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Polycube maps of triangle meshes have proved useful in a wide range of
applications including texture mapping and hexahedral mesh generation.
However, constructing either fully automatically or with limited user con-
trol a low-distortion polycube from a detailed surface remains challenging
in practice. We propose a variational method for deforming an input trian-
gle mesh into a polycube shape through minimization of the `1-norm of the
mesh normals, regularized via an as-rigid-as-possible volumetric distortion
energy. Unlike previous work, our approach makes no assumption on the
orientation, or on the presence of features in the input model. User-guided
control over the resulting polycube map is also offered to increase design
flexibility. We demonstrate the robustness, efficiency and controllability of
our method on a variety of examples, and explore applications in hexahedral
remeshing and quadrangulation.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Curve, surface, solid, and object
representations

Additional Key Words and Phrases: Polycube map generation, `1 optimiza-
tion, sparse normal field

1. INTRODUCTION

Polycube maps were first introduced by [Tarini et al. 2004] for tex-
ture mapping purposes. Ever since, it has found applications in
a broad range of areas, including parameterization [Yao and Lee
2008; Garcia et al. 2013], reconstruction [Wang et al. 2008], and
remeshing [Gregson et al. 2011]. While early approaches required
manually-provided topological structures [Tarini et al. 2004], a
few automatic polycube construction methods have recently ap-
peared [Lin et al. 2008; Gregson et al. 2011]. However, they often
make restrictive assumptions on the initial orientation of the mod-
els, rely on prior analysis of the features, or offer no intuitive and
effective control for the user. In contrast, we offer in this paper a
systematic formulation for the automatic or user-guided construc-
tion of polycubes from arbitrary input meshes.

A simple geometric characterization of an axis aligned polycube
is that the normal of each of its faces is aligned with one of the axes
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of an orthonormal coordinate frame. This means that the `1-norm
of every `2-unit normal vector on its boundary is 1—the minimum
among all unit vectors. This key property will allow us to formulate
the construction of a polycube as a global minimization. Moreover,
we seek low distortion between the input 3D shape and the result-
ing polycube. We will therefore not only rely on the input triangle
mesh deformation, but also on the deformation of an interior tetra-
hedralization of the input mesh [Tarini et al. 2004; Gregson et al.
2011] to introduce as little distortion as possible in the polycube
map between the two volumes. Consequently, and unlike traditional
`1 methods based on convex optimization with linear constraints,
we minimize the `1-norm of a nonlinear function (surface normals)
while enforcing that the resulting polycube corresponds to a small
volumetric deformation of the input shape. In order to efficiently
solve this variational formulation, we use a smooth approximation
to the `1 norm and minimize the global penalty function by a Se-
quential Quadratic Programming (SQP) based method. This opti-
mization framework also facilitates the inclusion of various con-
trols over the properties of the output, such as distortion, feature
preservation, and level of detail.

1.1 Related Work

Polycube maps are relevant to a number of applications, such
as cross-parameterization, quadrangulation, and hexahedralization.
Since we focus on the automatic and controllable generation of
polycube maps, we only discuss the most relevant topics next.

While early polycube map generations heavily relied on human
interaction [Tarini et al. 2004; Yao and Lee 2008], recent work
such as [Lin et al. 2008] proposed an automated approach to poly-
cube creation through segmentation and fitting of box primitives.
Its failure to robustly handle complex models prompted Gregson
et al. [2011] to introduce a deformation minimization to derive
the polycube shape. However, the resulting polycube topology was
mostly determined as a preprocessing step through an initial axis
alignment of the boundary normals; this heavy dependence of re-
sults on the initial orientation limits its ability to deal with complex
shapes, and provides only limited room for user interaction.

Hexahedral and quadrilateral remeshing is arguably the most
common applications of polycube maps. In recent years, var-
ious methods have achieved success in providing high qual-
ity controllable quadrangulation from polycubes, even extracting
rather coarse quad structure by heuristic quadrilateral simplifica-
tion [Myles et al. 2010; Tarini et al. 2011] or greedy dual loop se-
lection [Campen et al. 2012]. Unlike quadrangulation, hexahedral
remeshing remains challenging. Although the 3D counterpart of a
surface cross-frame field has been proposed in, e.g., [Huang et al.
2011], recent progress [Li et al. 2012] shows how non-trivial it is
to extend 2D techniques to hexahedral meshing because of the lack
of theoretical guarantees on the global topological structure. While
a full-blown approach to hexahedral meshing is beyond the scope
of this paper, we will demonstrate that applying our polycube map
generation approach to this case offers simplicity, robustness and
versatility—even if the use of a polycube approximation restricts
the topology of the resulting mesh.
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Typical `1 norm problems aim at reconstructing sparse signals
from a large amount of measurement. It has recently been applied
to feature preserving point cloud smoothing [Avron et al. 2010],
where the basic idea was to leverage the sparse nature of the nor-
mal field of sharp features. Our formulation of the necessary condi-
tion for polycube also utilizes the sparsity property of the `1 norm,
albeit in a very different geometric context. Because the `1 norm
of the normal is non-linear in the node position, we adopt existing
numerical techniques [El-Attar et al. 1979; Andersen 1996] to turn
our `1 minimization into a smooth optimization problem.

