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Existing methods for surface quadrangulation cannot ensure accurate align-
ment with feature or boundary curves and tight control of local element
size, which are important requirements in many numerical applications (e.g.
FEA). Some methods rely on a prescribed direction field to guide quadran-
gulation for feature-alignment, but such a direction field may conflict with
a desired density field, thus making it difficult to control the element size.
We propose a new spectral method that achieves both accurate feature curve
alignment and tight control of local element size according to a given den-
sity field. Specifically, the following three technical contributions are made.
First, to make the quadrangulation align accurately with feature curves or
surface boundary curves, we introduce novel boundary conditions for wave-
like functions that satisfy the Helmholtz equation approximately in the least
squares sense. Such functions, called quasi-eigenfunctions, are computed
efficiently as the solutions to a variational problem. Second, the mesh el-
ement size is effectively controlled by locally modulating the Laplace op-
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erator in the Helmholtz equation according to a given density field. Third,
to improve robustness, we propose a novel scheme to minimize the vibra-
tion difference of the quasi-eigenfunction in two orthogonal directions. It is
demonstrated by extensive experiments that our method outperforms previ-
ous methods in generating feature-aligned quadrilateral meshes with tight
control of local elememt size. We further present some preliminary results
to show that our method can be extended to generating hex-dominant vol-
ume meshes.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Quadrilateral mesh generation

Additional Key Words and Phrases: boundary conditions, manifolds with
boundaries, sharp features, spectral quadrangulation

1. INTRODUCTION

Quadrilateral (quad) meshes are widely used in many applications,
such as texture mapping, parameterization and finite element anal-
ysis (FEA) [Hormann et al. 2008]. In this paper we study the prob-
lem of computing a quad mesh (also called quadrangulation) of
a given surface that needs to satisfy various constraints, such as
feature alignment, element size and orientation. Currently, there is
a lack of effective methods for surface quadrangulation that en-
sure accurate alignment with feature curves or boundary curves and
tight control of local element size.

Feature alignment means that the resulting quadrilateral mesh pre-
serves significant shape features, e.g. sharp edges and boundary
curves, while element size control means that locally the size of
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mesh elements follows closely a given density function to produce
an adaptive mesh. To achieve feature alignment, previous meth-
ods [Kalberer et al. 2007; Bommes et al. 2009; Zhang et al. 2010]
usually use a direction field to guide the orientation of mesh ele-
ments to align with feature curves. However, in this way, the size el-
ement will be heavily dictated by the guiding direction field, rather
than following a prescribed density field. This incompatibility be-
tween the guiding directional field and the given density field is
often responsible for undesired singularities and low-quality mesh
elements in quadrangulation. Note that the control of element size
is often as important as the orientation control in quad meshing
for many numerical applications. In fact, commonly used meshing
tools for FEA, such as SolidWorks, ANSYS, Abaqus, provide the
density control rather than the orientation control.

We present a new spectral method for quadranulation that achieves
both accurate feature curve alignment and tight control of local
element size. The first spectral method for surface quadragula-
tion [Dong et al. 2006] employs the Morse-Smale complex (MSC)
extracted from the solution functions of Helmholtz equation on a
given surface. It works well for closed smooth surfaces but does
neither consider orientation alignment with boundary curves and
sharp feature curves nor the control of element size. The method
is later improved in [Huang et al. 2008] to achieve approximate
feature alignment without emphasizing on element size control. In
our method we propose new boundary conditions of the Helmholtz
equation to make the Morse-Smale Complex (MSC) associated
with its solution (to be called quasi-eigenfunction or QE for short)
precisely align with domain boundaries or feature curves, without
the need of a guiding direction field. Because these new bound-
ary conditions impose over-constraints, the quasi-eigenfunction is
defined as the minimizer of a variational problem and therefore
satisfies the Helmholtz equation only approximately in the least
squares sense. With this formulation, we are able to specify and
enforce the desired element size using an isotropic Riemannian
metric to locally modulate the Laplace operator in the Helmholtz
equation. Overall, we formulate surface quadrangulation as a lin-
early constrained quadratic optimization problem and compute its
solution (i.e. the resulting quasi-eigenfunction) by solving a sparse
linear system. In addition, to improve the distribution of the crit-
ical points of the quasi-eigenfunction for robustly constructing its
Morse-Smale complex, we propose a novel non-linear optimization
scheme to make the vibration amplitude of the quasi-eigenfunction
similar in two orthogonal directions.

2. RELATED WORKS

Many methods have been proposed on surface quadrangulation, or
quad mesh generation, in recent decades. Comprehensive surveys
are provided in [Hormann et al. 2008; Bommes et al. 2012]. Some
of the methods [Tarini et al. 2011; Campen et al. 2012] aim at gen-
erating quad mesh with a simple coarse structure. We shall only re-
view those works related to our concern of generating quad meshes
with tight control of element size and accurate feature curve align-
ment.

