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Frame Field Singularity Correction for Automatic
Hexahedralization
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Abstract—We present an automatic hexahedralization tool, based on a systematic treatment that removes some of the singularities
that would lead to degenerate volumetric parameterization. Such singularities could be abundant in automatically generated frame
fields guiding the interior and boundary layouts of the hexahedra in an all hexahedral mesh. We first give the mathematical definitions
of the inadmissible singularities prevalent in frame fields, including newly introduced surface singularity types. We then give a practical
framework for adjusting singularity graphs by automatically modifying the rotational transition of frames between charts (cells of a
tetrahedral mesh for the volume) to resolve the issues detected in the internal and boundary singularity graph. After applying an
additional re-smoothing of the frame field with the modified transition conditions, we cut the volume into a topologically trivial domain,
with the original topology encoded by the self-intersections of the boundary of the domain, and solve a mixed integer problem on this
domain for a global parameterization. Finally, a properly connected hexahedral mesh is constructed from the integer isosurfaces of
(u, v, w) in the parameterization. We demonstrate the applicability of the method on complex shapes, and discuss its limitations.

Index Terms—automatic hexahedral meshing, frame field, field singularity, volumetric parameterization
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1 INTRODUCTION

Automatic high quality hexahedral mesh generation has
sometimes been dubbed the “Holy Grail” in the mesh-
ing community, as such meshes benefit finite element
methods due to their tensor product nature, leading
to improvement in both speed and accuracy. Recent
development in quadrangulation in computer graphics
and geometric modeling has stirred new research effort
in this direction based on meshing methods guided by
the cross-frame fields, fields of equivalence classes of
local frames under the chiral octahedral symmetry group
(the set of 24 rotations that keep a cube centered at origin
invariant without changing the right-handed frame to a
left-handed one).

Such methods first create a parameterization of the
volume for 3D charts intersecting at common interfaces,
followed by extracting the vertices of the hex mesh
from the integral points in the parameter domain. The
edges of the hexahedra in the mesh would then follow
the gradient lines of the parameterization. For compu-
tational purposes, the boundary of the resulting mesh
must conform to the original boundary, create patches
sharing the same integer parameter value over smooth
regions, and introduce sharp edges and corners near the
original features of the mesh. Thus, feature alignment
and angle distortion reduction are both linked to a high-
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Fig. 1: Automatically generated all hexahedral meshes.
Our method is able to handle complex models with
various topologies.

quality frame field with one of the axes aligned to the
boundary normal on all surface points.

In theory, CubeCover method [1], extending Quad-
Cover method [2], formulated necessary conditions for
the volumetric parameterization, and laid the foundation
for automatic hexahedralization methods based on such
parameterizations. They formulated the basic require-
ments of rotational and translational transitions on each
interface between different charts or different parts of
the same chart serving as the domains for parameteriza-
tions. The nontrivial transitions (cuts) of the domain are
necessary to provide flexibility of creating a mesh with
high-quality element shape. Otherwise, a polycube-like
topology would be enforced, potentially leading to large
distortion [3], undesirable for engineering or scientific
computing purposes.

The official orginal version is available at http://doi.ieeecomputersociety.org/10.1109/TVCG.2013.250
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Combining the global volumetric parameterization
with compatible rotational and translational transitions
as specified in the CubeCover method with automatic
generation of guidance fields, one would imagine that an
automatic hexahedral meshing tool would be straight-
forward to construct. However, unless manually con-
structed or adjusted, frame fields do not usually satisfy
these compatibility conditions for non-degenerate clean
volumetric parameterization. In fact, there can be a
multitude of different types of problems if one com-
putes rotational transitions from automatically generated
frame fields that are continuous up to a rotation in the
chiral octahedral symmetry group. The simplest exam-
ple of the difficulty in such volume parameterization
would probably be the case that two edges of a triangle
are both along a same singularity line. Thus all the
points in the triangle will share the same set of two
variables, rendering the image of the triangle in the
parameter domain degenerate (collinear). Some other
examples include internal line singularities of degenerate
types, boundary edges that require the pairs of triangles
adjacent to them to fold onto one another, and nearby
singularities forcing the parameters to jump from one
integer to another across a short distance.

In this paper, we aim at formulating the common
problematic cases in a complete singularity graph mathe-
matically, providing a framework to automatically detect
and treat them in a consistent way with the guarantee
of convergence, and finally generating an all hexahe-
dral mesh by solving a mixed integer programming
problem after reducing the number of integer variables.
This paper does not provide a sufficient condition for
fixing all possible degeneracies, which remains an open
problem. However we provide more comprehensive for-
mulation and fixing strategy for the degeneracy problem
in hexahedral remeshing than the state-of-the-art [3]. In
summary, our main contributions include:

• We give a definition of surface singularities, and
necessary conditions for admissible singularity
graph of both internal and surface singularities for
hexahedral meshing.

• We provide a procedure with convergence guaran-
tee to fix the above defects in the singularity graph,
which would lead to degenerate parameterization if
left alone.

• We demonstrate a practical solution for hexahedral
mesh generation guided by automatically generated
guidance cross-frame input fields.

