primitives will be implemented in our
approach as a series of constraints on (a subset of) triangles. That
is, while the interface (to the user, or to our frame field generator)
offers the set of primitives described above, our algorithm manipu-
lates their associated constraints instead in order to generate a frame
field as we now detail.

2.2 Frame constraints

We formulate the mathematical constraints corresponding to our de-
sign primitives on a per-triangle basis as we will generate a frame
field F over an input triangulated surface by assigning a frame
Ft per triangle t. Our constraints are separated into two families,
one containing alignment requirements A to either local directions
or (feature/user-specified) curves, and one handling sizing require-
ments S. Each family includes a list of associated constraints on se-
lected triangles—either isolated triangles if they come from a local
design primitive, or strips of triangles adjacent to a (feature, bound-
ary, or user-drawn) curve if they are generated from curve primitives.
We will use d and n to represent directions, i.e., vectors that are unit
in the original Euclidean-induced metric ḡ.

The sizing constraints set is composed of the union Ss ∪ Sd ≡ S of
two different types of frame requirements:
– Uniform scaling requirement (Ss): for (t, s)∈Ss, the magnitude

of the g-orthogonal frame Ft’s two basis vectors must be s ∈R+

on triangle t;

– Directional length requirement (Sd): for (t,d, l) ∈ Sd, one ba-
sis vector of the frame Ft must be along the direction d with a
magnitude l∈R+ on triangle t.

The alignment constraints set is denoted asA≡Ad∪Ac, and contains
requirements of two types as well:

– Directional alignment requirement (Ad): a directional align-
ment requirement (t,d) ∈Ad asks for a basis vector of the frame
Ft in triangle t to be aligned with a given direction d;

– Curve alignment requirement (Ac): a curve alignment require-
ment (t,d,n, r) ∈ Ac uses a unit tangent d to a (feature or user-
drawn) curve and another (typically normal) direction n pointing
away from the curve. Ft is then asked to be aligned with d, while
the rate of change along n of the magnitude of the basis vector
aligned with d must be r∈R.

Effect of requirements. The user can then define one or several of
these constraints per triangle of the input mesh in order to guide the
frame field to her taste. All these constraints have rather intuitive
geometric interpretations. The first sizing constraint asks for the lo-
cal frame to be a rescaled version of the unit orthonormal frame;
this type of constraint will control the local scale s of the frame
field, which will therefore enforce local conformality of a quadran-
gulation built from the frame field. The second type of sizing re-
quirements allows the user to set both the direction and magnitude
of one of the basis vectors of the frame F , offering directionality
and sizing control of the frame on a triangle of the surface mesh.

Sd

Ad

Ac

Ss

Similarly, the alignment constraints will ei-
ther force the frame field to be aligned with
a given unit direction d, or, if two such
constraints are set for the same triangle, the
frame on this triangle will be entirely defined
via these two (different) directions, thus al-
lowing easy control of local skewness. The
last constraint is of a different nature: it
brings a direct control of alignment along a curve and a differen-
tial control of length away from the curve. That is, it requests that
one of the basis vectors of a frame be aligned with a curve and that
it stretches/shrinks in size at a certain rate along a given “normal”
direction (see inset), while remaining of a similar size along the tan-
gential direction. This type of constraints provide users with a very
convenient way to control not directly the size of a frame’s basis
vector along a user-sketched curve or feature, but its differential be-
havior. We will show (see App. B) that in fact, if the rate of change
r is set to be the geodesic curvature of the curve, the resulting frame
field will perfectly adapt to the curve both in terms of direction and
relative size (see Fig. 5). Setting an arbitrary rate r and an arbitrary
direction n allows more flexibility to adapt, for instance, to geome-
try and additional attributes.

Additional requirements. Notice that unless the user purposely de-
fines several conflicting directional constraints in a same triangle our
frame constraints are never in conflict, by construction. We will
show in the remainder of this paper that the requirements above
are flexible enough for a user or artist to guide the generation of
frame fields. We can, in fact, add more involved constraints which
have much less obvious geometric interpretations since they involve
constraints that are not directly imposed on the basis vectors of the
frame—but on arbitrary directional derivatives of the metric induced
by the field. We will limit our exposition to the simple constraints
listed above, as it will be fairly straightforward to infer these pos-
sible additional requirements from our numerical treatment of the
design process.

2.3 Computing an optimal frame field – a first glance

Once a list of constraints A ∪ S has been input, we proceed in two
steps. First, we compute a metric g that satisfies all the metric-
dependent requirements as described in Sec. 3, before generating the
frame field as a smooth g-orthonormal frame field that best satisfies
the direction-dependent requirements as described in Sec. 4. What
constitutes a metric-dependent constraint vs. a direction-dependent
constraint is left hidden to the user, since the creation of a discrete
Riemannian metric is only used as a means to an end. However,
we will demonstrate that this detour via a metric not only grows the
space of possible frame fields, but also allows us to use robust, exist-
ing methods that facilitate the implementation of our approach and
help enforce the constraints.

Discrete metrics. We will assume that a surface is provided in the
form of a simplicial complexM in R3. Each triangle t of the mesh
is arbitrarily assigned an orthonormal basis B̄t (for instance, aligned
to one of its edges). The metric of the surface induced by the Eu-
clidean space is denoted ḡ, and encoded per triangle as the identity
matrix Id in each frame B̄t. Recall that, to improve legibility, we
will denote directions by d or n (i.e., vectors that are unit in met-
ric ḡ); general vectors (of arbitrary magnitude) will be denoted u
or v instead. Finally, we encode an arbitrary Riemannian metric g
by storing it as a symmetric positive-definite matrix gt per triangle
using the same reference coordinate frame B̄t for simplicity.

Discrete connections. For the metric ḡ, the union of two adjacent
triangles t1 and t2 is intrinsically flat since one can use the “hinge
map” to flatten the pair into R2 without inducing any intrinsic dis-
tortion. Consequently, there exists a rotation matrix R̄t1t2 that ro-
tates the coordinate system B̄t1 by an angle of θ̄t1t2 to the adjacent
coordinate system B̄t2 in this flatten configuration (and obviously,
R̄t2t1 = R̄

T
t1t2 is simply the inverse rotation) [Ray et al. 2009]. This

rotation represents a canonical (Levi-Civita) connection ∇̄ for ḡ as
it enables us to measure the difference between vectors living in ad-
jacent triangles by parallel-transporting them into the same tangent
space before comparing them [Crane et al. 2010]: a vector ut1 stored
in basis B̄t1 can be parallel transported in the original metric ḡ of
the surface as the vector ut2 = R̄t2t1ut1 in t2, this time expressed
in basis B̄t2 . Note that the idea of parallel transport extends to an
arbitrary metric g—but the expression of the associated Levi-Civita
connection Rt1t2 is more involved as g is unlikely, in general, to be
flat in the union of two adjacent triangles. We will, however, provide
a closed-form approximation for this rotation matrix in Sec. 4.