1.2 Overview and Notations

Our approach requires a closed input surface mesh S of arbitrary
topology and number of components. We first convert this surface
mesh (using, e.g., [Schöberl 1997]) into a tetrahedral mesh {T, X̄},
where T = {ti} is its set of tetrahedra, and X̄ = {x̄i} is its set of
node coordinates. The output of our approach is a deformed tetra-
hedral mesh (possibly with a coarser connectivity) such that the
normal of each element of its set B = {bi} of boundary trian-
gles is axis-aligned for an arbitrary orthonormal coordinate sys-
tem, i.e., a polycube. This output mesh will be found through the
constrained minimization of an energy containing terms to enforce
axis-alignment of the normal field (described in Section 2) and
terms to regularize and control the resulting variational formula-
tion (described in Section 3). A robust and efficient numerical ap-
proach to solve this constrained minimization is also introduced
(Section 4), and a series of results and applications on challenging
models is provided (Section 5).

2. `1 FORMULATION OF POLYCUBES

We introduce a formulation of an `1-based energy that will serve as
our core component to deform an arbitrary tetrahedral mesh into a
polycube-shaped mesh.

2.1 Rationale

For a triangle with `2-unit normal n, one can define a simple mea-
sure of its deviation from being axis-aligned using the `1-norm
‖n‖1 = |nx| + |ny| + |nz|, through ‖n‖1 − 1. These positive
deviations over a given surface made out of triangles {bi} can then
be integrated to evaluate how far its shape is from being a polycube,
resulting in an energy d of the form:

d({T, X̄}) =
∑
bi

A(bi,X)‖n(bi,X)‖1 −
∑
bi

A(bi,X), (1)

where A(bi,X) stands for the area of bi with the given node po-
sition set X . This energy, which is a function of the node posi-
tions of the triangles, reaches its zero minimum for a polycube;
however its minimization induces spurious shrinking as collaps-
ing all nodes to a point also minimizes this energy. If one replaces
all area weighting with the initial areas based on X̄ , or even re-
moves all area weighting, numerical issues appear as convergence
is significantly slowed down and impaired by triangles becoming
nearly degenerate. Dividing the above energy by the current to-
tal area

∑
bi
A(bi,X) would partially alleviate these issues, but

would also increase its non-linearity, and the resulting dense Hes-
sian matrix makes this alternative energy not amenable to efficient
minimization. Finally, one could remedy this issue by rescaling the
result at each minimization step; but this procedure leads to very
slow convergence.

To render our `1 formulation well-behaved, yet numerically
tractable and efficient, we turn this unconstrained minimization

into a constrained minimization: using the `1-norm of the area-
weighted normal field and an additional equality constraint to en-
force a constant area, we formulate our polycube construction prob-
lem as

argminX E1(X) subject to C(X) = 0,

where E1(X) =
∑
bi

A(bi,X)‖n(bi,X)‖1

and C(X) =
∑
bi

A(bi,X)−
∑
bi

A(bi, X̄).

(2)

With this formulation, E1 becomes just the `1-norm of a quadratic
function of X with a sparse Hessian, while area shrinkage is pre-
vented by the area constraint C(X).

2.2 Global Orientation

As the orientation of the input is considered arbitrary, we must also
find the optimal orthonormal coordinate frame to which to align the
resulting polycube. Using bounding boxes or principal component
analysis (PCA) to pre-align the input mesh as proposed in previous
methods is far from optimal on complex inputs. One may also use
an `2-norm based PCA on the image of the Gauss map rather than
on the geometry to improve alignment; however, this approach is
unsatisfactory: it is easy to show that even in 2D, such a PCA based
method cannot axis-align the two orthogonal edges of a simple right
triangle. We instead add a global rotation to our minimization in
order to find the best orientation. We simply compute an optimal
global rotation matrix R satisfying

argminR

∑
bi
A(bi,X)‖Rn(bi,X)‖1∑

bi
A(bi,X)

+ ‖RTR− I‖22. (3)

This objective function contains an `1-norm as well, but its low
dimensionality (R is a 3×3 matrix) makes it easy to optimize. The
mesh is then rotated by the closest rotation matrix to R (through
polar decomposition [Irving et al. 2004]) before each step of our
constrained minimization of E1. While the benefit of applying a
global rotation decreases as the result gets closer to a polycube, we
apply it at each step of our minimization since it only introduces
marginal overhead.

2.3 Smooth Approximation of `1 Norm

Various numerical methods have been proposed to solve `1-norm
problems. Most of them aim at finding a sparse solution to an un-
derdetermined system of linear equations, which turns out to be a
convex optimization problem. Our case is rather different, as we
are using the `1 norm of the boundary normals of our mesh with
quadratic constraints. To deal with this case, one can use, for in-
stance, interior point methods [Luksan et al. 2007; Schittkowski
2008; Gould et al. 2003]. For simplicity, we instead employ a
smooth approximation of the `1-norm introduced in [El-Attar et al.
1979] (hyperboloid approximation [Andersen 1996]).

Given a component c ∈ [−1, 1] of the normalized normal,
we simply replace the absolute value |c| by

√
c2 + ε := c̃

0
0.1
0.5
0.8

ε

where ε ≥ 0 is a regularizing parameter to bal-
ance smoothness and accuracy. The inset plot
compares a few different values of ε: small
values better capture the rapid change of slope
near zero at the risk of instability during opti-
mization, while large values produce smoother transitions, but also
slow down convergence. As proposed in [El-Attar et al. 1979], we

ACM Transactions on Graphics, Vol. 33, No. 4, Article XXX, Publication date: Month 2014.