2 RELATED WORK

As mesh generation has been an active research topic
for a long period of time, a huge number of methods
have been proposed to generate high quality triangular
or tetrahedral meshes automatically [4], [5]. Most of
them rely on Delaunay tessellation (dual of Voronoi dia-
grams), which ensures proper connectivity and element

quality. However, quadrilateral or hexahedral remesh-
ing is substantially more difficult because there is no
such dual structure for non-simplicial elements. In 2D
manifold quadrangulation, some recent works [6], [7],
[8] use Morse-Smale Complexes (MSC) [9] to guarantee
a pure quadrangulation based on a scalar function with
periodic property. However, 3D MSCs do not necessarily
lead to hexahedral structures. As a consequence, many
hexahedral remeshing methods, such as sweeping [10]
and paving [11], rely heavily on manual input to define
the proper topological structure by decomposing the vol-
ume into simple parts. Such challenges make grid-based
methods [12] or hex-dominant mesh-based methods [13],
[14] often the practical choice for automatic remeshing
in spite of their inferior results.

Recent progress shows that global parameterization
has achieved great success in surface quadrangulation
[2], [15] with the help of a smooth frame field defined on
a manifold surface with compatible transition functions
between charts. From such a non-degenerate parame-
terization, a pure quadrilateral mesh can be extracted
by tracing the iso-lines. To extend such a scheme to
hexahedral remeshing, [1] has proposed a global pa-
rameterization method for hexahedral remeshing, and
[16] gives a method to automatically construct a desired
frame field. These two works are most relevant to our
method. Roughly speaking, we attempt to apply the
parameterization method in CubeCover to the auto-
matically generated frame field. However, the task is
extremely challenging as the automatically generated
frame field does not take into account the conditions on
admissible singularity types (both inside the volume and
on the boundary). In addition, without a coarse meta-
mesh manually specified or generated from a manually
specified frame field, a topologically sound partition-
ing of the volume for global parameterization is not
straightforward to generate as one might expect. [17] also
proposed a method for all hexahedral remeshing with
the topological restriction of no internal singularity, thus
leaving few degrees of freedom to optimize the shape of
hexahedra. As noted in [1], it is often necessary to move
the right angle transition line in the parameter domain
on smooth regions of the surface into singular edges
inside the volume to have better element quality, as the
former turns the dihedral angle between a hexahedron’s
two faces into nearly 180◦, while the latter only turns the
sum of three such dihedral angles around the internal
edge to 360◦.

Singularity plays a critical role in detecting and rem-
edying this issue. [18] lists many topological restric-
tions that arise in hexahedral meshing, and uses them
in a frame-field-independent remeshing algorithm. The
topological constraints in this work apply to the primal
elements of a hexahedral mesh, such as node, edge and
face etc. Some methods have been proposed to analyze
the global topological structure of a quadrangular mesh
or a 2D symmetry vector field by singularity graphs [19],
[20]. In 2D quadrangulation, noisy singularity points
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lead to problematic parameterization results. Thus, some
remedies have been proposed for denoising or adjusting
the singularities in the frame field [2]. For hexahedral
remeshing, [1] provides a definition on internal singu-
larity types and proved some of its properties. Such
singularity structures are also important to hexahedral
mesh coarsening, e.g., [21] and [22]. However, there is
no existing work on automatic surface singularity and
internal singularity adjustment for frame fields used
in hexahedral meshing, except a concurrent work on
hexahedral meshing by Li et al. [3]. Their method does
not address the potential issues involving surface sin-
gularities. Although such inadmissible singularities may
be amended in their method by manually designed
“guiding boxes” (all frames inside a given box are set to
be aligned to the three edge directions of the box), they
often appear in automatically generated frame fields and
should be addressed for the sake of robustness.

3 OVERVIEW

Algorithm 1: Hexahedralization process overview.
Data: tetrahedral mesh Ω with one frame F per tet

computed by, e.g., [16]
Result: hexahedral mesh with edges guided by F
Compute the singularity graph (Sec. 4);
while there is a zigzag (Sec. 5.2) do

Remove zigzag by “straightening”
while a compound edge (Sec. 5.3) adjacent to two
admissible edges exists do

Split the compound edge:
turn it into an admissible type;
create a separate singularity path through
vertices newly introduced in a local refinement;

Adjust the frame field (Sec. 5.4);
Reduce the number of integer variables
(used in boundary and transitions, Sec. 6.1);
while an untreated integer variable (Sec. 6.2) exists do

minimize the parameterization energy;
round the integer variable closest to an integer;
turn the variable into a constant;

Minimize the parameterization energy;
Construct hexahedral meshes with integer grid
points;
Post-processing if necessary (Sec 7);

Our paper focuses on generating all hexahedral
meshes from input cross-frame fields generated auto-
matically by [16]. Given a tetrahedral mesh Ω, each
tetrahedron is associated with an orthonormal frame
F = (U, V,W ), with column vectors U , V , and W as the
basis vectors. The frame is considered as a representative
of a cross-frame (an equivalent class of 24 orthonormal
frames with axes chosen from {U,−U, V,−V,W,−W}).
To generate an all hexahedral mesh with edges following
such an input, we compute a parameterization with a

method similar to the one proposed in [1]. We loosely
follow their notations below.