Metric smoothness. With this parallel transport, we can now mea-
sure how much a metric g locally changes (with respect to the
reference metric ḡ) between adjacent tangent spaces as well: if
two vectors ut1 and vt1 live in t1, their inner product in gt1 is
uT
t1gt1vt1 , while the inner product of these same vectors parallel-

transported to t2 become uT
t2gt2vt2 in gt2 . As a consequence, the

difference of metric between two adjacent triangles t1 and t2 is
expressed in B̄t1 as: gt1−R̄

T
t2t1gt2R̄t2t1 (or similarly in B̄t2 as:

R̄T
t1t2gt1R̄t1t2 − gt2). This difference corresponds to the integral

of the continuous notion of the ḡ-induced covariant derivative ∇̄g
along the dual edge between t1 and t2. (Notice that ∇̄̄g = 0 as ex-
pected since we use the metric ḡ as a reference.) The matrix norm of
this difference (here, the Frobenius norm since we express 2-tensors
as matrices in orthonormal bases) is thus a scalar measure of how
the metric locally changes.

From metric to frames. Finally, note that if an arbitrary discrete
metric g is defined via its matrix per triangle, then it is a trivial mat-
ter to derive a g-orthonormal basis B (i.e., a frame field that is both
orthogonal and unit when measured in the metric g) from our refer-
ence basis B̄ through: B = B̄(

√
g)−1– i.e., the basis vectors of B̄

Figure 2: Sparse constraints. A sparse set of uniform scaling con-
straints (color facets, left) or angle constraints at feature curve in-
tersections (right) is enough to create smooth frame fields.

are easily deformed into the basis vectors of B knowing g, where B
stores its two basis vectors (expressed in B̄) as columns of matrix
Bt for each triangle t. Note that this basis Bt is not locally coher-
ent on nearby triangles, as the field B̄ itself was randomly chosen to
start with. However, a g-orthonormal frame field F that closely fits
specified frame requirements can then be computed from frame B
as a simple rotation angle per triangle, turning B into F : this pure
rotation in metric g of each frameBt preserves the g-orthonormality
of the resulting frames, but will allow us to enforce smoothness and
frame constraints. Finally, note that the actual frame field F will not
depend on the choice of B̄—this latter basis is only used to encode
the vector basis of F .

3 Metric Customization

A Riemannian metric on a 2-manifold is a symmetric positive-
definite tensor field g that defines the inner product of two tangent
vectors u1 and u2 through uT

1 gu2, with uTgu > 0 for any non-
zero vector u. In this section, we present how a subset of the user
constraints are used to generate such a Riemannian metric g on the
input triangle mesh. The role of this discrete metric will be to turn
the generation of an arbitrary frame field into the much simpler and
well-studied case of finding a cross field, where orthogonality and
unit norm are defined by this customized metric g.

3.1 Metric constraints

As discussed above, a metric defines the inner product of tangent
vectors. It thus determines lengths and angles of vectors. Conse-
quently, any frame field requirement involving length or angles does
also define, implicitly, local constraints on the metric. From the
frame constraints given in Sec. 2.2, we extract all the implicit met-
ric constraints such that the frame field requirements correspond,
in a (currently unknown) metric g, to a smooth, unit and orthogo-
nal frame field: once these metric constraints are identified, we will
simply find the metric g as a matrix field stored in the canonical
frame field B̄ through optimization in order to best fit the metric
constraints. In fact, aside from requirements that involve a single
directional alignment constraint (and thus, for which the metric g is
unconstrained), all of our frame requirements impose some form of
metric constraints per triangle as we now go over.

Angle constraint. If two directional (alignment or length) con-
straints (t,d1⋯), (t,d2⋯) ∈ Ad ∪ Sd are set on the same triangle,
the two (ḡ-unit) directions d1 and d2 on t fully determine the direc-
tions of frame Ft. Since F must be an orthogonal frame field with
respect to our customized metric g, the metric at t should satisfy

dT
1 gtd2 = 0. (1)

Such angle constraints are particularly convenient to fix frame field
directions at corners, see Fig. 2.

Uniform scaling. If a uniform scaling requirement (t, s) ∈ Ss is set
on triangle t, the metric g must be locally conformal to the original
metric ḡ with a conformal factor s2, i.e.,

gt =
1

s2
Id . (2)

This type of constraints is useful in the context of quadrangulation
for regions where square-shaped elements are desirable (see Fig. 2).

Directional length constraint. Metric g can also be constrained in
terms of its notion of length in given directions.
– Single constraint. If a triangle t has only one directional length

constraint (t,d, l) ∈ Sd, the fact that F must be unit in g implies:

dTgtd =
1

l2
. (3)

This directional length constraint can directly be used to ensure
that the size of elements along feature curves are well adapted,
to avoid large approximation errors. One can follow the method
of [Alliez et al. 2003], where a local size l is determined by a
Hausdorff-based error tolerance ε and the geodesic curvature κ of
the feature to automatically set constraints along the feature curve:
we simply use directional length constraints on triangles adjacent
to the feature curve using its tangential directions d, with their
lengths l set to:

l = 2
√

ε(2/∣κ∣ − ε). (4)

We set ε to be 10−4 times the bounding-box diagonal span in all
our results. This adaptation of length and direction (possibly after
clamping of the length l to a user-specified range [smin, smax] for
robustness) provides a fine sizing control of the frame field near
sharp features as demonstrated in Fig. 3.