• 3

Fig. 1. Through our `1 minimization of the boundary normal field of the tetrahedral mesh of a shape, a low-distortion polycube shape emerges automatically.
The user can easily control the complexity of the resulting polycube structure (two polycube maps are shown for each input). The resulting polycube map
facilitates a series of geometry processing tasks such as texturing or remeshing of the input model. (Models “dancing children” c©IMATI-GE, “bulldog”
c©VCG-ISTI, “dragon” c©Stanford 3D Scanning Repository.)

start from a relative large ε and decrease it gradually throughout
our minimization procedure. (Another common alternative is to use
Huber’s M-estimator function [Huber 1981; Pinar and Hartmann
2006]; it led to slightly slower convergence in our experiments.)
Note that this smoothed version is numerically preferable to a naive
optimization which would “snap” boundary normals to their closest
axes at each iteration: while the latter creates jittering and instabil-
ity during optimization, our approach still captures the `1 nature of
the problem while offering a smooth energy landscape.

The gradient (with respect to node positions) of this approximate
absolute value is expressed as a function of the original component:

∇c̃ =
c

c̃
∇c. (4)

The Hessian∇2c̃ consists of two terms:
ε

c̃3
∇c∇cT +

c

c̃
∇2c. (5)

Note that the second term is not necessarily semi-positive-definite;
we thus approximate it by the closest SPD Hessian matrix to in-
crease numerical stability, which can be evaluated by clamping the
eigenvalues of ∇2c̃ to non-negative values. This mixed gradient-
Hessian approximation provides an accurate gradient evaluation
and an efficient symmetric semi-positive-definite Hessian approx-
imation of our `1-based energy, two key ingredients for the Se-
quential Quadratic Programming (SQP) solver we will describe in
Section 4.

3. REGULARIZATION AND CONTROLS

So far, we have only provided an energy whose minimization guar-
antees that the input shape turns into a polycube. We now need to
add volumetric regularization and optional user-guided controls to
single out the desired polycube shape from the large set of station-
ary points of Eq. (2).

3.1 Low-distortion Polycubes through Regularization

It is desirable for a polycube map to be of low distortion, i.e., the
deformation from the input shape to its polycube approximation
should be as small as possible. This constraint is in general not just
a statement about surface deformation, but also about volume de-
formation. While the polycube energy relied only on the boundary
triangles of the shape thus far, we now measure distortion using
the entire volumetric tetrahedral mesh {T,X} as in [Gregson et al.

2011]. We adopt the “as-rigid-as-possible” (ARAP) distortion mea-
surement [Alexa et al. 2000]: for each tet ti, we measure:

δ(ti,X) =
1

2
‖GiX − polar(GiX)‖2F , (6)

whereGi is the operator which, applied toX , returns the 3×3 gradi-
ent matrix for the current shape of ti with respect to the undeformed
shape X̄ , polar(.) returns the closest rotation matrix through polar
decomposition [Irving et al. 2004], and ‖·‖F denotes the Frobenius
norm. As often done in the literature, we approximate the gradient
and Hessian of the distortion by GTi GiX − GTi polar(GiX) and
GTi Gi respectively.

The normalized total distortion energy is then defined as the in-
tegral of these tet-based distortion measurements over the input
shape:

Eδ(X) =

∑
ti
V(ti, X̄)δ(ti,X)∑
ti
V(ti, X̄)

, (7)

where V(ti, X̄) stands for the volume of the element ti for the orig-
inal node positions X̄ . This energy is added to the `1-based poly-
cube energy in order to regularize it and penalize any large dis-
tortion, ensuring that our resulting polycube has only limited vol-
umetric deformation. Note that for applications of polycube maps
where volumetric distortion is of little inconvenience (such as quad-
rangulation and parameterization), one can replace this volumetric
definition by a surface distortion penalty instead (see Section 5.3).

3.2 Incorporating User-guided Controls

Combining the `1-based energy E1 and the distortion penalty Eδ
provides a variational formulation for the construction of polycube
maps. However, user control is desirable as well: one often needs
added flexibility in the design of polycube through intuitive editing
of the results. Our energy-based formulation allows the addition of
user-guided penalty terms to offer design control.

Controlling Shape Complexity. One typical design need is
to control the amount of detail preservation in different regions of
the polycube: one often wishes to locally allow for slightly larger
distortion if this greatly simplifies the polycube shape (see Fig. 1).
Our `1 energy is, however, blind to the number of stairs in the final
polycube. We thus need to incorporate an additional term to control
the final shape complexity. A simple idea is to define a measure η of
polycube complexity by summing the normal differences between
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all adjacent boundary triangle pairs (bi, bj) through:

η(bi, bj ,X) = βA(eij ,X) ‖n(bi,X)− n(bj ,X)‖22 , (8)

where A(eij ,X) is a local area associated to edge eij between bi
and bj , and β is a scalar indicating the strength of this penalty.
Because the normalized normal is numerically unstable for de-
generate triangles, we define A(eij ,X) = γij(X)A(bi,X) +
γji(X)A(bj ,X) to reduce the contribution of the above measure-
ment around nearly degenerated triangles:

γij(X) =
A(bj ,X)∑

bk∈N (bi)
A(bk,X)

, (9)

where N (bi) is the three neighboring triangles of bi. As shown in
the inset, the weights {γij} split the area of a triangle into three
parts, each being proportional to the area of the adjacent triangle.

bi

bj

bk

γij

Thus A(eij ,X) will be close to zero if its
adjacent triangle is degenerate, while keeping
the sum of all edge areas equal to the total
boundary area. Note that we can safely dis-
card the derivative ofA(eij ,X) for simplicity
as triangle areas change smoothly during the
optimization. The complexity penalty Eη(X)
is finally expressed as

Eη(X) =
∑

bi,bjadjacent

η(bi, bj ,X) /
∑
bk

A(bk, X̄), (10)

where we normalized the edge-weighted normal differences by the
input boundary area. We apply the same numerical treatment as the
one used in the `1 energy to get a semi-positive-definite Hessian
approximation. Finally, we add the inequality constraints

D(X) = n(bi,X)·n(bj ,X) + 1 > 0, (11)

to prevent the spurious case of adjacent normals becoming opposite
(i.e., the creation of foldovers) through a log barrier method within
our SQP interior point solver. As a result, our complexity penalty
and constraints offer a reliable means to control the complexity of
our resulting polycube maps (see Fig. 17).

Fig. 2. The user can optionally select regions (red) to guide polycube
edges, thereby controlling the details of the resulting polycube map more
accurately (left: ω=0, right: ω=103). (Model “anc101” c©INRIA.)

Controlling Flat Regions and Sharp Edges. The user may
sometimes want to guide the placement of the polycube edges: hav-
ing polycube edges at specific sharp features may be particularly
convenient for, e.g., texture packing; conversely, flat or nearly flat
regions may be better placed on faces of the polycube. We therefore
add a final energyEe(X), in which user-defined edges between tri-
angles bi and bj (selected either via mouse interaction or automatic

edge extraction) that are desirable to have as part of the edge skele-
ton of the final polycube are penalized via an `2-based energy of
the form:

ω[n(bi,X)·n(bj ,X)]2. (12)

where ω is a scalar value indicating how forcefully the user needs
this edge to be at a right dihedral angle in the resulting polycube.
Similarly, user-selected edges that should end up being flat in the
polycube are handled by adding instead an `2-based energy of the
form:

ω[(n(bi,X)·n(bj ,X)− 1]2, (13)

The final edge-feature control energy Ee(X) is simply the sum of
all these edge-based optional terms. This treatment of edges allows
for a very intuitive editing of the polycube, should the current re-
sult not suit the user (see Fig. 2 comparing two values of ω over a
chosen region of the input; note that we did not use this term for
any other result shown in this paper).

4. NUMERICS AND EXTRACTION

We now describe how we numerically solve the resulting con-
strained minimization of the total energy obtained by simply sum-
ming the four aforementioned energies:

argmin
X

αE1(X) +Eδ(X) +Eη(X) +Ee(X)

s.t. C(X) = 0, and D(X) > 0,
(14)

where E1, Eδ , Eη , and Ee are the energies derived from respec-
tively the `1-based polycube constraint, and the `2-based regular-
ization, complexity, and edge-feature penalties. C(X) is the total
area constraint (Eq. (2)), and D(X) is the anti-foldover constraints
(described in Eq. (11)) implemented via a log barrier. The weight
α is automatically adjusted based on a scheduled strategy as ex-
plained below.

Basic Optimization Procedure. Directly applying Lagrange-
Newton method to solve the above problem involves the Hessian
of the constraint C(X), which may not be semi-positive-definite.
We thus use a modified Lagrange-Newton method that simply dis-
cards the Hessian of the constraints. Moreover, we adopt the Gauss-
Newton scheme to approximate the gradients and Hessians of the
`2-based energies. In each iteration, we compute the increment ∆X
of X by solving the linear system:(

H(X) ∇C(X)
∇C(X)T 0

)(
∆X
λ

)
=

(
−g(X)
−C(X)

)
(15)

where g(X) andH(X) denote the approximated gradient and Hes-
sian of the total energy. The matrix above is positive semi-definite
by design, but the gradient of the constraint∇C is still rather dense
for boundary nodes. We therefore efficiently solve this linear sys-
tem using the Schur complement method [Benzi et al. 2005] by
sequentially evaluating:

λ =
−∇C(X)TH(X)−1g(X) + C(X)

∇C(X)TH(X)−1∇C(X)

∆X = −H(X)−1g(X)− λH(X)−1∇C(X).

(16)

Multiplication by the inverse of H(X) is computed via Cholesky
factorization ofH [Chen et al. 2008] followed by back-substitution.
During the optimization, if the energy cannot further decrease be-
cause of the log barrier penalty (i.e., if we detect a large gradi-
ent, but are required to take a small step to avoid foldovers), we
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collapse slim boundary triangles (simultaneously on both the input
mesh and the current deformed one) that contain angles less than
5◦ before resuming the optimization. This treatment safely and ef-
ficiently avoids numerical slowdowns due to near degenerate trian-
gles.