We denote the parameterization f : Ω→ R3, which can
be expressed in each chart (tetrahedron) as a linear func-
tion with three components (u, v, w)T . In tetrahedron t,
we denote its expression by ft.

If we use integral lines of the gradients of the pa-
rameterization for edges, they must connect to each
other across the tetrahedron boundaries. Thus, for two
adjacent tetrahedra s and t, the transition from fs to ft
for a parameterization whose integer grid points can be
used in hexahedralization must satisfy

ft = Πstfs + gst, (1)

where gst ∈ Z3 and Πst ∈ O, the set of one of the
24 matrices for the cross frame containing the standard
identity frame, a.k.a. the chiral octahedral symmetry
group. Comparing with the transition from t to s, we
have

Πst = Π−1ts , gst = −Πstgts. (2)

We call any face with a non-identity rotational transition
or non-zero translational transition a jump-face.

For a surface triangle a associated with tetrahedron t,
to avoid cutting the corresponding hexahedron by the
boundary surface, one of parameter must be an integer,
with its gradient aligned to the surface normal. Thus,
there is a transition Πta that makes the parameterization
coordinates of a surface point p ∈ a satisfy

(Πtaft(p)) · (1, 0, 0)T = gta, (3)

where Πta ∈ O aligns the U -axis of the frame to the
normal of a, and gta ∈ Z.

The translational part (the gap) gst can be resolved
during the parameterization process if the hex edge size
can be adjusted, but the rotational part Πst must be
properly prescribed to avoid fold-overs and degeneracy
in parameterization while following the given frame
field.

For the parameterization with its gradients following
the frame field to be smooth, a natural requirement for
the rotational transitions is that they make the angles
between the corresponding axes in Ft and FsΠst respec-
tively as small as possible. If one of these angles becomes
greater than π/2, it can lead to large angle distortion in
the parameterization. In addition, more constraints are
required to avoid the defects caused by singularities as
shown in the next section.

4 ROTATIONAL TRANSITION AND SINGULAR-
ITY

A straightforward method to evaluate the rotational
transition is to find the best transition matrices that
minimize the following “alignment error”:

‖Ft − FsΠst‖
‖(FtΠta)(1, 0, 0)T − na‖,

(4)
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where na stands for the normal of the surface triangle a
in t, and the matrix norm is the Frobenius norm, which is
used throughout the paper. For a tetrahedron t contain-
ing more than one boundary faces, say a and b, Πta 6= Πtb

or t should be split into two. When the rotation Πta

minimizing the above error is non-unique, we choose the
one fixing one of the axes. Such a setup is necessary to
make the gradient fields of the parameterization smooth
while remaining consistent with the guidance frame
fields [1]. However, it does not guarantee degeneracy-
free parameterizations in the presence of certain types of
singularities as discussed below.

4.1 Internal Singularities

If the valence (number of adjacent hexahedral cell) of
an internal edge in the final hexahedral mesh is not 4,
it is an internal singularity. Such singularities can be
detected by checking the rotational transitions. As for-
mulated in [1], for an oriented tetrahedral mesh edge e,
surrounded by a small counter-clockwise oriented dual
edge loop passing through tetrahedra (t0, t1, · · · , tk, t0),
we can define the type of the edge with respect to
starting tetrahedron t0 as

type(e, t0) = Πtkt0Πtk−1tk · · ·Πt0t1 . (5)

If type(e, t0) 6= I , we call it an internal singularity edge.
An internal singularity can lead to a non-valence-4

segment in the final hexahedral mesh, only if type(e, t0)
is a rotation around one of the axes in the frame. Other
types of singularities are said to be compound, and forced
to be mapped to a point in any parameterization produc-
ing a hexahedral mesh consistent with the transitions,
leading to degeneracy. It can be shown by contradiction.
Suppose that the image of e in the parameterization is
not a point. If we choose a sufficiently fine hexahedral
mesh, the image is either parallel to hexahedral faces,
or intersecting with a hexahedral face. For a compound
singularity edge e, U , V , or W is not an eigenvector
of type(e, t0), so its image cannot be parallel to one of
the gradient lines of the parameters. On the other hand,
the hexahedral face that it intersects with contains edges
along U , V , or W , which cannot form a loop consistent
with accumulated rotational transition type(e, t0), lead-
ing to a contradiction.

The additional requirement on the inner singularity
vertex (Thm 2.2 in [1]) through counting valences
would be satisfied automatically when the rotational
transitions form the minimizer of the frame field tran-
sitions. Although valence 3 and 7 (or 4 and 8) cannot
be distinguished by edge type, it is possible to detect
high valences, e.g. rotation around Z with an angle
> 2π, through first locally aligning the Z-axes of frames
to the edge and then accumulating the rotation angle.
In practice though, we have never seen any high va-
lence singularity edges in automatically generated frame
fields.

4.2 Surface Singularities
As shown in Section 5, internal singularities may lead
to degeneracy in parameterization because of the con-
straints that they impose. Some surface edges produce
similar constraints, and may cause degeneracy as well.
Such constraints force two components of the parame-
terization coordinates along the edge to be both constant
integers, i.e. the edge must be along some edges of
the hexahedral mesh. We call such surface edges sur-
face singularities, which are formulated mathematically
below, with a definition consistent with the internal
singularities.