– Double constraint. When two directional length constraints
(t,d1, l1), (t,d2, l2) ∈ Sd are present on the same triangle t, the
local frame is entirely fixed as Ft = (l1d1, l2d2). Since F must
be g-orthonormal, we must impose that the metric g satisfies:

dT
1 gd1 =

1

l21
, dT

2 gd2 =
1

l22
, and dT

1 gd2 = 0. (5)

Note that this double constraint is particularly convenient to adapt
a frame field to the principal curvature directions of a surface and
its curvatures: evaluation of the shape operator and its princi-
pal curvature directions on each input triangle provides such con-
straints, see Figs. 4, 9, and 13.

Geodesic curvature. If (t,d,n, r)∈Ac, the magnitude of d in the
metric g must be stretching along direction n at a rate r. (Note
that we purposely restricted this constraint to use a direction (i.e.,
ḡ-unit) vector n for simplicity; an arbitrary vector u could be used
instead, as one just has to rescale r by the norm of u to enforce this
generalized constraint.) Using the directional derivative in the orig-
inal metric ∇̄ to conveniently re-express this constraint, this means

Figure 3: Sizing control of boundaries. Sizing is easily controlled
(left), even along complex boundaries as demonstrated by the result-
ing frame-driven quadrangulation (right).

(since a rate change r implies an exponential-of-r growth) that one
must enforce:

1

2
∇̄n(ln(dTgd)) = r. (6)

In fact, this metric constraint has a very simple geometric interpre-
tation (see Fig. 5): if n is the normal to the feature (i.e., nTḡd = 0)
and r is the local geodesic curvature κ of the feature curve we are
trying to adapt to, then this constraint reflects the fact that the (fea-
ture or user-drawn) curve must be a geodesic in the metric g
(see proof in App. B). Hence, its general form where n and r are
arbitrarily chosen imposes a
geodesic curvature condition
on g. Imposing a feature
alignment constraint on the
triangles at the boundary of a
simple disk for instance (in-
set) forces proper alignment
and curvature-adapted sizing of the quads there, pushing the singu-
larities deeper inside.

Figure 4: Feature and curvature alignments. Requiring feature
alignments (red curves), local alignment to principal directions, and
sizing constraints (blue regions) on the aircraft model (left) results in
a frame field (right) generating a high-quality quad mesh (middle).

3.2 Metric customization through optimization

With all the relevant frame requirements converted to their implied
metric constraints, we must now find the best metric field g, defined
as one matrix gt (stored in the predefined frame B̄t) per triangle of
the form:

gt = (
g11 g12

g21 g22
) .

Since each gt must be symmetric positive-definite (SPD) for the
field to define a proper Reimannian metric, we must also constrain
g21 = g12, det g = g11g22−g

2
12 > 0 and tr(g) = g11+g22 > 0. The

need for inequality constraints can be removed if one parameterizes
the space of SPD matrices gt through the space of symmetric ma-
trices gt with gt = ln gt, where ln is the matrix logarithm. Indeed,
for any symmetric matrix g, the matrix exponential gt = exp(g) is
SPD. Consequently, we can formulate without inequalities the cus-
tomization of the metric g as a constrained optimization: we ask for
the smoothest metric that fits the input constraints through

argmin
g
∫
M

λ∥∇̄ ln g∥2
+ (1 − λ)∥∇̄2 ln g∥2ds

subject to all metric constraints,

where we use both the covariant derivative ∇̄ and its associated
Laplacian operator ∇̄2 defined in the metric ḡ (see Sec. 2.3) to mea-
sure a Sobolev-like smoothness of the log of the metric field. Be-
sides being the canonical differential operators on the input surface,
note that when g is conformal, the first term in this measure reduces
to the usual Dirichlet energy of the conformal scaling. The second

λ∗ = 1 λ∗ = 0.6

Figure 5: Metric smoothness control. For geodesic curvature con-
straints along features (ωc = 0.6), reducing λ∗ enhances frame
smoothness at the price of more rapidly changing quad sizes.

term ∇̄
2 ln g is the biharmonic energy of ln g. The relative weight

λ thus offers the typical tuning between what amounts to a mem-
brane and a thin shell energy on the metric: smaller values of λ will
result in wider frame size ranges, with also more singularities to ac-
commodate the rapidly changing size; larger values of λ will create
smoother variations of the resulting metric, see Fig. 5.

Metric discontinuity across features. In order to allow flexi-
ble (and sparse) control over anisotropy, it is important to relax
the smoothness requirement across feature curves. This is easily
achieved by simply considering features as boundaries: neither the
covariant derivative nor the Laplacian are used on dual edges cross-
ing a feature. Note that the metric and the resulting frame field will
still have the desired continuity for two reasons: first, the length
along the tangential direction across the normal direction will be
forced to be continuous due to our differential constraint (Eq. 6);
second, alignment to the feature direction will force the nearby
frames to align to both the tangential and normal directions.

3.3 Numerical formulation

We rewrite the previous constrained energy as an unconstrained min-
imization in the log of g, where each type of constraint is enforced
via a penalty energy. In order to maintain consistency in the units of
the energies, we enforce the non-logarithm-based metric constraints
(appearing in Eqs. 1, 3, and 5) of the type

dT
1 exp(g)d2 = c, c ≥ 0, (7)

using a penalty P expressed as:

P (d1,d2, c, g) = ln ∣d1+d2∣
2
eg−ln(∣d1∣

2
eg+∣d2∣

2
eg+2c),

Figure 6: Metric customization. Using double constraints per tri-
angle based on local principal curvatures, our metric optimization
(right) drastically decreases the alignment error ∥F −Tg−1F −1

−I∥2

compared to the original surface metric ḡ (left). Metric g is visual-
ized through its local unit circles.

where ∣u∣2eg =u
T exp(g)u , and the cosine law was used to ensure

that the logarithm is only applied to positive values. To decrease
non-linearity, all double constraints F =(l1d1, l2d2) can be directly
expressed in matrix form as:

(l1d1, l2d2)
T exp(g)(l1d1, l2d2) = Id,

and recast into a simple linear constraint in log space as:

g = ln(F −TF −1),

where ln(F −TF −1) is easily computed as the diagonal matrix
formed by the logarithm of eigenvalues in the eigenbasis ofF −TF −1.
We can now numerically solve for the optimal metric field g through
the following minimization:

argming

1

∣M∣
Es +

ws
∣Ss∣

ESs +
wd

∣Sd ∪Ad∣
ESd∪Ad +

wc
∣Ac∣

EAc

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Es = (1 −
ωc
100

)λ∗ ∑
(ti,tj)∈N

∣ti∣+∣tj ∣

2
∥gti − R̄

T
tjtigtj R̄tjti∥

2

+ (1 − (1 −
ωc
100

)λ∗) ∑
t∈M

∣t∣ ∥ ∑
ti∈Nt

(gt − R̄
T
titgtiR̄tit)∥

2

ESs = ∑
(t,s)∈Ss

∣t∣ [gt − ln(
1

s2
Id)]