The methods in [Alliez et al. 2003; Dong et al. 2005] trace two
orthogonal direction fields on a given surface and generate a quad-
dominant mesh. To get a pure quad mesh, a coarse quad domain is
required in some works [Tong et al. 2006; Marinov and Kobbelt
2006]. In other works [Ray et al. 2006; Kalberer et al. 2007;
Bommes et al. 2009], a direction field is used to extract a topo-
logical structure for parameterization. The direction field is often

(a) (b) (c)

Fig. 1: Incompatibility between element size control and direction control
in [Zhang et al. 2010]. (a) The density function (in color) and the direction
field (in arrows) on a square domain; (b) The generated scalar field and its
Morse-Smale complex; (c) The resulting quad mesh.
constructed based on sharp feature curves or curvature directions,
without taking size control into consideration. Recently, Kovacs
et al. [2011] proposed a method to improve approximation error
of quadrangulations by introducing a curvature-dependent surface
anisotropy metric. This method still relies on a direction field for
feature alignment. As pointed out in [Zhang et al. 2010], there is of-
ten a conflict between applying the element size control and defin-
ing a direction field for feature alignment.

As shown in Fig. 1, a uniform direction field is derived from
the boundaries of a square. This direction field is not compatible
with the desired density field shown in pseudo-color, which leads
to many unwanted singularities. Curl minimization proposed in
[Zhang et al. 2010] could be used to adjust the size control accord-
ing to the direction field. However, such an adjustment according to
the uniform direction field will lead to a mesh with nearly uniform
element size, instead of the desired result (Fig. 9).

Fig. 2: Eigenfunctions with Dirich-
let boundary condition (left) and Neu-
mann boundary condition (right), re-
spectively.

Different from the above
methods, the spectral
approach by Dong et
al. [2006] uses the Morse-
Smale complex from an
eigenvalue function of
the Helmholtz equation
over a given surface to
generate a quad mesh.
The method is proposed
for quandrangulation of
closed surfaces and thus
cannot handle surfaces with boundaries or feature lines. This
difficulty is illustrated by the examples of two eigenfunctions
in a planar domain (that has a boundary) in Fig. 2. Here neither
the Dirichlet boundary condition nor the Neumann boundary
condition can make the Morse-Smale complex align with domain
boundary. Hence, the resulting quad elements do not conform with
the boundary.

Huang et al. [2008] extended this method in [Dong et al. 2006] by
adding orientation and alignment control of quads using a guiding
direction field within an optimization framework. The improved
method attempts to handle the boundary and feature curves with
a set of symmetric constraints but it is effective only for surfaces
with simple boundary curves and feature lines. The method pro-
posed in [Zhang et al. 2010] for improving boundary and feature
alignment adopts the same framework of Morse-Smale complex. It
uses a feature-dependent direction field and thus also restricts the
ability of element size control. Recently, a method [Pellenard et al.
2011] has been proposed for controlling the size and orientation of
isotropic 2D quadrangulation that addresses the requirement of size
control before orientation alignment. Because the method relies on
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labeling the triangles of the background triangulation through local
information, it is difficult to reduce mesh singularities; furthermore,
it produces results that are sensitive to the initial tessellation. For
example, the quad mesh has many singularities even in the case of a
simple quad domain with a constant cross field and uniform sizing.

3. BOUNDARY ALIGNED QUASI-EIGENFUNCTION

Like the previous spectral approach (e.g. [Dong et al. 2006]), our
method also uses the Morse-Smale complex (MSC) to build a quad
mesh. An MSC of a function f on a two-manifold is a complex
connecting the critical points (minimum/saddle/maximum) of f
through the integral curves of the gradient field ∇f . The MSC is
composed of a set of quad cells and therefore yields the structure of
a pure quad mesh [Edelsbrunner et al. 2003; Ni et al. 2004]. Note
that mesh orientation and element size of the resulting quad mesh
are largely determined by the geometry of the MSC.

We first discuss how to achieve the alignment of boundary curve
and feature curves by introducing some new boundary conditions,
without resorting to a direction field. For simplicity, we will only
discuss boundary curves since the method can be applied to feature
curve alignment as well in a straightforward manner.

(a) (b)
Fig. 3: (a) Perspective view of the function f(u, v) =
0.075 sin(6πu) sin(6πv); (b) Top view of f(u, v).

3.1 Boundary Conditions

Consider a function f(u, v) with its critical points (i.e., maxima,
minima, and saddles) as illustrated in Fig. 3. A minimal integral
curve is defined to be the integral curve of the gradient field ∇f
that starts at a minimum and ends at a saddle. An extended minimal
integral curve, denoted Γ, is defined to be a sequence of connected
minimal integral curves (see the thick red curve in Fig. 3). Clearly,
an extended minimal integral curve represents locally the orienta-
tion of the quad mesh represented by the Morse-Smale complex.
Let n be the unit normal vector of the curve Γ. Because Γ is an
integral curve of the gradient field ∇f , we have ∂f/∂n = 0. Fur-
thermore, because Γ only goes from a minimum to a saddle, it can
be shown that ∂2f/∂n2 > 0 (except for high-order saddles). In
fact, these two conditions characterize an extended minimal inte-
gral curve.