Fig. 2: Surface singularity example.

Similar to the internal case, for an oriented surface
edge e, we also create a small counter-clockwise
oriented loop around it, which passes through
(a, t0, · · · , tk, b, x, a) (e.g., Figure 2), where the faces
sharing e, a and b, are the triangles adjacent to
tetrahedra t0 and tk, respectively, and x stands for a
point outside of the tetrahedral mesh. We then define
the type of the edge as

type(e, a) = ΠbaΠtkbΠtk−1tk · · ·Πt0t1Πat0 , (6)

where Πba is a rotation around axis U aligning the V,W -
axes on triangles a and b when U -axis on each triangle
is aligned to the normal. More precisely, it minimizes

‖Re(na, nb)Ft0Πt0aΠab − FtkΠtkb‖,

where Re(na, nb) is the rotation around e that aligns na
(normal of a) to nb (normal of b), which flattens the hinge
formed by the two boundary triangles. If type(e, a) is a
rotation around an axis by ±π/2, it creates a sharp edge
on the surface in the parameter domain, and denotes
an admissible singularity. In other words, the valence of
such an edge in the hexahedral mesh would be different
from 2. If it is not a rotation around one of the frame
axes, we have a compound boundary singularity.

The transition between surface faces Πab describes a
rotation on V,W -axes in the parameter domain. The
product of Πab’s along a loop around a surface vertex
can be used to detect singularity vertices on the surface,
which forms a sharp corner in the parameter domain
with a discrete Gaussian curvature (angle defect) of
multiples of π/2. Only ±π/2 would lead to reasonable
sharp corners. If the angle defect becomes π, the param-
eterization would wrap two surface squares around a
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surface vertex, leading to degeneracy. However, such a
degeneracy never occurred in all our experiments based
on automatically generated guidance fields.

5 INADMISSIBLE SINGULARITIES
The whole singularity graph G is composed of the internal
and surface singularity edges, and the vertices incident
to these edges. The following two issues in such a graph
will lead to degeneracy in the parameterization, and are
thus necessary to eradicate:
• Compound singularity (a rotation not around any

axis in the frame): It maps to a single point in
the parameter domain, thus inducing degeneracy. In
addition, a surface rotation around a frame axis by π
is also treated as a compound singularity, because it
indicates zero or 4 neighboring hexahedra, leading
to great distortion except for the case with a valence-
4 boundary edge whose adjacent boundary faces
have nearly opposite normals.

• Zigzag (two same type consecutive singularity
edges in one tetrahedron): Denote the edges by
e0 and e1, and the tetrahedron by t, type(e0, t) =
type(e1, t). Such edges map to a straight line in the
parameter domain, thus making the image of the
tetrahedron degenerate.

These issues can be viewed as resulting from improper
discretization of a smooth frame field with only ad-
missible singularity types. A compound singularity can
be viewed as several close-by singularity lines merged
onto one tetrahedral edge. A zigzag can be explained
as misalignment of the edges of tetrahedral mesh with
the singularity line in the smooth frame field. Unless a
manually constructed or adjusted frame field is used,
these issues almost always exist and must be addressed.

Based on the above observation, we propose a two-
step method to schematically adjust the initial rotational
transition set derived from Equation 4 to address the
above issues. In the first step, we remove all the zigzag
issues by straightening the singularities. In the second
step, we split the compound singularities into admissible
ones.

Additional care may be necessary to avoid extreme
angle distortion associated with high hexahedral edge
valences. However, for internal singularity edges, the
valences are in most cases less than 6 when the singular-
ity types are derived from the automatically generated
guidance frame field. For boundary singularity edges,
one may want to make sure that the dihedral angles
do not deviate far from the dihedral angles specified by
the singularity type in the parameter domain. Similarly,
the boundary singularity vertex should have compatible
Gaussian curvature in the parameter domain and on
the mesh to avoid extreme angle distortion at the sharp
corners.

5.1 Atomic Operation to Adjust the Singularities
For an internal face shared by tetrahedra s and t,
modifying the rotational transition Πst into ΠstΠ by a

rotation matrix Π on the face will affect the types of
its three edges. The type of one of these three edge
type(e, s) that is counterclockwise oriented around the
direction of s → t will change to type(e, s)Π after the
modification. Thus, the types of all these edges change
by a same rotation. It can be likewise applied to surface
singularities. We use this simultaneous change as the
basic operation to remedy the issues in the singularity
graph.

5.2 Zigzag Removal
As shown in the right inset, the
triangle between tetrahedra s and
t contains a zigzag pxq with type
X . Changing the rotational transi-
tion Πst into ΠstX

−1 turns the edges
px, xq into regular edges. The type
of the third edge pq in this triangle
with original type Y will become XY . Such an operation
can be viewed as straightening the singularities px, xq
into pq, and superpose their type onto the original type
of pq. If the original type of edge pq is not I , its type
may become compound singularity after removing the
zigzag, which will be split into admissible ones in the
second step of our method.