2

ESd∪Ad = ∑
(t,d1⋯),(t,d2⋯)∈Sd∪Ad

∣t∣ [P (d1,d2, c, gt)]
2

EAc = ∑
(t,d,n,r)∈Ac

∣t∣ [∇̄n ln ∣d∣2exp(gt)−2r]
2

+
∣t∣+∣tn∣

2
[ln ∣d∣2exp(gt) − ln ∣d∣2R̄T

tnt exp(gtn)R̄tnt
]
2
,

whereN denotes the pairs of adjacent triangles that are not across a
feature, Nt is the set of adjacent triangles to t that are not across a
feature (i.e., usually three triangles, except near a feature to allow for
rapid sizing change), and tn denotes the triangle pointed by n from
t so that we can enforce Eq. 6 properly with EAc . The ∇̄-based
smoothness energy Es, combining both the covariant derivative and
the Laplacian of the logarithm of g, forces the metric g to be smooth
everywhere except across feature curves by construction. This en-
ergy is then added to an area-weighted sum of penalty terms on any
unfulfilled metric constraints, where we used ∣t∣ to denote the area
of triangle t, ∣M∣ for the total surface area of the input mesh, and
by extension, we used ∣S∣ for any constraint set S to denote the to-
tal area of the triangles included in S. This area weighting, along
with the consistent use of log-based constraints, renders the tuning
of the three parameters independent of the model and very intuitive:
the weights on each type of constraints can be adjusted to give some
constraints precedence over others. Finally, note that we selected the
tuning parameter λ of the smoothing energy Es to depend both on a
smoothness coefficient λ∗ and the geodesic curvature enforcement
weight ωc: by choosing λ=(1 − ωc/100)λ∗, we make sure that the
impact of the geodesic curvature constraint is not too weakened by a
large smoothness coefficient. We use λ∗ =0.95,ws =wd =wc =0.01
in all our examples to balance metric smoothness and constraint en-
forcement; exceptions to these default parameters will be clearly
marked in their associated caption—see for instance Fig. 5, where
we demonstrate the effect of λ∗ to the results.

Note that, sinceEs andESs are quadratic terms, the non-linearity of
this energy boils down to the computation of the matrix exponential
of exp(g). Because the matrices gt are symmetric and real, their ex-
ponentials can be computed in closed form, avoiding the well-known
complexity of matrix exponentiation [Moler and Loan 2003]. We
use Maxima [Schelter 2015] to automatically derive the gradient and

Hessian of the closed form exponentiation. The resulting energy be-
ing non-convex and highly nonlinear, we use a Sequential Quadratic
solver to optimize it starting from an identity metric (the original
Euclidean induced metric ḡ) as the initial guess. As we demonstrate
in Sec. 5, this unconstrained minimization converges quickly to a
solution that fulfills the metric constraints remarkably well. The Pe-
gasus example in Fig. 6 demonstrates that, while the original metric
ḡ generates metric constraint errors in the range [700,105

], the op-
timized metric g quickly converges to errors in the range [0.02,22],
with 90% of the triangles having errors below 4.

4 Frame Field Generation

A frame field can always be regarded as a locally stretched cross
field, as exploited in [Panozzo et al. 2014] which pulls back a cross
field from a deformation of the original surface. In our approach,
we generalize this idea by, instead, considering that frame fields are
cross fields in some Riemannian metric g. Since we customized a
metric g to be compatible with our frame requirements, all we need
to obtain a desirable frame field F now is finding a smooth cross
field in this metric that accounts for the remaining alignment (non-
metric) constraints.

4.1 Orthonormal basis for metric g

Recall that the basis B̄ was arbitrarily chosen by picking a set of
ḡ-orthonormal frames B̄t per triangle t. Now that we have equipped
our surface with a discrete Riemannian metric g, we can trivially
derive a g-orthonormal basis B through the following procedure.
For each SPD matrix gt in triangle t, we compute the (symmet-
ric positive-definite) principal square root matrix Gt =

√
gt whose

eigenvalues (representing principal stretches) are the square roots of
the eigenvalues of g associated with the same eigenvectors. Then,
the basis B defined such that:

Bt = B̄tG
−1
t ∀t∈M

is g-orthonormal since gt = GtGT
t and B̄ is ḡ-orthonormal. Note

that this is not our frame field yet: this is merely a canonical set of
coordinate systems on triangles adapted to the metric g.

Figure 7: Frame field gallery. Using principal curvatures and their
directions, along with minimal user interaction if desired, smooth
geometry-adapted frame fields are simple to generate.

4.2 Connection of metric g

In order to find the final frame field F , we need to define a proper
way to measure the spatial variations of a vector or frame field in
the metric g so that we can find the smoothest g-orthonormal frame
fitting the constraints. The role of the Levi-Civita connection in a
given metric has been proposed in a variety of works for exactly
this purpose of smoothness measurement, e.g., [Bommes et al. 2009;
Ray et al. 2009; Crane et al. 2010]. We adopt the same approach
here, and rely on the discrete connection R, defined as a rotation
Rtitj between pair of adjacent triangles ti and tj , which is Levi-
Civita (torsion-free) in the metric g. However, this connection is
less easy to compute than the canonical connection R̄: g is no longer
locally flat in general.

Fortunately, the continuous expression of the Levi-Civita connection
in a metric g is well known: if one uses a local parameterization
(u, v) based on a local basis B̄ = (∂/∂u, ∂/∂v), the angle θ by
which a tangent vector rotates along a finite path γ when parallel
transported by the Levi-Civita connection of g is [Oprea 2007]:

θ = ∫
γ
(G11,v−G21,u,G12,v−G22,u)

G

det(G)
(
du
dv

), (8)

whereG is the principal square root of g,Gpq represents its p-th row
and q-th column element of G in the (u, v) coordinates, and Gpq,u
(resp., Gpq,v) represents the spatial derivative of this element along
u (resp., v). See App. A for a short derivation of this fact.