Robust Weighting Schedule. Obviously, boundary triangle
normals will become axis-aligned only if a large weight α for the
`1-norm term is used. However, starting with such a large weight
basically removes the effect of our regularization, and thus often
leads to the minimization procedure getting quickly trapped in a
local minimum. Thus, we introduce a simple and robust weight-
ing schedule. We begin by solving the constrained minimization
(Eq. (14)) with α = 0.1, ε = 1. We assume convergence of the
minimization procedure when the polycube error d({T, X̄}) pro-
vided in Eq. (1) stops decreasing for five consecutive iterations:
more precisely, if the initial polycube error of the current mini-
mization procedure is d0, we track the progress of the i-th solve of
Eq. (15) during the minimization by computing its current polycube
error di and by recording the change of error ∆di = |di − di−1|;
convergence is declared if the sum of the error changes over the last
five iterations is smaller than d0/100 (i.e., no real progress is being
made), or if the SQP converges. We then double the value of α, de-
crease ε by a half if it is larger than 0.01, and start a new constrained
minimization procedure, initialized with the current solution, and
run to convergence. In our experiments, the final polycube error
d({T, X̄}) often does not decrease significantly after 20 iterations;
additionally, we can robustly extract a polycube as soon as the (nor-
malized) error is smaller than 0.001. Thus we repeat this doubling
of α at most 20 times or until the error is smaller than 0.001. Fig. 3
shows the typical evolution of error in our solver, where each dou-
bling of α and decrease of ε kicks in when the error bottoms out.
Notice the monotonically-decreasing behavior of the energies in-
volved in our optimization. We tried various other schedules as
shown in Fig. 4: starting from very large α = 10, small ε = 0.1 and
using fast updates (multiply and divide by 4 respectively) gets the
results stuck in local minima and leads to highly distorted shapes,
while beginning with very small α = 0.001, large ε = 10 or us-
ing slow updates (multiply and divide by

√
2 respectively) makes

the convergence slow. Our choice achieves a good balance between
quality and performance, and works well for all the results shown
in the paper as we will further demonstrate in Section 5.

(a) 3/46/0.150 (b) 9/88/0.0819 (c) 31/226/0.0789

Fig. 4. Results for angel model with different schedules: (a) large α and
small ε with large updates, (b) our preferred schedule, (c) small α and
initial ε. Bottom row indicates the number of α & ε updates/number of
solves/final Eδ . Schedule (b) offers a good balance between efficiency and
quality. (Model “angel” c©INRIA.)

4.1 Polycube Cleanup

Once the polycube optimization is complete, we label surface tri-
angles by patches according to their closest axis of surface normal
(i.e., based on the largest component of the normal) as proposed
in [Gregson et al. 2011]. We then “straighten” the chart border by
relabeling triangles along the border to remove potential zigzags;

e.g., if a surface triangle is labeled x, but has three neighbors la-
beled x, y, and y, we relabel it as y. We then build the incidence
graph of patches to detect topological degeneracies. If we find a
patch of degree one (i.e., an isolated patch), we relabel its triangles
with the surrounding patch type. If a patch is of degree two (i.e., a
wedge patch), we relabel its triangles to the type of the neighboring
patch that shares the longest boundary with it. Degree-three patches
can also be cleaned up; but in practice, we found that iteratively re-
moving degree-one and -two patches avoids degree-three patches
altogether. Fig. 5 shows this procedure on the elephant model. This
topological cleanup suffices in all the cases we tried. Once label-
ing and cleanup is complete, the boundary tetrahedral mesh has a
proper polycube topological structure. We note here that the other
cleanup rules proposed in [Gregson et al. 2011] (multi-orientation
splitting and geometry wedge removal) were never necessary in all
our tests due to the quality of our results, even for very complex
and high genus models as in Fig. 6.

If the interior polycube map is required, we then run a final min-
imization using only Eδ to deform the original tetrahedral mesh
based on the final labeling of normal directions for robustness.
Given the input model M (potentially coarsened during optimiza-
tion), we deform it under the linear constraints on its boundary ∂M
that the nodes in a same patch share the same coordinate in the
normal direction. To further improve the robustness, we solve the
following linearly constrained quadratic optimization to relax the
node position according to its valence, and then use it as the initial
value for the minimization of the ARAP-based Eδ:

1

|∂M |
∑
i∈∂M

∥∥∥∥∥xi −
∑
j∈N (i)∩∂M xj

|N (i) ∩ ∂M |

∥∥∥∥∥
2

2

+
1

|M\∂M |
∑
i/∈∂M

∥∥∥∥∥xi −
∑
j∈N (i) xj

|N (i)|

∥∥∥∥∥
2

2

, (17)

whereN (i) is the node indices of the one-ring neighborhood of the
node i. This helps improve the smoothness of the interior polycube
map at very low computational cost, since this constrained opti-
mization is easily turned into an unconstrained one through variable
substitution.

Fig. 5. While the polycube found through optimization may contain a few
spurious topological degeneracies (left), a straightforward cleanup of the
adjacency graph between resulting polycube faces reliably removes these
issues. Here we stopped the solve after 6 α-doubling steps to get a clear
degeneracy (left). The final polycube with correct topology is obtained after
cleanup (right). (Model “Livingstone elephant” c©INRIA.)
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0 7 14 22 33 44 55 66 75 82

Fig. 3. Optimization of the “buste” model. Starting with an initial polycube quality of 0.483632, the optimization stops after 89 iterations and a total of 9
doubling steps of α (each doubling is indicated by a vertical grey line). The shapes show the results after the 3th, 5th, 9th change of α. For legibility, we
linearly stretched the values (red for E1 , blue for Eδ and black for the polycube error defined in Equation (1)) of the plot to map between 0 and 1. (Model
“buste” c©Utrecht Uninversity.)