Removing a zigzag may introduce new zigzags, but
the procedure always terminates when we repeatedly
find a zigzag to remove until all zigzags are eliminated.
The number of zigzag removal operations to be per-
formed cannot exceed the total number of singularity
edges in the graph, since that number decreases by
either one or two in each operation. The monotonic
decreasing of singularity edge number provides a proof
of convergence.

5.3 Compound Singularity Split
After removing all the zigzags in the graph, the re-
maining inadmissible singularities are compound sin-
gularities. To remove a compound singularity, we split
it into multiple admissible singularities inside its one-
ring neighborhood without affecting other singularities
or introducing zigzags (Figure 3). During this proce-
dure, tetrahedra may be split into smaller ones through
local refinement. In the refinement steps, we keep the
rotational transition on split faces, and set the rotation
transition to identity for the newly introduced faces.
Thus, the split edges share the same type as the original
ones, and the newly introduced edges are all regular
edges.

We first find an open end node x of a compound sin-
gularity polyline, i.e. a node connected to only one com-
pound singularity edge. In its one-ring neighborhood Ωx,
we pick one node p on one adjacent admissible singu-
larity, and another node q on the compound singularity.
Then, we subdivide each triangle on the boundary of
Ωx and its associated tetrahedron into four by inserting
one new node at the middle of each boundary edge. As
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Fig. 4: Example of removing inadmissible singularities. (a) shows the input frame field visualized by streamlines.
(b) The initial singularity graph that it induced contains many inadmissible singularities. The zigzag issues and
compound singularities are shown in red and black respectively. The zigzag issues are resolved in (c), and the
compound singularities treated in (d). After adjusting the singularities, an all hexahedral mesh (e) can be extracted
from the parameterization result.

Fig. 3: Splitting a compound singularity edge xq. The
gray edges are regular, and the black edges can be
singular.

the newly introduced nodes yi’s are connected, and each
original node is adjacent to some of them, we can always
find a path of the form py1y2 · · · ynq. In particular, we can
pick the shortest one. These edges and x form a fan of
triangles (in the same orientation), with each edge xyi
being regular.

To avoid re-introducing zigzag edges when splitting
the compound singularity, we further subdivide the
triangle fan x, py1y2 · · · ynq as follows. Each edge xyi,
along with each of its incident tetrahedra in the one-
ring, is split into two by inserting a new node y′i at
the middle. Then we get a new path py′1y

′
2 · · · y′nq com-

pletely inside the original one-ring neighborhood, with
each of its edges initialized to the identity type. We
modify the rotational transition on all the triangles in
the fan composed of x and py′1y

′
2 · · · y′nq by multiplying

the inverse matrix of the edge type for px, turning px
into a non-singular edge. Then the polyline py′1y′2 · · · y′nq
becomes an admissible singularity with the same type of
px. The vertex x is now incident to only two singularity
edges, with one of them the original incident admissible
singularity. According to Proposition 5.1 proved in the
appendix, the other edge xq must also be an admissible
singularity.

Proposition 5.1: If a vertex is incident to only two
singularity edges, the types of the two edges must match
in a certain local alignment.

The above operation can be viewed as splitting and
shifting the singular segment pxq to the new paths. It

fails when there exist loops of compound singularity
edges, which contain no end node. However, it never oc-
curred in all frame fields automatically generated during
our experiments. The monotonic decrease in the number
of compound singularity edges within each iteration
guarantees the termination of the procedure.

In Figure 4, we demonstrate several typical cases in
singularity adjustment on real data. To help visualize the
details, we show close-ups on parts of the singularities
enclosed by colored squares in the insets enclosed by
ones with the same colors respectively. The purple box
contains a zigzag on pxq, and the blue box contains a
compound singularity pq.

5.4 Frame Field Adjustment
The above singularity adjustment removes the zigzag
and compound inadmissible edges defined in this pa-
per, but it may increase the alignment error, leading to
possible difficulties in the subsequent parameterization
step. By minimizing the alignment error with respect
to F , we can update the frame field according to the
new rotational transitions. For robustness, we adopt
a scheme that incorporates the non-linear constraints
gradually. With the rotational transitions fixed to the
adjusted matrices, we first obtain an initial guess by
turning the problem into a linear system, minimizing
Eq. 4, without the constraints F ∈ SO(3), i.e. treating
each F as an arbitrary 3 by 3 matrix. We then incorporate
the orthonormality constraints on F as soft constraints,
by including a non-linear penalty term w‖FTF − I‖2 (w
is set to 100 in all our results), and solve the optimization
problem again with Gauss-Newton method starting from
the initial guess. The solution will be converted to the
closest ZYZ Euler angle representation, and serve as the
initial value to minimize the alignment error in such a
representation. We then transform the solution back to
the 3 by 3 matrix representation as the updated frame
field satisfying the hard constraints F ∈ SO(3). In most
cases, the largest angle between the corresponding axes
of two adjacent tetrahedra is about 30◦ when measured
with the initial rotational transition, but increases to
about 120◦ after adjusting the rotational transition to
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resolve inadmissible singularities. After the above ad-
justment, it finally decreases to about 75◦.