Given a 2D domain Ω, our idea for achieving boundary alignment
is to construct a function f on Ω such that the domain bound-
ary curves ∂Ω become extended minimal integral curves of f .
To this end, we introduce two boundary conditions ∂f/∂n =
0 and ∂2f/∂n2 > 0 on the domain boundary ∂Ω. The suf-
ficiency of these conditions can be seen as follows: Because

∂f/∂n
∣∣
∂Ω

= 0, the boundary curve must be an integral curve. Be-
cause ∂2f/∂n2

∣∣
∂Ω

> 0, no maximum can appear on the bound-
ary. Therefore there are only saddle points and minimum points,
occurring alternatively, on the boundary ∂Ω. Hence, the boundary
curve ∂Ω is an extended minimal integral curve of f . For definite-
ness in computation, we replace ∂2f/∂n2 > 0 by the condition
∂2f/∂n2 = ξ for some constant ξ > 0. That is, we will use
in our computation the boundary conditions ∂f/∂n|∂Ω = 0 and
∂2f/∂n2|∂Ω = ξ > 0.

The above boundary conditions are sufficient but not necessary
for feature alignment, since it is possible that a boundary curve
is aligned with maximal integral curve (which connects a saddle
to a maximum) rather than with a minimal integral curve, and the
second order directional derivative can be different. In other words,
a more general formulation of this boundary condition could be
σΓ · ∂2f/∂n2|∂Γ ≥ ξ > 0, where σΓ ∈ {1,−1} for each con-
nected boundary curve Γ ∈ ∂Ω. However, using the above equa-
tion leads to complex problem involving binary integer program-
ming about σΓ and inequality constraints about ξ. Our assumption
that all the boundary curves or feature curves are aligned with only
minimal integral curves imposes the restriction that the number of
columns of mesh elements between two “parallel” feature lines is
even. In practice, this does not lead to any problem because we are
primarily interested in quadrangulation with sufficiently small ele-
ment size. Further more, setting ξ to a positive constant leads to a
simple linearly constrained quadratic optimization problem, which
favors efficiency and still yields high quality results. Different spe-
cific values of the constant ξ > 0 scale f globally and therefore do
not affect the distribution of the critical points of f , as well as its
Morse-Smale complex. Hence, we set to ξ = 1 in our computation;
that is, the condition ∂2f/∂n2|∂Ω = 1 is used.

In a related note, Huang et al. [Huang et al. 2008] also introduced a
boundary condition for feature alignment within the spectral frame-
work. Their condition is that the directional derivative of f in the
normal direction of the domain boundary vanishes. This tends to
reduce the variance of the resulting scalar function near the fea-
ture rather than explicitly enforcing mesh nodes to align with the
boundary curve. Therefore, the method cannot ensure satisfactory
conformation of the resulting quad mesh with boundary curves and
feature curves.

3.2 Definition of Quasi-Eigenfunction

If a function f satisfies the Helmholtz equation,

∇2f = λf, (1)

where λ ≤ 0, f is called an eigenfunction of the Laplace operator.
Due to the relatively even distribution of the critical points of f ,
the Morse-Smale complex of f has been used to construct quad
meshes [Dong et al. 2006; Huang et al. 2008].

For a 2D domain with boundary curves, the Dirichlet boundary
condition or the Neumann boundary condition are often used in
the eigenfunction problem in Eq. (1). However, as shown in Fig. 2
neither of them ensures boundary curve alignment as required for
quadrangulation.

If we apply our new boundary conditions proposed in Section 3.1
for boundary alignment, the eigenfunction problem in Eq. (1) be-
comes over-constrained and therefore cannot be solved. We cir-
cumvent this difficulty by introducing the quasi-eigenfunction via
a variational formulation as follows.
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To better illustrate this variational formulation, let us start by con-
sidering the 1D case, that is, a smooth functions defined on [−1, 1].
Let f denote the function that minimizes the following energy

EL(f) =

∫ 1

−1

‖∇2f − λf‖2, (2)

subject to the boundary conditions

df

du

∣∣∣
u=±1

= 0,
d2f

du2

∣∣∣
u=±1

= 1, (3)

where ∇2 = d2/du2 is the Laplace operator, and λ a negative
constant. The solution to this constrained optimization problem will
be called a quasi-eigenfunction (QE).

Eq. (2) and Eq. (3) define a typical problem in variational calculus.
Its Euler-Lagrange equation is

(∇2)2f − 2λ∇2f + λ2f = 0. (4)

When f is an eigenfunction, the energy in Eq. (2) is 0, and it also
satisfies Eq. (4). A quasi-eigenfunction approximates an eigenfunc-
tion in the least squares sense while respecting the boundary condi-
tions in Eq. (3). Note that here λ does not have to be an eigenvalue
of Eq. (1); indeed, a nontrivial solution to Eq. (4) subject to Eq. (3)
is well defined for any λ < 0. Given a λ, the analytical form of the
QE in [−1, 1] can be shown to be

f ∗1(u) =c1 sin(u
√
−λ) + c2 cos(u

√
−λ)+

c3u sin(u
√
−λ) + c4u cos(u

√
−λ),

(5)

where c1, c2, c3, c4 are constants. Fig. 4 shows the graphs of several
QEs.