We can thus approximate the rotation Rtitj based on our discrete
version of the metric g, as the angle θij along dual paths between
adjacent triangles for each pair of triangle ti and tj . Since our dis-
cretization only has a piecewise constant field G, we first evaluate
an average Gij per edge midpoint by computing the average gij of
g in the local frame B̄i as:

gij =
1

2
(gti + R̄

T
tjtigtj R̄tjti).

We deduce Gij through: Gij =
√
gij . With a matrix G evaluated at

the midpoints of the three edges, we simply linearly interpolate G
in the (u, v) coordinate system to get the required first derivatives
involved in the integral in Eq. 8 along the half dual edge, which can
then be evaluated in closed form. (Note that this piecewise linear in-
terpolation amounts to using Crouzeix-Raviart non-conforming ba-
sis elements for the edge values of G.) By summing the angles of
two consecutive half dual edges and θ̄ij , we immediately deduce the
angle θij—which, consequently, results in a rotation matrix Rtitj
by this angle, thus providing a concrete approximation of the Levi-
Civita connection of g. Note that adding θ̄ij is necessary to align
B̄iG

−1
ij and B̄jG−1

ji . This averaging procedure followed by linear in-
terpolation was chosen so that Eq. 8 can be performed analytically;
other more involved interpolation of G or g can be used instead, but
our simple approximation resulted in similar angles in all our tests.
See App. A for how to evaluate Rtitj in practice.

4.3 Cross Field Generation

Once the basis B and connection R associated with our custom-
designed metric g are known, the final frame field generation
amounts to computing a cross field in B that is smooth with respect
to the connectionR. Recall that the frame requirements contain a se-
ries of direction alignment constraints per selected triangle; we thus
need a rotation angle αt of the frame Bt for each triangle t so that
the resulting frame F closely satisfies these alignment requirements,
while being optimally smooth in the Levi-Civita connection of g.

Finding such a cross field is well studied, and a number of robust
methods exist for which one simply needs to provide the connection

B and alignment constraints. In our implementation, we adopt the
popular 4-symmetry direction field representation used in [Palacios
and Zhang 2007], where a representative vector ut per triangle t
expressed in basis Bt is found such that the resulting vector field u
minimizes the following non-linear energy:

argmin ∑
ti,tjadjacent

∥uti −R
(4)
titj

utj ∥
2

+wa ∑
(t,d⋯)∈Ad∪Sd

∥ut−Gtd
(4)

/∣Gtd∣ ∥
2

+wu ∑
t∈M

∥uT
t ut−1∥2,

where the superscript ⋅(4) is used to indicate that one must quadruple
the angles of the connection R, and that each direction d in trian-
gle t must also be expressed in B (through Gtd) before having its
resulting angle with the first basis vector of B being quadrupled to
ensure a 4-RoSy. Note that the last term enforces the vectors ut to
be unit (in metric g, since vectors are expressed in the basesBt), the
first term ensures smoothness with respect to the (quadrupled) con-
nection R, while the coefficient wa allows the user to control how
much to favor direction alignments over sizing, as shown in Fig. 8.
Once u is computed, the angle αt per triangle t is found by dividing
the angle that ut makes with the first basis vector in B by 4. The
resulting frame field F will thus be computed as, for each triangle t,
the frameBt rotated within t by αt. By construction, this optimized
frame field is smooth and with the required sizing as shown in Fig. 7.

Figure 8: Size vs. alignment. With constraints on feature curves
(red), directions (blue arrows) and uniform scaling (0.1 in blue, 0.6
in red), frame fields are generated with λ∗ = 0.5, ωc = 3; we use
wa=1×10−5 (left) or wa=3×10−3 (right). Larger wa lead to better
direction alignment, but control over scaling worsens.

5 Applications and Results

Frame fields have a multitude of applications in computer graphics.
In particular, we demonstrate the utility of our frame field design in
quadrangulation. We also present a straightforward generalization
of our approach to n-vector field design.

5.1 Quadrangulation

Once a frame field has been generated, several state-of-the-art tools
(e.g. [Panozzo et al. 2014]) can be employed to derive quadrilateral
meshes. We implemented our own frame-driven quadrangulation
technique to produce results with similar quality and improved effi-
ciency by computing cross-field guided parameterization. Denoting
the parameterization as the function f = (f1, f2

)
T
∶ M → R2, we

seek to align the isocurve directions of f to the basis vectors of the
frame field F , and match the spacing between isocurves to the mag-
nitude of the basis vectors. This requirement is met if the Jacobian
df = (df1, df2

)
T of f is dual to F, that is, if df i(Fj)= δij , where δ

is the Kronecker delta. Thus, we find our parameterization by opti-

Figure 9: Meshing. With only double constraints derived from the
curvature tensor, the resulting quad meshes automatically adapt to
the geometry of the input model.

mizing the following target function:

argmin
f
∫
M

∥df F − I∥2 dA. (9)

A transition function is introduced based on the given frame field as
recommended in [Bommes et al. 2009] to create a seamless parame-
terization across regions where different choices of alignment of df1

to the 4 vectors in the g-orthonormal 4-vector field exist. From the
resulting parameterization, the libQEx tool [Ebke et al. 2013] is able
to robustly generate the final quad meshes without postprocessing.

Results. We demonstrate the versatility and robustness of our ap-
proach through a series of results on meshes including sharp fea-
tures, narrow strips of surfaces, and acute angles. First, we show
results where no user interaction has been used: using only au-
tomatic evaluations of the curvature tensor to impose double con-
straints along principal curvature directions, we already obtain high
quality quad meshes on complex models, e.g., in Figs. 9 and 13.

Fig. 10 offers a comparison of our approach with current frame
field methods. On this model without sharp features, our approach
leads to slightly improved results (straighter elements) compared
to [Panozzo et al. 2014], due to our more general connection and
log space on this example of rapidly changing scale; the approach of
Diamanti et al. [2014], instead, fail to adapt simultaneously to both
size and direction constraints as it relies on the Euclidean-induced
Levi-Civita connection only. When sharp features are present, ex-
isting methods such as [Panozzo et al. 2014] fail to offer control
over anisotropy even on basic models as shown in Fig. 11. Our
differential metric constraints allowing for normal discontinuity of
the metric leads to an intuitive and flexible design of the frame
field: the metric continuity along the feature curves can be enforced
without restricting the anisotropy across the feature curve. Thus,
with a sparse set of anisotropic length constraints, we automatically
find a solution that ensures quad edges along features to match up,
while the edges orthogonal to features can have drastically different
lengths to accommodate different anisotropic constraints on the two
sides of each feature.