In some cases, the resulting singularities may be close
to each other, resulting in high distortion in the pa-
rameterization. However, a simple post-processing of
local relaxation as mentioned in Section 7 reduces the
distortion of the parameterization in the hexahedral
elements between these singularities, producing high
quality hexahedral meshes.

6 PARAMETERIZATION

We follow essentially the same idea in the CubeCover
method for parameterization, i.e. finding the minimizer
of the following energy∫

V

‖df − F‖2 d V ol,

which means that the gradient of each component of the
parameterization should follow the corresponding axis
of the given frame field F as much as possible. The main
difference is that we are able to greatly reduce the num-
ber of integer variables through a simple preprocessing
procedure, making the subsequent steps more efficient
and robust.

6.1 Topological Simplification
We merge all the charts to get a global parameterization
domain. To improve efficiency, instead of just creating a
minimal spanning tree (MST) to remove a minimum set
of transition variables across faces between tetrahedra
adjacent in the tree as in [1], we additionally create a
3D domain with trivial internal topology to fill the vol-
ume, removing as many transition variables associated
with faces as possible. Note that the original (possibly
nontrivial) topology is encoded by the self-intersection
of the new domain boundary. This can be achieved by
slowly growing the domain to eventually occupy the
whole volume, while maintaining a ball-like topology
for the interior of the domain throughout the process. In
Figure 5, we show a simple example of the topological
simplification process for torus.

After using MST to globally align the frames while
keeping the singularity structure intact, we start from
a seed tetrahedron, gradually remove faces with trivial
transitions to merge tetrahedra, and expand the domain
until all tetrahedra are merged to it. Any non-rotational-
jump-face is a candidate for removal. If both adjacent
tetrahedra of such a face are already merged to the
domain, it can still be removed when it contains a
non-singularity edge adjacent only to this unremoved
face. Since all the faces corresponding to the MST edge
can be removed, the entire volume can always to be
merged into a single domain. However, an arbitrary
order of traversing such face candidates can leave more
faces unremoved than necessary, leading to more integer
variables. We follow a simple rule when expanding
the domain, under which all candidate faces around

Fig. 5: An example of topological simplification. (a) the
arbitrary tetrahedron chosen as the starting cell. (b) (c)
the first several steps of expanding the domain by merg-
ing neighbouring tetrahedra. (d) (e) the intermediate
stages of the merging process. In (e), we render the faces
(in green) only for illustrative purposes. They are not
detected until the merging process is completed. (f) the
final remained faces that cannot be removed in order to
maintain the ball-like topology.

an edge on the boundary of the growing domain are
simultaneously removed. This ordering will leave few
rotational transition face patches, which, together with at
most P translational transition patches, cut the genus-P
volume into a ball-like parameterization domain.

6.2 Parameterization as a Mixed Integer Program-
ming Problem

We can easily cluster the remaining faces into patches
with same transition types. Each internal patch uses only
three integer jumps, and each boundary patch has one
integer parameter. It is equivalent in theory to associate
variables with each individual face, and then use Gaus-
sian elimination to reduce the number of variables, or
simply leave these variables in the final linear system
with an increased number of equations. However, the
Gaussian elimination process is significantly slower with
a much larger number of constraints. Leaving the con-
straints as equations in the linear system would turn
them into soft constraints when we solve the over-
constrained system using least squares method. With
the patches clearly identified, we can actually leave a
small number of integer constraints only on the internal
singularity lines and the boundary patches, and use three
floating point values per internal patch. This approach
can greatly reduce both the integer degrees of freedom
of the system and the number of constraints, and thus
expedite the process of the Gaussian elimination when
we enforce the hard constraints.

The final system normally contains less than few tens
of integer variables for a given input frame field. We
successively snap one integer variable from the floating
point value obtained in the previous solve in a greedy
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fashion. The linear system is assembled through first
removing redundant hard constraints, and then elimi-
nating them from the variables by substitution. This can
be done on the gradient operator. After that, the reduced
gradient operator and its transpose can be assembled as
the reduced Laplacian operator for the optimization step.
The construction process may take long if the model
contains a large number of vertices, but the subsequent
linear systems turn out to take little time for each solve
when we call the sparse linear solver of Matlab.

With a singularity graph containing only admissible
singularities, the parameterization may still contain de-
generate or flipped tetrahedra initially, due to geometric
distortion and numerics. In experiments, we use five
iterations of local stiffening [15] to alleviate the situ-
ation. However, this method can not guarantee flip-
free parameterization. Thus we adopt the same strategy
in [3] to leave this problem into hexmesh extraction.
Besides, there are some degeneracies associated with
internal singularities which are very close to the surface.
This issue is handled by a post-processing procedure as
detailed in the next section.

We use a simple approach to produce the final mesh.
First, we generate the integer points (u, v, w) ∈ Z3 and
half-integer points (u+1/2, v+1/2, w+1/2) within each
tetrahedron, and snap nearby points of the same type
together through a spatial indexing structure to avoid
potential duplicates near the faces. Then, starting from
each half-integer point which serves as the center of a
hexahedron, we follow the U,V,W directions to find the
8 corresponding corner vertices from the set of integer
points and produce the connectivity information for the
hexahedral mesh. During this process, we keep track of
how far it needs to go in the parameterization domain,
and the change of directions to handle any jump-faces
encountered along the path.