(a) (b) (c)

Fig. 4: Quasi-eigenfunctions in [−1, 1] with (a) λ = −400; (b) λ =
−750; (c) λ = −1000.

Now we consider the quasi-eigenfunction (QE) on an open 2-
manifold Ω. The boundary conditions in Eq. (3) become

∂f

∂n

∣∣∣
∂Ω

= 0,
∂2f

∂n2

∣∣∣
∂Ω

= 1, (6)

where n is the outward unit normal vector of the boundary curve.
It can be shown that the QE on the domain [−1, 1]2 is

f ∗2(u, v) = f ∗1(u) + f ∗1(v). (7)

So far we have shown how to use two new boundary conditions to
ensure boundary alignment without using any direction field. Now,
the element size can easily be controlled by integrating an isotropic
Riemannian metric into the Laplace operator in the Helmholtz
equation, that is,∇2

r : (∂2/∂u2 +∂2/∂v2)/r, r > 0, where the de-
sired quad edge length is almost linearly proportional to 1√

r
. This

treatment is similar to that in [Huang et al. 2008]; but, instead of
using mass density, we adopt the metric description in [Kovacs

et al. 2011]. Note that the metric related parameter r does not have
to be continuous, because we are solving a least square problem
Eq. (2). However, in practice, a smooth r is preferred for generat-
ing smoothly varying meshes.

3.3 Discrete Quasi-Eigenfunction (QE)

Now we show how to compute quasi-
eigenfunctions efficiently on 2D triangulated
domains. A well–known discretization of the
Laplace operator on a triangulated surfaces is the
cotangent formula [Pinkall and Polthier 1993;
Meyer et al. 2002]. Let f be the vector of all func-
tion values defined on the vertices of a triangular
mesh M. The cotangent formula for computing
the Laplacian on vertex i with respect to the density distribution r
is

∇2
rfi =

3

2Areai · ri

∑
j∈N(i)

(
cot(αij) + cot(βij)

)
(fj − fi), (8)

where N(i) is the set of vertices incident to vertex i, Areai the
total area of triangles incident to vertex i, and αij , βij the angles
opposite to edge ij.

The boundary conditions in Eq. (6) involve the first order and
second order derivatives of f . We adopt the strategy in [Huang
et al. 2008] to locally approximate f using a second order poly-
nomial, and thus represent it as a linear combination of the values
on its neighboring vertices. Specifically, the neighborhood N(i)
of vertex i is locally parameterized into a plane by the exponen-
tial map [Schmidt et al. 2006] (see Fig. 5(a)), and each vertex
j ∈ N(i) gets assigned some coordinates (uj , vj). Then the co-
efficients ak, k ∈ {uu, uv, vv, u, v, c}, of a quadratic polynomial
f̃(u, v) = 1

2

(
auuu

2 + 2auvuv + avvv
2
)

+ auu + avv + ac are
solved for from the least squares problem

min
j∈N(i)

‖f̃(uj , vj)− fj‖2. (9)

It can be shown that the coefficients ak obtained from Eq. (9) can
be represented as a linear combination of f , i.e., ak = aT

k f . Note
that the ak are independent of f and depend only on the discretiza-
tion of the domain. Hence given a triangulation, all entries of the
gradient vector and the Hessian matrix on a boundary vertex can
be represented as a linear combination of f with pre-computed co-
efficients. For a boundary vertex with normal direction (nu, nv) in
the local 2D frame of the tangent plane of the underlying surface
domain, the directional derivatives in Eq. (6) are approximated by

∂f

∂n
≈ (nuau + nvav)T f

∂2f

∂n2
≈ (n2

uauu + 2nunvauv + n2
vavv)T f .

(10)

Then, all the boundary conditions can be represented in a matrix
form

Bf =

[
Y
Z

]
f =

[
0
1

]
= C. (11)

Note that using a two-ring neighborhood for all the vertices will
make the ak contain too many non-zero entries, thus leading to a
high computational cost. Therefore, we adopt a “diameter-2” neigh-
borhood, i.e. a two-ring neighborhood for open boundary vertices
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and a one-ring neighborhood for interior vertices when solving for
the coefficients ak via fitting.

Clearly, the boundary conditions in Eq. (6) introduced for boundary
curve alignment can be applied directly to feature curve alignment.
The discretization of these conditions at a vertex on a feature line
is similar to that at a boundary vertex, as shown in Fig. 5(b).

(a) (b)

Fig. 5: (a) A boundary node and its exponential map; (b) A node on a
feature line and its exponential map.