Fig. 6. Even for input models with very sharp edges (left; notice the circled
wedges with large dihedral angle), our `1-based optimization successfully
returns high quality polycubes. (Models “cognit, nastychees” c©INRIA.)

5. RESULTS AND APPLICATIONS

We now present the results of our method for a variety of input
meshes ranging from natural shapes to computer-aided design mod-
els. We also demonstrate the benefits of our polycube construction
on two important applications: hexahedral remeshing, and surface
quadrangulation.

Fig. 7 shows visualizations of distortion through volumetric ren-
dering. As expected, the most distorted regions (red) are located
near the surface, especially near the polycube edges and corners; in-
ternal elements are smoothly deformed with low distortion (blue).
Another key insight on the behavior of our method can be seen
from a typical convergence plot as in Fig. 3: one can see the `1-
based energy E1 (in red) steadily decreasing throughout the opti-
mization, while the ARAP distortionEδ (in blue) progressively and
smoothly increases. We also point out that that `1-based polycube
error defined in Eq. (1) (in black) provides a very reliable way to
decide when to double α as its graph behavior is quite monotonous
(we tried several other measurements which, because of the non-
linearity of our energies, turned out to be unreliable). In Fig. 8 we

Fig. 7. Our polycube maps have low distortion throughout the volume
as evidenced by a volumetric rendering of the as-rigid-as-possible distor-
tion (Eq. (6)) of each tetrahedron. (Models “rockerArm” c©INRIA, “kitten”
c©Frank ter Haar.)

map the x, y, z components of boundary triangle normals to r, g, b
color channels respectively, and highlighted the boundary edges
between adjacent triangles with different orientations. As the op-
timization goes, the normal smoothly changes and the topological
complexity (depicted by the highlighted edges) reduces. Besides vi-
sual inspection, the quality of a polycube map can be also measured
by the ARAP distortion energy [Alexa et al. 2000] of the tetra-
hedron elements inside the polycube shape. We provide statistics
about the quality and performance of a series of models in Tab. II.
Timing was measured on a computer with Intel Core i7-3770 pro-
cessor and 16GB memory. Even if the minimization does not fully
converge in 20 α-doubling steps (e.g., for the anc101 model in
Fig. 2), the final polycube structure can be easily extracted from
the resulting shape.

5.1 Controllability

We also tested our complexity control on different models to
evaluate how intuitive the complexity parameter β is. Each of
our energies being normalized, this parameter is quite easy to
tune to get the right amount of details: Fig. 2 and Fig. 8
show two typical effects of tuning β on large input meshes.
If small and localized details remain (see Sec-
tion 3.2), the user can paint-brush edge con-
straints to simplify the result further, giving the
user efficient control on the final polycube (see
the inset which further simplifies the polycube
shown in Fig. 1). Note that, except for this il-
lustrative example and Fig 2, no results shown
in the paper were manually modified after the
topological cleanup stage.
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Fig. 8. Our method progressively deforms a model via constrained opti-
mization into a polycube shape. The smoothed formulation of the `1 norm
of the boundary normals makes the final, optimal face orientation emerge
from our distortion minimization. Various controls can be applied, e.g.,
detail preservation (top β = 2, bottom β = 200): as the optimization
proceeds, our penalty of adjacent normal differences removes small stairs
(compare top and bottom results) and the shape converges towards a simpler
final polycube.(Model “bumpy torus” c©Max Planck Institute for Computer
Science.)

5.2 Hexahedral Remeshing

Since our approach offers a robust polycube construction from ar-
bitrary surface meshes or volume meshes, we can further modify
it to remesh a domain with hexahedral elements only. Hexahedral
remeshing only imposes one additional requirement over a poly-
cube map: the coordinates of the corners should be integers so that
we can easily extract hexahedra from its volume. Consequently, we
modify the last step of our polycube generation procedure by ap-
plying an integer snapping to meet this requirement: in order to
guarantee no degeneracy, we sort the patches that are orthogonal
to each axis direction, and snap their position to an integer one by
one.

Visual and numerical evaluations of our hexahedral remeshing
results can be found in Fig. 14, Fig. 15, Fig. 17 and Tab. II (we use
scaled Jacobian to measure the quality of the hexahedral elements,
and Hausdorff distance to measure how close the mesh is to the
original shape).

5.3 Surface Quadrangulation

As mentioned in Section 3, replacing the interior distortion reg-
ularization by a surface distortion measurement suffices to ob-
tain a polycube map relevant for quadrangulation—see Fig. 9.
We adopt the ARAP-based distortion measurement [Botsch et al.
2006] in the following results. In fact, the topological struc-
ture of the resulting polycubes can be made even simpler with-
out inducing large distortion, and of course, more efficiently. As
a result, after carefully grouping the integer variables without
introducing degenerated quad patches,
our method is able to produce high qual-
ity quadrangulations (see Tab. I), be they
fine or very coarse. Note that our method
can also be applied to locate cone sin-
gularities in multiples of π/2 with dis-
tortion control. Finally, as shown in the
inset, our method can even be directly
applied for models with open boundary
with an additional `1 norm on boundary
edges. (Model “venus” c©INRIA.)