7 RESULTS AND DISCUSSION

The singularity correction method mentioned in Section
5 is able to resolve all the zigzag and compound sin-
gularity issues in our experiments. However, it remains
an open problem to give a sufficient condition on singu-
larity graphs compatible to non-degenerate hexahedral
meshing.

In our experiments, some singularities close to the
surface lead to degeneracy as well. As shown in Figure 6,
some singularities sink right below the boundary surface
of the tetrahedra mesh, and lead to degeneracies in
regions between them and the boundary. As a result,
the boundary of output hexahedral mesh at these singu-
larities edges is not aligned with the input boundary.

Similar to zigzag and compound singularity, dis-
cretization of a singularity in a smooth cross-frame field
which is close to, but not exactly on the surface (possi-
bly due to the numerics of the frame field generation
process) may lead to such singularities. This issue is
inevitable when few assumptions can be made on the

Fig. 6: The red singularity edges in (a) lead to degeneracy
and the sunk part (in red) in (b), but the defects can be
easily fixed by surface snapping and post-smoothing (c).

automatically generated cross-frame field. The difficulty
of solving it lies in that such a degeneracy cannot be
locally detected from the singularity graph. Fortunately,
such sunk parts are all narrow and shallow (often less
than two layer of tetrahedra) as they resulted from
near-misses, and more importantly, the output hexahe-
dral mesh still shares the same topology to the input
tetrahedral mesh. Thus, we simply first snap the sunk
nodes in the hexahedral mesh onto the tetrahedral mesh
boundary by projecting them along the normal, and then
improve the quality of the hexahedral mesh by using
Mesquite software [23].

We tested the proposed method on several models.
The statistics on the models are given in Table 1 and
Table 2. The timing is measured on a PC with an I7-
940 CPU at 2.8 GHz and 12 GB RAM. To measure
the dihedral angles of an edge in a hexahedron, the
normal of each adjacent quadrilateral face is evaluated
by averaging the four triangle normals in two different
tessellations of the quadrilateral face. As shown in the
table below, nearly all the elements are with decent shape
quality measures.

Model Tet Comp Zz-inner Zz-surf T(s)
Torus 30k 0 100 15 0.04
Nut 65k 0 0 5 0.10
Sphere 80k 0 26 10 0.05
Pretzel 300k 5 204 35 6.27
Sculpture 105k 0 8 1 0.11
Fandisk 301k 0 148 16 0.22
Elk 123k 12 318 58 5.04
CAD1 68k 0 36 2 0.07
CAD2 130k 0 56 1 0.12
CAD3 530k 0 60 132 0.54

TABLE 1: Statistics of the results. The number of input
tetrahedra, inadmissible singularity edges (Compound,
Zigzag-inner and Zigzag-surface), and time spent (in
seconds) for fixing them are in columns Tet, Comp, Zz-
inner, ZZ-surf and T, respectively.

As shown in Figure 7, our method preserves the sym-
metries captured by the automatically generated frame
fields. Even for high genus models, our method is able
to automatically find a proper topological structure.

In the following figures, to demonstrate the parameter-
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Model T Hex Angle Length Scaled jac Haus.
Torus 0.5m 12768 90.0/85.7 1.53/1.08 0.974/0.827 0.448
Nut 1m 6640 90.0/88.8 1.28/1.04 0.966/0.389 0.286
Sphere 1.5m 7776 90.1/83.4 1.50/1.05 0.976/0.757 0.745
Pretzel 1.17m 3024 90.0/89.4 1.62/1.13 0.822/0.0203 0.605
Sculpture 1.3m 6348 89.9/88.4 1.42/1.07 0.973/0.557 0.295
Fandisk 5m 24001 90.0/82.1 1.70/1.02 0.943/0.01 0.341
Elk 1.1m 21462 90.0/79.4 1.58/1.01 0.936/0.282 1.33
CAD1 0.5m 21530 89.9/82.4 1.37/1.09 0.958/0.01 0.709
CAD2 2m 13788 90.0/87.3 1.24/1.01 0.981/0.300 3.55
CAD3 81.5m 17784 90.0/88.7 1.18/1.01 0.974/0.208 1.09

TABLE 2: Statistics of the results (average/minimal). The
time used in parametrization is listed in the second
column. The following columns list mean/minimal of
dihedral angles, edge lengths and scaled Jacobian [24],
and the Hausdorff distance (10−3× bounding box diag-
onal) for measuring the quality of the output hexahedral
mesh.

Fig. 7: Topological structures of the singularities.

ization results, we show the adjusted singularity graphs,
resulting hexahedral meshes, and their cutaway views
from left to right. In Figure 8, without any manual input,
the models Pretzel, Elk and Fandisk are remeshed into
a polycube-like topology, as indicated by their frame
fields. In Figure 9, several internal singularities are au-
tomatically introduced on the models CAD1, Sculpture
and CAD2, producing excellent element quality.