Our method can also directly handle CAD models with numerous
sharp features and narrow parts. For instance, the beetle model
contains narrow strips between the windows (Fig. 1) and the Syd-
ney model in Fig. 12 has complex directional size constraint along
ridges; yet we can layout good quad meshes for both examples. The
flexibility offered by our metric also leads to a high quality quad
mesh for CAD models with acute angles formed by the intersections
of sharp features (Fig. 15), which usually present an extreme chal-
lenge for traditional quadrangulation methods.

The statistics on all our models are given in Tab. 1. Timing was
measured on a computer with an Intel Core i7-2600k processor and

(a) (b)

(c) (d)

Figure 10: Comparisons. With the same rapid change of size con-
straints, our method ((a),(c)) produce straighter quads near the front
than [Panozzo et al. 2014] (b). Compared to [Diamanti et al. 2014]
(d), our result demonstrates much improved singularity distribution.

16GB memory. The average relative size deviations and average an-
gle deviations provide a measure of how well the input constraints
are satisfied; they do not necessarily provide a good measure of quad
mesh quality. Note that computation times do not depend only on
model size, but also on the non-linearity of the constraints. More di-
rection size constraints induce more non-linearity, thus making the
problem harder to solve. Also, for the two Sculpture models, adding
the Laplacian smoothing term makes the Hessian matrix denser,
hence increasing processing time.

Models # T Cons.Type Metric
Opt (s)

Metric Change # Q
l ld F κ Sδ (%) θδ (○)

Sculpture-1 7k / / / 2.3k 2.27 / 6.20e-5 740
Sculpture-0.6 7k / / / 2.3k 8.65 / 1.58e-4 551
Smooth-feature 10k 311 / 56 2.1k 14.3 0.0773 21.9 3106
Plane 18k 2.4k / 40 / 19.5 0.0195 3.38e-5 3735
Cad-part 20k 353 1.6k 86 / 65.1 6.55 0.0349 6629
Aircraft 20k 2.9k / 20k / 9.72 52.7 14.6 4856
Sharp-sphere 20k / / 20k 5.3k 12.7 1.18 15.8 1895
Spiral 20k 722 / 24 / 38.5 0.0444 2.09e-3 7134
Fandisk 30k 599 2.1k 252 / 130 0.588 0.0273 5798
Sydney 39k 384 4.2k 159 12.9k 162 2.69 7.13e-3 17781
Beetle 39k 1.5k / 417 / 10.5 6.54 0.258 7993
Horse 40k / / 40k / 11.5 24.6 10.7 9069
Dragon stand 49k / / 49k / 14.1 27.6 14.2 11161
Elephant 50k / / 50k / 16.1 47.8 16.2 13944
Bunny 60k / / 60k / 45.3 29.2 17.4 10937
Bimba 100k / / 100k / 57.9 36.1 16.6 18026
Pegasus 100k / / 100k / 52.8 40.2 16.1 20057
Dragon 139k / / 139k / 51.2 38.8 14.9 24241
Lucy 300k / / 300k / 166 33.3 13.2 28857

Table 1: Statistics. Input size (# T), metric optimization time, num-
ber of different constraints, l for uniform scaling, ld for single di-
rectional length constraint, F for double constraint, κ for geodesic
curvature constraint, and metric optimization time, average rela-
tive size deviation Sδ and angle deviation θδ (in degrees), and quad
numbers in the output (# Q) for all our models.

5.2 Generalized N-symmetry field

Our method for frame field generation can be extended to provide
N-symmetry field design with only a few modifications. First, we
replace Eq. 5 for the double directional length constraint by the fol-

1 × 1 5 × 1

Figure 11: User control. Our approach (right) allows control
of both automatic feature alignment and manually adjusted local
anisotropy (middle, through only two double directional constraints
here marked as frames on input), while [Panozzo et al. 2014] (left)
cannot come close to the expected aspect ratio unless frames are
manually post-edited, due to the lack of differential control.

Figure 13: Animal zoo. Quad meshing of smooth shapes can be directly derived from our frame field design where only double constraints
based on the curvature tensors are used.

Figure 12: Opera house. The Sydney mesh containing narrow strips
and complex features is quadrangulated through automatic feature
alignment constraints and a few user-selected local uniform size
constraints (see color facets, bottom left) with λ∗ = 0.4, ωc = 3.

lowing conditions:

dT
1 gd2 =

1

l21
, dT

2 gd2 =
1

l22
, dT

1 gd2 =
1

l1l2
cos

2kπ

N
(10)

where k is an additional integer provided by users to indicate the pre-
scribed angle between the two directions. Then, we replace the com-
ponent representation of (cos 4θ, sin 4θ) in cross field optimization
by (cosNθ, sinNθ) and multiply the g-induced connection angles
by N instead of 4. Fig. 14 illustrates an example of 6-symmetry
fields on the pear and bunny models.

5.3 Discussion

One limitation of our method is its nonlinearity, even though our
approach removes the positive-definite inequality constraints on the
metricg. While this is not a major issue in practice, global optimal-
ity cannot be guaranteed. In particular, poor results can be caused

by rapidly varying sizing or directional require-
ments imposed on too coarse an input mesh (see
inset, where our optimization fails to converge on
a very coarse mesh); but this shortcoming is triv-
ially detected, then eliminated through local re-
finement of the input mesh. For models contain-
ing many geodesic curvature constraints, one could also extend our
approach to define a region of influence around feature curves and
use the local distance field to the curve to impose this constraint
on isodistance curves, offering a more reliable approach that re-
duces the influence of the smoothness coefficient λ on these con-
straints. Furthermore, it bears repeating that our approach is target-
ing the design of frame fields; for quadrangulation purposes, ad-
ditional holonomy conditions are also necessary to enforce good
meshes: without it, the parameterization may induce large distor-
tion as pointed out in [Myles and Zorin 2013]. This is precisely the
case in, for instance, the fandisk example shown in Fig. 16. While
these issues can easily be dealt with through user interaction, we
leave the automatic incorporation of such holonomy conditions into
our metric customization as future work.