Now the minimization problem in Eq. (2) subject to Eq. (6) is for-
mulated discretely: we minimize the energy ELr

ELr (f) = ||Lrf − λf ||2, (12)

subject to the constraints in Eq. (11), where Lr is the Laplacian
matrix defined by Eq. (8). Unlike the optimization problem with
non-linear constraints in [Huang et al. 2008], our boundary con-
ditions lead to a quadratic minimization problem with linear con-
straint, therefore can be solved directly using its KKT matrix [Boyd
and Vandenberghe 2004] with the solver UMFPACK [Davis 2004]:[

HLr BT

B 0

] [
f
ν

]
=

[
0
C

]
, (13)

where ν is the Lagrange multiplier, and

HLr = Lr
TLr − λ(Lr + LT

r ) + λ2I. (14)

After solving the QE from the above sparse linear system, its
Morse-Smale complex (MSC) can be extracted for quad mesh gen-
eration. The methods in [Edelsbrunner et al. 2003; Ni et al. 2004]
can be used to construct the MSC of a function f on a closed tri-
angular mesh surface. We adopt the mirrored boundary condition
in [Gyulassy et al. 2011] to extract the MSC on a surface with open
boundary. Then the positions of the MSC vertices are further re-
fined by solving a global smooth parameterization problem [Dong
et al. 2006]. Finally, as postprocessing, the Catmull-Clark subdivi-
sion can be used to refine the mesh.

While our method does not restrict λ to be an eigenvalue, not all
the choices of λ lead to high quality results because of the possi-
ble incompatibility between the alignment constraints and the quad
sizing, especially when using small |λ| for coarse quadrangulation.
When a large |λ| is used, to make sure the critical points in the re-
sulting QE are kept sufficiently apart from each other (desirably
about the distance of the average edge length of the underlying
triangle mesh), the input triangular mesh should be dense enough
with respect to the desired quad density. To address this issue, after
extracting the critical points, we locally estimate the average dis-
tance d between the neighboring critical points, and then subdivide
the triangular mesh to make the edge length shorter than µd, and
then re-solve the problem with the refined mesh as input to obtain
a properly discretized QE. We set µ to 0.25 experimentally. Such

a strategy works well in most cases, as long as the Hessian matrix
HLr is well conditioned.

3.4 Vibration Enhancement

Like all the other spectral methods [Dong et al. 2006; Huang
et al. 2008], our method also assumes the existence of period-
ically distributed significant critical points of the scalar func-
tion. But, in some case, either an eigenfunction or a quasi-
eigenfunction function may not have their critical point distributed
in a desirable manner. Thus, such methods, including ours, may

Lagrange

Penalty

suffer from lacking “vibration”, as illustrated
in the inset. For example, for a disk-like re-
gion with a strong rotational symmetry, the
QE tends to vibrate only along the radial di-
rection while not to vary much along the di-
rection perpendicular to the radial direction.
Consequently, the critical points are not easy
to detect or not uniformly distributed, an issue
also pointed out in [Dong et al. 2006; Huang
et al. 2008]. In the following we will introduce
a technique, called vibration enhancement, to
address this issue.

As shown in [Huang et al. 2008], the principal directions of the
Hessian matrix of the QE are locally aligned with the edges of
the Morse-Smale complex. Using these directions as the local co-
ordinate system, we locally approximate the QE by f(u, v) ≈
Au cos(u

√
−λ+ θ) +Av cos(v

√
−λ+ φ). It follows that

∇f∇fT +
H2

f

−λ
≈ −λ

[
A2

u Au ·Av · susv
Au ·Av · susv A2

v

]
, (15)

where su = sin(u
√
−λ + θ), sv = sin(v

√
−λ + φ). Again, ap-

plying the discretization techniques in Section 3.3 to compute the
gradient∇f and the Hessian matrix Hf , we have

A2
u = fTWuf , and A2

v = fTW vf , (16)

where:

Wu =
1

−λ
aua

T
u +

1

λ2
(auua

T
uu + auva

T
uv)

W v =
1

−λ
ava

T
v +

1

λ2
(avva

T
vv + auva

T
uv).

(17)

From Eq. (15), we can estimate the vibration amplitude Au,i, Av,i

for the vertex i, and measure the amplitude difference as:

Ea,i(f) = (fTWu
i f/Ā

2
i − 1)2 + (fTW v

i f/Ā
2
i − 1)2, (18)

1

2E
a

1

min{Au,Av}
max{Au,Av}

where Āi =
√

(A2
u,i +A2

v,i)/2. The
inset plots the relationship of the en-
ergy and the amplitude difference. The
penalty terms are applied to all the ver-
tices V to make local vibration ampli-
tudes in the two orthogonal direction as
similar as possible.

Using the solution of Eq. (13) as the initial value, we optimize the
following energy

E(f) = ELr (f) + ω

(∑
i∈V

Ea,i(f)

)
+ ξ‖Bf −C‖22, (19)
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where the weights ω = 0.1, ξ = 100 are used in all our experi-
ments. In the phase of vibration enhancement, Eq. (19) is optimized
by the Gauss-Newton method, and CHOLMOD [Chen et al. 2008]
is used in each iteration. The cost of each iteration is less than solv-
ing the KKT system in Eq. (13), and 10 iterations are performed in
our experiments unless otherwise stated.

We use the penalty function with the boundary condition Bf =
C, because using the Lagrange multipliers would introduce a
large number of hard constraints, which prevents the scalar
field near the boundary from adjusting for desired vibration.
As shown in the inset, the
critical points on the bound-
ary are more prominent with
the penalty scheme (left) than
using the Lagrange multipliers
scheme (right).