Table I. Quadrilateral mesh quality
model #quad #corner Scaled Jac. Hausdorff
fandisk 724 38 0.239/0.620/0.999 3.82

elk 6654 68 0.292/0.646/0.999 2.33
casting 8074 144 0.128/0.564/0.999 1.99

rockerArm 8836 57 0.419/0.710/0.999 1.58
kitten 2284 20 0.464/0.732/0.999 2.92

venus-hole 2610 8 0.526/0.763/0.999 0.512

Quadrilateral mesh quality using our polycube maps (the Hausdorff dis-
tance (.10-3) is normalized by the bounding-box diagonal span of the initial
model for comparison purposes).

Fig. 9. Coarse quadrilateral domain (highlighted by the red lines) of input
meshes can be generated by applying our method without volumetric distor-
tion penalty. (Models “fandisk, elk” c©Max Planck Institute for Computer
Science , “casting” c©INRIA.)

5.4 Comparisons

Very few methods are offering a fully automatic or user controlled
polycube generation. We compare our approach to these state-of-
the-art techniques, both in terms of raw quality and in terms of
controllability.

Slicing. A first automatic approach by He et al. [2009] slices
the input object into layers in the gradient direction of a harmonic
function in order to find its associated polycube. As the harmonic
function is constructed from a pair of bottom-most and top-most
points on the mesh, the initial orientation of the input is crucial
to the quality of the output (see Fig. 11). In each slice, the model
is approximated by a quad-tree, which tends to make the resulting
polycube an overly voxelized version of the input model depend-
ing on the user-defined number of slices: large separations between
slices introduce large distortion, while small ones lead to staircase
effects as illustrated in Fig. 10. In contrast, our approach captures
the symmetries of the input, even without any user input. Fig. 11
further illustrates the artifacts of the slicing approach (dependence
on initial orientation and slice distances), compared to our tech-
nique which automatically orientates the model and controls the
details of the output polycube shape based on the induced distor-
tion. While our method can be notably slower (up to a factor eight
in our tests), it achieves significantly better results in reasonable
time: for a sphere model with 10k triangles, it took 0.1 and 0.5
minutes respectively for [He et al. 2009]’s method to construct the
two polycubes in Fig. 10; our method took 1.3 minutes (59 itera-
tions). For the RockerArm model in Fig. 11 (24k triangles), it took
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0.5 and 1.0 minutes for [He et al. 2009]’s method, while it took 6
minutes (86 iterations) for ours (displayed on Fig. 17) .

Fig. 10. Sphere model: left and middle are polycubes with different dis-
tances between slices using [He et al. 2009]; right is our result.

Fig. 11. Rocker arm: using [He et al. 2009], the number of slices depends
heavily on orientation of the input model, and details cannot be locally cap-
tured (red circle). Instead, our method is orientation independent, and detail
control is enforced as a by-product of distortion minimization, leading to
better global structures (see Fig. 17 for comparison).

Normal Snapping. The method proposed by Gregson et.
al [2011] starts with a model with a prescribed orientation. Their
method iteratively snaps the surface normal to an axis direction
based on a volumetric deformation gradient. Here again, our ap-
proach fares better due to its input orientation independence: as
shown in Fig. 12, starting from two different orientations, our
method leads to the same polycube topological structure, while
their technique fails to do so. Moreover, their process does not go
all the way to normals aligned with the axes: as the mesh is de-
formed by integrating a deformation gradient, the final shape is far
from being polycube, which requires significant cleanup to remove
topological issues (Fig. 13). Finally, our method achieves better
quality in the output hexahedral mesh due to our distortion-based
strategy for boundary normal adjustment (see Fig. 14, Fig. 15,
Fig. 16). Our ability to easily edit the results is also a notable dif-
ference with their work. Note finally that the high quality and ro-
bustness of our results come at an extra cost in computational time:
for the bulldog model in Fig. 12 (34k tets), our method took 5.7
minutes (108 iterations), while the rotation-driven deformation of
[Gregson et al. 2011] only took 1.6 minutes.

5.5 Limitations

Although our penalty energy on normal differences leads to dras-
tically reduced shrinkage compared to the Laplace-based penalty
of node positions, too large a weighting of this penalty may
cause degeneracy in thin regions as demonstrated in the inset.

Fig. 12. From left to right: the original model, our results before cleanup,
the results from [Gregson et al. 2011] before and after cleanup. The results
of our method for two different initial orientations (top vs. bottom) have the
same polycube shape (ARAP distortion is 0.0792 before cleanup), while the
results of [Gregson et al. 2011] are sensitive to input orientation, and have
very different ARAP distortions before clean-up (resp., 0.1287 and 0.1897).

a b

Fig. 13. Topological clean-up: for the example shown in Fig. 12 our
method (a) achieves a nearly perfect axis-aligned polycube shape, thus
requiring very little topological cleanup (only 1 boundary zigzag and 2
patch degree issues in this case). Instead, [Gregson et al. 2011] (b) requires
cleanup for 3 boundary zigzags and 15 patch degree issues.