6 Conclusion

In this work, we proposed a general Riemannian metric customiza-
tion based on partial and full constraints specified by the user or au-
tomatically assigned based on the input surface’s curvature tensor.
From a simple approximation of the Levi-Civita connection of the
customized metric, we generate a frame field that is smooth as mea-
sured in this connection and that satisfies all the input constraints.
Design of the frame field is made intuitive through simple point-wise
or curve-wise frame requirements, and the associated constraints on
the metric have clear geometric interpretations.

While we chose the discretization of metrics and frame fields to
be piecewise constant per triangle, alternate formulations should

be straightforward (and more accurate on coarse meshes [Liu et al.
2015]) as our framework builds only on well-known Riemannian
geometry notions such as covariant derivatives and geodesic curva-
tures, for which continuous expressions are widely available. As our
tests have demonstrated, even this simple piecewise constant version
suits typical geometry processing needs as long as the input mesh is
fine enough. For future work, we plan to use our customized Rie-
mannian metric to drive other design problems, including parame-
terization and hexahedral meshing.

Figure 14: 6-vector fields. From a metric generated from feature
curves and a sizing field based on the local maximum principal cur-
vature, we can generate smooth 6-vector fields on the pear (left) and
bunny (right) models.

Acknowledgements.
Partial funding was provided by NSFC (No.61170139,
No.61210007), Fundamental Research Funds for the Central
Universities (No. 2015FZA5018), NSF grants CCF-1011944,
III-1302285 and IIS-0953096. MD gratefully acknowledges the
TITANE team and the Inria International Chair program for support.
All 3D models are from the AIM@SHAPE shape repository, except
Sydney (courtesy of cgmod.com), Cigar (courtesy of [Panozzo
et al. 2014]), Dragon, Dragon stand, Bunny, Lucy (courtesy of
Stanford Scanning Repository), Beetle (courtesy of Inria Gamma)
and CAD-part (our own design).

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B.,
AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Trans. Graph. 22, 3 (July), 485–493.

BEN-CHEN, M., GOTSMAN, C., AND BUNIN, G. 2008. Conformal
flattening by curvature prescription and metric scaling. Comput.
Graph. Forum 27, 2, 449–458.

BOMMES, D., ZIMMER, H., AND KOBBELT, L. 2009. Mixed-
integer quadrangulation. ACM Trans. Graph. 28, 3 (July), 77:1–
77:10.

CRANE, K., DESBRUN, M., AND SCHRDER, P. 2010. Trivial
connections on discrete surfaces. Comput. Graph. Forum 29, 5,
1525–1533.

DE GOES, F., LIU, B., BUDNINSKIY, M., TONG, Y., AND DES-
BRUN, M. 2014. Discrete 2-tensor fields on triangulations. Com-
put. Graph. Forum 33, 5, 13–24.

DIAMANTI, O., VAXMAN, A., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2014. Designing n-polyvector fields with com-
plex polynomials. Comput. Graph. Forum 33, 5.

EBKE, H.-C., BOMMES, D., CAMPEN, M., AND KOBBELT, L.
2013. Qex: Robust quad mesh extraction. ACM Trans. Graph.
32, 6 (Nov.), 168:1–168:10.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, 517–526.

JIN, M., WANG, Y., YAU, S.-T., AND GU, X. 2004. Optimal
global conformal surface parameterization. In IEEE Visualiza-
tion, 267–274.

JIN, M., KIM, J., AND GU, X. D. 2007. Discrete surface ricci flow:
Theory and applications. In Proceedings of the 12th IMA Inter-
national Conference on Mathematics of Surfaces XII, Springer-
Verlag, 209–232.

KNÖPPEL, F., CRANE, K., PINKALL, U., AND SCHRÖDER, P.
2013. Globally optimal direction fields. ACM Trans. Graph. 32,
4 (July), 59:1–59:10.

LAI, Y.-K., JIN, M., XIE, X., HE, Y., PALACIOS, J., ZHANG, E.,
HU, S.-M., AND GU, X. 2010. Metric-driven RoSy field design
and remeshing. IEEE Trans. Vis. Comput. Graph. 16, 1 (Jan.),
95–108.

LING, R., HUANG, J., JÜTTLER, B., SUN, F., BAO, H., AND
WANG, W. 2014. Spectral quadrangulation with feature curve
alignment and element size control. ACM Trans. Graph. 34, 1
(Dec.), 11:1–11:11.

LIU, Y., XU, W., WANG, J., ZHU, L., GUO, B., CHEN, F., AND
WANG, G. 2011. General planar quadrilateral mesh design using
conjugate direction field. ACM Trans. Graph. 30, 6 (Dec.), 140:1–
140:10.

LIU, B., TONG, Y., DE GOES, F., AND DESBRUN, M. 2015. Dis-
crete connection and covariant derivative for vector field analysis
and design. ACM Trans. Graph. (to appear).

MOLER, C., AND LOAN, C. V. 2003. Nineteen dubious ways
to compute the exponential of a matrix, twenty-five years later.
SIAM Review 45, 1, 3–49.

MYLES, A., AND ZORIN, D. 2012. Global parametrization by
incremental flattening. ACM Trans. Graph. 31, 4 (July), 109:1–
109:11.

MYLES, A., AND ZORIN, D. 2013. Controlled-distortion con-
strained global parametrization. ACM Trans. Graph. 32, 4 (July),
105:1–105:14.

OPREA, J. 2007. Differential Geometry and Its Applications. Math-
ematical Association of America.

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field
design on surfaces. ACM Trans. Graph. 26, 3 (July).

PANOZZO, D., PUPPO, E., TARINI, M., AND SORKINE-
HORNUNG, O. 2014. Frame fields: Anisotropic and non-
orthogonal cross fields. ACM Trans. Graph. 33, 4 (July), 134:1–
134:11.

RAY, N., VALLET, B., LI, W. C., AND LÉVY, B. 2008. N-
symmetry direction field design. ACM Trans. Graph. 27, 2 (May),
10:1–10:13.

RAY, N., VALLET, B., ALONSO, L., AND LEVY, B. 2009.
Geometry-aware direction field processing. ACM Trans. Graph.
29, 1 (Dec.), 1:1–1:11.