Vibration enhancement also improves the robustness of our method
when the value of λ is away from an eigenvalue. For example, for
the quadrangulation of the domain [−1, 1]2 in Fig. 7, to generate
quad meshes from the QEs with n = 4 and n = 5 periods along
each side, the ideal values of λ should be λ ≈ −158 and λ ≈
−247, respectively. (Ideally, λ should be −(nπ)2.) If we set λ =
−200, which lies between the two ideal values, the QE solved from
Eq. (13) does not possess prominent critical points (see the region
surrounded by the black rectangle in Fig. 7). However, the result
improves significantly after applying a few iterations of vibration
enhancement.

(a) (b) (c)
Fig. 6: BUTTERFLY (λ = −1700): (a) QE without vibration enhance-
ment; (b) QE with vibration enhancement; (c) Quad mesh from (b).

4. EXTENSION TO HEX-DOMINANT REMESHING

Hexahedral meshing of a 3D domain is another important and chal-
lenging problem in mesh generation. Unlike a 2D manifold, which
can be closed without no boundary, a compact 3D volume always
has a boundary surface. That is, the boundary alignment issue is
inevitable in hex meshing of any 3D volume. Hence, due to their
lack of proper boundary treatment, the previous spectral remeshing
methods [Dong et al. 2006; Huang et al. 2008] for surface quadran-
gulation cannot be extended to hex meshing of 3D volumes. In this
section, we will briefly discuss how our spectral method with new
boundary conditions can be extended Eq. (6) to hexahedral mesh
generation, and present some preliminary results.

One major consideration in this extension is how to discrete a 3D
domain and represent the Laplacian operator on it. We assume that
the domain is represented by a sufficiently fine tetrahedral mesh.
If we use the 3D counterpart of the cotangent formula in Eq. (8)
for tetrahedral meshes [Wang et al. 2003], the obtuse angles in the

(-158,0) (-200,0) (-247,0)

(-200,1) (-200,2) (-200,3)

Fig. 7: A few number of vibration enhancement iterations improves the dis-
tribution of the critical points when λ is not an eigenvalue. The numbers
in parentheses indicate the value of λ and the number of iterations, respec-
tively.

tetrahedral mesh will result in the negative values of the cotangent
formula, which in turn will cause numerical instability [Wardetzky
et al. 2007]. Because completely eliminating obtuse angles in a tet
mesh is still an open problem [Tournois et al. 2009], we compute
quasi-eigenfunctions on a tetrahedral mesh using a quadratic finite
element formulation, which is an extension of the linear finite el-
ement analysis on triangular mesh [Vallet and Lvy 2008; Reuter
et al. 2009].

Fig. 8: 3D Morse-Smale complex: (a) A regular 3D Morse-Smale
cell (3 pairs of saddles); (b) A general 3D Morse-Smale cell; (c)
Eight neighboring Morse-Smale cells in a 3D Morse-Smale com-
plex.

We use the method in [Gyulassy et al. 2007] to extract the 3D
Morse-Smale complex of a quasi-eigenfunction, and construct a
hex mesh topologically by subdividing the Morse-Smale complex
and geometrically smoothing it by iteratively updating its vertex
positions to the centroid of neighboring hex elements. Unlike a 2D
Morse-Smale complex, a 3D Morse-Smale complex contains two
types of saddles, called 1-saddle and 2-saddle, respectively [Gyu-
lassy et al. 2007] (see Fig. 8). An important point to note is that
3D Morse-Smale complex cells are not necessarily hexahedra (see
Fig. 8(b)). Therefore a small portion of non-hex elements will re-
main in each non-hex MSC cell after subdivision. Hence, in gen-
eral, our method generates a hex-dominant mesh, instead of a pure
hex mesh.
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5. RESULTS

We shall discuss experimental results in this section. To bet-
ter appreciate the effect of the parameter λ on computing
quasi-eigenfunction, we scale all two-dimensional (resp. three-
dimensional) shapes to fit them in the box [−1, 1]2 (resp. [−1, 1]3).
We also scale the density r so that its minimal value is 1. Note that
our method does not restrict the λ to be an eigenvalue. Thus λ can
be adjusted to cater for desired overall density.

5.1 Quadrangular Results

As the first example, we apply our method to computing a quad
mesh of a square with the quad element size following the same
density function as shown in Fig. 1. The quad mesh computed by
our method, shown in (Fig. 9), has a much better singularity dis-
tribution than that produced by the method of [Zhang et al. 2010]
(Fig. 1). Note that the direction field implied by our quad mesh
in Fig. 9 is compatible with the given density field, and it would
be difficult to compute such a direction field beforehand if it were
needed for guiding the computation of the quad mesh as in the pre-
vious method [Zhang et al. 2010].

Fig. 9: SQUARE. Left: QE (λ = −1050, no vibration enhancement) and
its MSC. Middle: The density function; Right: The output quad mesh.

The inset shows quasi-
eigenfunction (λ = −1200,
no vibration enhancement)
and the resulting quad mesh
computed by our method on
the same star-shaped domain
as Fig. 2. In comparison with
the eigenfunctions shown Fig. 2, the Morse-Smale complex of this
quasi-eigenfunction aligns well with the domain boundary.