(Ours) ([Gregson et al. 2011]) (Ours) ([Gregson et al. 2011])

Fig. 14. For a similar complexity of the resulting polycube, our method
generates higher quality hex meshes with lower distortion compared to
[Gregson et al. 2011]. (Model “kiss” c©INRIA.)

This is, however, not a failure of the
anti-foldover penalty of Eq. (11):
there are in fact several degenerated
triangles between patches with op-
posite normal directions, but remov-
ing these triangles by our current
adaptive remeshing method leads to
invalid tetrahedral mesh connectiv-
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Table II. Quality and performance statistics.
model #tet #α β #iteration time(m) ARAP #corner #hex Scaled Jac. Hausdorff (×10−3)
angel-1 21036 9 0.1 88 2 0.0819 121 14068 0.470/0.923/0.999 1.59
angel-2 21036 11 1 106 3 0.0978 56 15690 0.212/0.919/0.999 2.81
angel-3 21036 9 4 92 2 0.0801 36 14336 0.222/0.898/0.999 1.35
anc101 155078 20 0.1 87 45 0.0100 248 62858 0.150/0.964/0.999 0.272
bumpy torus* - - - - - 206 35137 0.270/0.891/0.999 7.86
bumpy torus 110942 9 2 109 25.5 0.0792 222 38665 0.335/0.929/0.999 1.13
bunny* - - - - - 90 81637 0.138/0.930/0.999 4.01
bunny 169341 15 4 134 130 0.0688 76 37734 0.382/0.926/0.999 3.02
fertility* - - - - - 96 19870 0.196/0.911/0.999 6.96
fertility 90792 14 1 108 28.6 0.0362 96 17910 0.312/0.911/0.999 0.797
buste* - - - - - 88 193664 0.235/0.925/0.999 13.2
buste 94261 14 1 85 28.4 0.00129 93 208928 0.302/0.934/0.999 0.659
kiss* - - - - - 153 215320 0.125/0.919/0.999 10.2
kiss 142569 18 1 102 37.3 0.00109 160 219009 0.247/0.921/0.999 0.543
bulldog 34204 9 0.2 108 5.7 0.0884 131 47915 0.215/0.916/0.999 1.06
cognit 29491 9 0.2 197 12.9 0.0864 200 77559 0.270/0.829/0.999 0.643
dancing children-1 117684 14 0.2 138 20 0.0896 360 - - -
dancing children-2 117684 18 2 140 27.7 0.123 210 35293 0.143/0.870/0.999 1.17
dragon 106177 9 0.1 118 13.5 0.0929 512 - - -
dragon 106177 11 0.5 144 28.1 0.0952 315 117725 0.150/0.857/0.999 0.913
livingstone elephant 132796 9 1 160 23.4 0.0924 160 171657 0.221/0.878/0.999 0.531
gargoyle 213550 11 1 128 110 0.0777 232 25669 0.196/0.906/0.999 3.39
kitten 4951 9 1 97 0.6 0.1021 30 7083 0.424/0.910/0.999 1.61
rockerArm-1 127746 9 1 110 39.5 0.0575 88 24346 0.439/0.920/0.999 1.80
rockerArm-2 127746 11 4 127 30.6 0.0809 64 24780 0.378/0.905/0.999 2.03
rod 79936 9 1 101 48 0.0653 32 11092 0.418/0.929/0.999 0.482
nastycheese 18174 9 0.1 96 8.9 0.0441 970 - - -

The columns correspond to respectively the input name, the number of input tets, the total number of α-doubling steps, the value of β for complexity control, the total number
iterations, the total time excluding post processing, the average ARAP energyEδ , and the number of corners of the polycube as an indication of its complexity. We also indicate,
for our hexahedral meshes created with the resulting polycubes, the number of elements, the scaled Jacobian (min/mean/max) (mesaured with VERDICT library [Sandia 2010]),
and the Hausdorff distance (.10-3) (measured with M.E.S.H tool [Aspert et al. 2002] ) to the input normalized by its bounding-box diagonal span. The rows marked with “*” are
quality statistics from [Gregson et al. 2011].

ity. These issues are easily addressed in practice through a spatially-
varying weighting of normal differences, and a better adaptive
remeshing techniques; however, we do not know of a way to guar-
antee success for arbitrary shapes, even if all complex shapes we
tried are dealt with remarkably well.

6. CONCLUSION

We presented a novel formulation for polycube construction. A ro-
bust numerical procedure is devised to quickly converge to a poly-
cube map by iteratively minimizing the `1 norm of the normal field
while ensuring a low volume distortion and local, optional user
guidance. Besides demonstrating the quality of our results on a
variety of challenging models, we also explored the use of these
polycubes in all-hexahedral mesh and quadrangular mesh genera-
tion. For future work, we point out that our approach could be used
for the design of orthogonal-symmetric direction field. Comparing
our results to the recent work of Knöppel et al. [2013] on the con-
struction of a globally optimal direction field would be informative,
and maybe we could even incorporate their technique to alleviate
the risk of getting trapped in local minima. A flexible and robust
method to easily design hexahedral meshes with control over the
topological singularities would also be a valuable extension. Fi-
nally, while our approach has excellent numerical robustness even
for very challenging models, we suffer from the same lack of rig-
orous guarantees of convergence and non-degeneracy as all recent
works do.
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