In Figure 10, we show the result of our method
applied on the complex model CAD3. Manually con-
structing a meta-mesh for such models would have been
extremely time-consuming. The models have some small
features, which even cause problems in some surface
quadrangulation techniques. By choosing a relatively
small element size, our method is able to generate an
all hexahedral mesh while preserving important features
at the same time. The initial singularity graph extracted
from the input frame field has roughly depicted the final
connectivity structure. However, the original singulari-
ties are on or near the surface, such near-misses can lead
to distorted and even degenerate parameterization. After
automatic adjustment, all singularities are snapped to the
surface for the model shown, resulting in a polycube-like
topology.

7.1 Comparisons
Automatic generation of high quality hexahedral meshes
is still an open problem. Many methods have been

Fig. 8: Results with polycube-like structure. The red lines
are near-misses, exposed on the boundary after post-
processing.

Fig. 9: Results on CAD1, sculpture and CAD2 contain
internal singularities.

proposed under various assumptions. [17] assumes no
internal singularities inside of the object. [1] requires a
valid singularity graph in the input. [14] allows non-
hexahedral elements in the resulting mesh. The most
closely-related work [3] also takes a frame field in the
input, and tries to reduce the inadmissible singulari-
ties. Although our method shares some of the same
limitations, such as lack of guarantee in eliminating
all inadmissible singularities (e.g. in presence of looped
compound singularities), our method has the following
advantages:

• In addition to all the inadmissible cases mentioned
in [3], our method can detect and fix surface in-
admissible singularities. As shown in Figure 12,
the inadmissible surface singularities (top left) forces
the associated elements to be degenerate, while our
method is more robust by taking such inadmissible
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Fig. 10: Our method can automatically remesh the com-
plex model CAD3 while preserving its important fea-
tures without time-consuming manual meta-mesh con-
struction.

singularities into account.
• Our method guarantees convergence for both zigzag

and compound edge removal steps. The compound
edge collapsing strategy [3] may introduce new
zigzags (Figure 11), and is thus without convergence
guarantee.

• Near miss cases are often inevitable in automatically
generated frame fields. We are the first to recognize
and address such issues.

• There are known specific local degenerate cases that
our method can handle but the method in [3] cannot.
For instance, a face with three singularity edges
in types Ru, Rv , and Rv cannot be properly han-
dled either in their “matching adjustment” phase,
“improper singular edge collapse” phase, or their
ad hoc split method (Figure 11). Our pipeline can
trivially handle such cases by first removing zigzag,
and then splitting the compound singularity.

• Unlike our subdivision strategy, the collapse strat-
egy used in [3] leads to possible numerical issues in
parameterization because of the numerous poorly
shaped tetrahedral elements introduced in fixing
long compound singularities (Figure 13).

Fig. 11: Left: A tet with Ru (blue), Rv (red) singularities
and a compound singularity (black). Following the steps
in [3], the tet will be split at edges ab and dc to make each
face around ac contain only one admissible singularity
(middle left), and then ad is split to make ac collapsible
(middle right). Zigzags occur after the collapse (right),
which cannot be removed by the “matching adjustment”.

8 CONCLUSION

We present a global volumetric parameterization-based
tool to automatically generate an all hexahedral mesh

Fig. 12: Compared with the method in [3], which lacks
the ability of detecting and fixing inadmissible surface
singularities, our method is more robust in generating
high quality hexahedral meshes with their presence.

Fig. 13: Unlike our method, the collapse strategy [3] may
introduce numerous poorly shaped tetrahedral elements.
The histograms show the scaled Jacobian of the tetra-
hedral meshes. Minimal scaled jacobian of our result is
0.176, and Li et.at [3] is 0.003. Their results contains 55
cells with scaled jacobian < 0.176.

based on a 3D frame field. Although a manually con-
structed or adjusted frame field may lead to a singularity
graph compatible to a non-degenerate parameterization,
an automatically generated one usually will not. To elim-
inate degeneracy in parameterization caused by conflict-
ing rotational transitions in an automatically generated
frame field, the definitions and some analysis on com-
monly seen inadmissible internal and surface singularity
types are provided in this paper. We also devised a
framework to adjust these problematic singularities by
applying a sequence of local operations with guaranteed
convergence.

The major limitation of this work is that it can-
not detect and fix all the conflicting geometric and
topological by using the definition of inadmissible
singularity, and thus the method does not provide
a sufficient condition to guarantee a complete solu-
tion for automatic all hexahedral remeshing. There
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are degenerate cases that cannot be fixed by cur-
rent methods. Indeed, we find that even a singularity
graph containing no zigzag or compound singularities
can still lead to degeneracy, for example, near-misses.

We conjecture that it may be related
to near misses or certain global inad-
missible structure of the singularity
graph, which forces certain singular-
ity lines to be mapped to a single
point in the parameter domain. For
example, as shown in the inset (where
red and blue lines represent different types of singu-
larities, and gray lines are non-singularities) these con-
straints force a and e to have the same parameterization
values.

We mainly focused on the singularity structure. Thus,
to get a valid parameterization, we often use a relatively
small element size, which leads to an excessively large
number of hexahedra. As shown in [8], sizing is im-
portant for a more controllable tessellation, and proper
sizing can lead to coarser hexahedral mesh. Extension on
some recent works [25], [26] can potentially be employed
to coarsen the results into better meshes.
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