Fig. 10: BEETLE. Left: QE (λ = −8600) and its MSC. Right: The output
quad mesh.

Fig. 10 shows the QE and its MSC computed by our method on
an open surface with boundary curves. Fig. 11 shows the QE and
its MSC computed by our method on the Spiral model with sharp
feature curves. Fig. 12 demonstrates quad meshes computed by our
method with adaptive element size control.

(a) (b) (c)
Fig. 11: SPIRAL: (a) QE (λ = −3600) and its MSC with feature lines
colored in red; (b) The output quad mesh; (c) The top view of (b).

In the Fandisk model shown in Fig. 13, our method naturally in-
troduces a valence-5 singularity at the meeting point of two feature
curves that intersect at a small angle.

(a) (b) (c)
Fig. 12: FANDISK (top, λ = −2000), JOINT (middle, λ = −2400) and
David (bottom, λ = −4600) with feature lines colored in red: (a) QE and
its MSC; (b) The output quad mesh and the density function; (c) The output
quad mesh and the density function. The color coding of the density function
is shown on the right.

Although a guiding direction field is not needed for feature curve
alignment, it can be integrated into our method to guide mesh ori-
entation in regions away from boundary curves or features. Fol-
lowing the formulation of orientation energy EOrient in [Huang
et al. 2008], we minimize the combined energy E(f) = ELr (f) +
γEOrient(f) subject to Eq. (11). Fig. 14 shows the QE and its asso-
ciated mesh with orientation control (γ = 102), which is clearly an
improvement over the result by the method in [Huang et al. 2008]
(Fig. 14(d)) in terms of boundary conformation. Here the guiding
direction field is only applied to the back part of the CARHOOD
model as shown in Fig. 14(a).
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(a) (b) (c) (d) (e)
Fig. 14: CARHOOD: (a) The quad mesh computed without using a guiding vector field; (b) The quasi-eigenfunction (λ = −1400) computed
with the shown guiding direction field for improving mesh orientation; (c) The Morse-Smale complex from (b); (d) The output quad mesh of
(b); (e) A quad mesh computed with the method in [Huang et al. 2008] for the same surface.

Fig. 13: All sharp edges of the Fandisk are marked as feature curves. On the
left is the quasi-eigenfunction and its MSC (λ = −1900) that we computed.
On the right is the resulting quad mesh and the density field that is defined
by the closed minimal distance of a point to the feature curves.

Fig. 15 shows comparisons between our method and the method
in [Pellenard et al. 2011]. For the uniform-density field on a quad
domain, the quad mesh computed by our method contains no sin-
gularity (Fig. 15(a)), while their method produces unjustified sin-
gular points (Fig. 15(c)). With the same non-uniform density field,
the quad mesh computed by our method has much fewer singular
points (Fig. 15(b)) than that by their method (Fig. 15(d)).

(a) (b) (c) (d)

Fig. 15: Our results (λ = −280 for a and c) contain fewer singularities
than the results (b, d) from [Pellenard et al. 2011].

Tab. I shows the timing data of the preceding experiments on a
computer with an Intel Core i7-3770K CPU@3.50GHz CPU with
16GB RAM. The columns QE, MSC and Mesh show the time (in
seconds) of computing the quasi-eigenfunctions, the Morse-Smale
complexes, and the final quad meshes, respectively. Compared with
cost of scalar field optimization in [Huang et al. 2008]. Because we
need to solve a linear system based on the KKT condition and use
non-linear optimization for vibration enhancement, our method is
slower than the method in [Huang et al. 2008].

Model Vert# QE MSC Mesh
STAR (inset) 16k 2.4, NA 0.06 2.66
BUTTERFLY (Fig. 6 (b)) 15k 1.5, 2.6 0.06 2.35
SQUARE (Fig. 9) 16k 3.0, NA 0.04 2.47
BEETLE (Fig. 10) 119k 56.4, 41.5 0.39 24.6
SPIRAL (Fig. 11) 26k 13.7, 6.6 0.12 3.11
FANDISK (Fig. 12) 13k 6.5, 4.1 0.05 1.17
JOINT (Fig. 12) 50k 31.7, 24.7 0.33 6.42
DAVID (Fig. 12) 84k 13.3, 50.8 0.40 15.3
CARHOOD (Fig. 14) 65k 11.7, 34.0 0.22 6.95

Table I. : Quadrangular remeshing performance statistics (in seconds). The
column of QE indicates the time of solving Eq. (13) for initial value and the
time used for vibration enhancement.

5.2 Robustness

To test the robustness of our method, we apply it to the CARHOOD
model (with λ = −1500) with different density fields, as shown
in Fig. 16. For the moderately varying density field in the first row,
where the element size on the rear of the model is 10 times larger
than that on the front, our method works well. For the more radi-
cally varying density field in the second row, where the element size
on the rear of the model is 30 times larger than that on the front,
our method fails because of the lacking of degree of freedom that
can be provided by the relatively coarse input triangular mesh. In
this case, refining input triangular mesh may alleviate the problem
but that would also increase the condition number of the Laplace
matrix, making the computation numerically unstable. Finally, the
random density field on the third row leads to irregular distribu-
tion of the nodes in the Morse-Smale complex, from which we still
extract a quad mesh robustly.