SCHELTER, W., 2015. Maxima – a computer algebra system (ver-
sion 5.35). http://maxima.sourceforge.net.

http://www.cgmol.com/mol/8/20131120/23502019515.html
http://maxima.sourceforge.net

Figure 15: Sharp features. Feature alignment and double con-
straints where features intersect allow acute angles to be well pre-
served in a variety of CAD models. We used λ∗ =0.4, ωc =3 for the
Sharp-sphere model (left).

SPRINGBORN, B., SCHRÖDER, P., AND PINKALL, U. 2008. Con-
formal equivalence of triangle meshes. ACM Trans. Graph. 27, 3
(Aug.), 77:1–77:11.

A Levi-Civita Connection

The appendix provides, for self-containedness, a derivation of the
continuous expression of the turning angle for the parallel transport
of a vector by the Levi-Civita connection of a metric g given in Eq. 8.
We also spell out the discrete expression we use to evaluate this in-
tegral for our particular choice of discretization.

Rotation angle. For simplicity, we use a derivation considering a
moving g-orthonormal frame in a patch with flat metric ḡ, since this
is what we will use for our evaluation per triangle. First, we con-
struct a (u, v) parameterization chart such that the ḡ-orthonormal
local frame is B̄ = (∂

∂u
, ∂
∂v

). Then a g-orthonormal basis can be
chosen as B = B̄G−1

= (e1, e2), where G =
√
g. The dual basis for

covectors is (ω1, ω2)
T
= G(du, dv)T, where (du, dv) is the dual

basis to B̄. The covariant derivative of a vector u = (u1, u2)
T ex-

pressed in B can be evaluated as

∇u = du1 ⊗ e1 + u1∇e1 + du2 ⊗ e2 + u2∇e2,

where ∇ei = ∑j ωji ⊗ ej is the covariant derivative for the basis
vectors using structural coefficient 1-forms ωij . As ωij = −ωji,
the only independent coefficient is ω12, which denotes how fast
e2 rotates around e1. The covariant derivative of u along a curve
γ(s), s ∈ [0,1] is thus Du/ds = ∇γ̇u, where γ̇(s) = dγ

ds
. Paral-

lel transport along γ requires Du/ds = 0, which indicates that u is
simply rotated by an angle ∫

t

0 ω12(γ̇).

Expressing ω12 in the dual basis (ω1, ω2) as ω12=aω1+bω2, we can
use Cartan’s structural equation dωi =−∑j ωij ∧ ωj to evaluate the
scalar functions a and b through:

−adet(G)du ∧ dv=−ω12 ∧ ω2=dω1=(G21,u−G11,v)du ∧ dv,

−bdet(G)du ∧ dv=−ω21 ∧ ω1=dω2=(G22,u−G12,v)du ∧ dv.

Consequently, ω12 satisfies:

det(G) ω12 = (G11,v −G21,u,G12,v −G22,u)G(
du
dv

) . (11)

Discrete evaluation. For a straight path between points p=(up, vp)
and q = (uq, vq) in a given triangle t, we parameterize the line seg-
ment in (u, v) coordinates as γ(s)=(1 − s)(up, vp)T

+s(uq, vq)
T,

so du(γ̇) =uq − up and dv(γ̇) = vq − vp. Then, we find the unique
linear matrix field G(u, v) which satisfies the three edge midpoint
valuesGij of triangle t (constructed through metric averaging as ex-
plained in 4.2). Since the derivatives G,u and G,v are both constant
matrices with constant elements, the final turning angle between p

Figure 16: Manual editing. A quadrangulation computed automat-
ically through feature alignment and double constraints at corners
can result in unpleasant distortions (middle left), a few additional
user constraints (color facets in inset) quickly improve the result
(middle right: all constraints except those marked with boxes; right:
all constraints).

and q can be evaluated in closed form, resulting in the following
form:

∫

1

0
ω12(γ̇) = ∫

1

0

mt + n

at2 + bt + c
,

where the coefficients a, b, c,m, and n are functions of the local
linear field G. The expressions of this integral are known in closed
form and are thus trivial to evaluate through basic trigonometric and
hyperbolic functions, depending on the sign of 4ac − b2.

The final rotation angle θij between two triangles ti and tj is ob-
tained by summing the two angles from the two half dual edges link-
ing the two triangles, and the angle of the Levi-Civita connection of
ḡ (this last term is needed to align the two g-orthonormal frames at
the midpoint B̄iG−1

ij and B̄jG−1
ji , which differ by construction by

R̄T
ij). The rotation matrix Rtitj encoding the Levi-Civita connec-

tion of metric g is thus:

Rtitj = (
cos(θij) sin(θij)

− sin(θij) cos(θij)
) . (12)

B Curve alignment through geodesic
For a continuous guiding curve γ(s), s ∈ [0,1], the ḡ-unit tangent
vector d = γ̇/∣γ̇∣ḡ defines an alignment constraint at each point along
the curve. In addition, for quadrangulation applications, it is natu-
ral to also require that the g-orthonormal frame field to be aligned
to the ḡ-unit normal direction n, normal to the curve in the sense
that ⟨d,n⟩ḡ = dTḡn = 0. This means that the original curve is a
g-geodesic curve, i.e., it is straight in the metric g. Without loss of
generality, we pick a point p on the curve, and select a (u, v) pa-
rameterization such that (∂/∂u, ∂/∂v) forms a local ḡ-orthonormal
frame along the curve. We further restrict (u, v) = (0,0) at p,
and pick u to be aligned to the tangent direction d. Given the re-
quirement that the curve must a g-geodesic, we see that the matrix
G(u, v) can be expressed (with second order accuracy in u) as

G = R(κu) (
λ1(u, v) 0

0 λ2(u, v)
)R(κu)T,

where R(θ) is the 2×2 rotation matrix with angle θ, and κ is the
geodesic curvature of γ in ḡ. Since zero geodesic curvature in g
means ω12(γ̇) = 0 in Eq. 8, at (u, v) = (0,0), where γ̇ = ∂/∂u,
one must have G11,v −G21,u = 0. Thus, λ1,v = λ1κ. Noticing that
g11 = λ2

1 at (u, v) = (0,0), the above equation can be rewritten in
generic coordinate systems as

∇̄n ln
√
dTgd = ∇̄n

√
dTgd/

√
dTgd = κ.

This metric constraint on g guarantees that the corresponding g-
orthonormal frame field is properly adapted to the feature curve γ.