The global control of element size can be achieved by changing the
value of λ, while fixing the density field. In Fig. 17, we apply dif-
ferent values λ to the sculpture model, with the same non-uniform
density field. Note that, when the desired element size is too large
or too small, the quad meshes extracted from the QEs may contain
elements in bad shape.

Finally, we consider the limit of the complexity of feature curves
that our method can accommodate. As shown by the examples
in (Fig. 18), mesh singularities can be specified explicitly by man-
ually introducing some feature curves (even in a smooth region of
the surface). However, when such features curves get too complex
or cluttered, no reasonable results can be expected because the dis-
cretization of the underlying input triangular mesh has no enough
degree of freedom (DOF) for the quasi-eigenfunctions to meets all
these constraints.
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density −500 −1000 −2000 −3500 −5000 −7000

Fig. 17: Quad meshes of the sculpture model with different values of λ and the same non-uniform density field.

Fig. 16: From left to right: density fields, quasi-eigenfunctions, and quad
meshes. The elements on the rear of the model are 10 and 30 times larger
than those on the front for the two density fields in the first and second rows,
respectively. In the third row, the quad mesh is generated with a random
density field with r ∈ [1, 5].

Fig. 18: By manually specifying feature lines (in red), one can control the
locations of some singular points explicitly (middle left, middle right). But
when feature curves get too complex, no reasonable results can be produced
due to the lack of DOF of the underlying input triangulation (the right most
picture).

5.3 Results on Hex-dominant Meshing

We now present some preliminary results of applying our spectral
method to computing hex-dominant meshes of 3D volumes, with
two examples shown in Fig. 19 and Fig. 20, respectively. For com-
parison, the meshing results by the octree method [Hexotic 2010]
and the results by the advancing front method [Geompack++ 2010]
are shown as well. Our method outperforms the other two methods
in mesh quality in both examples. Here, the non-hex elements are
shown in red for visualization. Our method can also process objects
with genus larger than 0, as shown in Fig. 21. In all these examples,
no sharp feature corner/lines are labeled a priori in the input tetra-
hedral mesh to assist hex mesh generation. These demonstrate the
potential of our spectral method in automatic hex meshing.

The major limitation of our spectral method for hex meshing is
its high computational cost. The timing data for the three models
are shown in Tab. II. The main cause for this inefficiency is that
the linear system obtained from Eq. (13) based on the quadratic
FEM formulation is much denser and larger than the linear sys-
tem constructed with the cotangent formulation [Wang et al. 2003].
We used a 12-core 2.8GHz Intel server with 128GB RAM to solve
these linear systems. Further research is needed to make the method
more efficient to be practical for hex meshing.

Model Vert# QE MSC Mesh

TET 12k 21 0.4 0.1
TWISTED-CUBE 10k 15 0.3 0.1
DOUBLE-STAR 40k 179 1.2 0.8

Table II. : Timing data for hexahedral meshing (in minutes).

6. CONCLUSIONS

We have introduced a set of novel boundary conditions to ensure
boundary conformation in the spectral approach to surface quad-
rangulation. Our boundary conditions eliminate the requirement of
a guiding direction field, and thus provides more flexibility in de-
signing mesh density functions to effective better element size con-
trol. Experiments showed that the quad meshes computed by our
method capture domain boundaries and feature curves accurately
and follow the given density field closely. Preliminary results are
presented on extending our method to hex meshing.
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(a) (b) (c) (d) (e) (f)
Fig. 21: DOUBLE-STAR: (a) QE (λ = −450); (b) Interior view of the QE; (c) The Morse-Smale complex; (d) Boundary mesh; (e) Interior
mesh; (f) Non-hex elements.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 19: TET: (a) QE (λ = −94) with its MSC; (b) Interior view of the
QE; (c) Boundary mesh; (d) Interior mesh; (e)-(f): The results by the octree
method; and, (g)-(i): The results by the advancing front method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 20: TWISTED-CUBE: (a) QE (λ = −140); (b) Interior view of the
QE; (c) The Morse-Smale complex; (d) Boundary mesh; (e) Interior mesh-
ing; (f)-(g): The results by the octree method; and, (h)-(j): The he results by
the advancing front method.

A major limitation of our method is its lack of explicit control of
mesh singularities, which are implicitly determined by the quasi-
eigenfunction. To properly capture the critical points in the quasi-
eigenfunction, the element size of the input triangular mesh has to
be smaller than the expected quad element size. This leads to the
need for a highly refined input triangular mesh when a fine quad
mesh is to be computed or there are a set of complex feature curves
to accommodate. This is also the main cause of inefficiency when
applying our method to hex meshing of 3D volumes. Future work

is needed to improve this efficiency issue so the method can be used
to compute quadrangulations of highly complex surface models and
become practical for hexahedral meshing of 3D volumes.
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