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Robust 3D Reconstruction With an RGB-D Camera
Kangkan Wang, Guofeng Zhang, Member, IEEE, and Hujun Bao, Member, IEEE

Abstract— We present a novel 3D reconstruction approach
using a low-cost RGB-D camera such as Microsoft Kinect.
Compared with previous methods, our scanning system can
work well in challenging cases where there are large repeated
textures and significant depth missing problems. For robust
registration, we propose to utilize both visual and geometry
features and combine SFM technique to enhance the robustness
of feature matching and camera pose estimation. In addition,
a novel prior-based multicandidates RANSAC is introduced to
efficiently estimate the model parameters and significantly speed
up the camera pose estimation under multiple correspondence
candidates. Even when serious depth missing occurs, our method
still can successfully register all frames together. Loop closure
also can be robustly detected and handled to eliminate the drift
problem. The missing geometry can be completed by combining
multiview stereo and mesh deformation techniques. A variety
of challenging examples demonstrate the effectiveness of the
proposed approach.

Index Terms— 3D reconstruction, structure from motion, loop
closure, 3D feature, global registration.

I. INTRODUCTION

3D RECONSTRUCTION is a fundamental problem in com-
puter vision and graphics, and can easily find applications

in many areas such as movie special effects, computer game,
virtual reality, and video editing. Although multiview stereo
techniques [1]–[3] can be used to obtain 3D models, the
robustness and accuracy is still an issue. With the development
of depth sensors in recent years, there are already many
research works about 3D reconstruction using low-cost depth
cameras (e.g. Microsoft Kinect). For example, Cui et al. [4]
described a method for 3D object scanning by aligning depth
images taken around an object with a time-of-flight camera.
Kinectfusion [5] was developed for accurate real-time mapping
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Fig. 1. Overview of our system. (a) The input RGB-D sequence of Porcelain.
(b) Our reconstructed 3D model without geometry completion shown in two
different views. (c) Our reconstructed 3D model with geometry completion.

of complex and arbitrary indoor scenes in variable lighting
conditions. This modeling method is popular because of
its time efficiency. However, the drift problem is not well
addressed in [5], which restricts its application in high-quality
3D reconstruction. Recently, Whelan et al. [6] proposed to
improve Kinectfusion by addressing the loop closure problem
using bag-of-words-based loop detector with SURF descriptor.
However, the proposed loop closure method highly relies on
the global distinctiveness of the SURF features, and requires
the inlier match ratio of two frames to be above 25%, which
may fail in challenging cases where there are many repeated
textures or no sufficient features.

In this paper, we propose a novel 3D reconstruction
approach with an RGB-D camera. Compared with previous
works, our system allows the RGB-D camera to freely move in
challenging environments where there are many repeated tex-
tures and the captured depth maps may contain large missing
areas due to range limitation or other factors (such as infrared
interference for Kinect), making 3D scanning more robust and
flexible. The main contributions are summarized as follows.
First, we propose to combine invariant visual and geometry
features and incorporate SfM technique to reliably handle fast
camera motion and depth missing problem. Second, a novel
global registration method with loop closure constraint is pro-
posed which can effectively address the drift problem. Third,
we propose a novel prior-based multi-candidates RANSAC
algorithm which can work very well in challenging cases,
where there are many repeated textures or structures. The
missing geometry caused by depth missing problem also can
be reliably completed by combining multi-view stereo and
mesh deformation techniques. Fig. 1 shows a challenging
example, where there are many repeated textures and many
captured depth maps contain large missing areas. The camera
motion is also rather fast (only capture 109 frames in total).
Our system still faithfully recovers the complete 3D model.
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II. RELATED WORK

A. 3D Local Features

Many 3D local features arise in recent years due to the
increasing availability of low-cost 3D depth sensors. The
computation of 3D local invariant features generally contains
two stages, i.e. feature detection and descriptor generation.
Some approaches defined the two stages together, such as
MeshDoG [7] and 3D SURF [8]. More works defined only
one of them. Salti et al. [9] investigated on the effectiveness
of many possible combinations between 3D detectors and
descriptors. Tombari et al. [10] provided an evaluation of
several 3D keypoint detectors. They evaluated the detectors
using three kinds of datasets, Laser Scanner, Space Time,
and Kinect datasets. Kinect datasets generally contain many
holes/artifacts and stronger depth noise. Although many detec-
tors performed rather well on the Laser Scanner and Space
Time datasets, their performance obviously degraded for
Kinect data. Tombari et al. [11] categorized the 3D descriptors
into two classes, Signatures and Histograms. They tested the
performance of some descriptors on Space Time data with
satisfying result. However, the performance on noisy data
remains to be investigated and improved. Until now, few works
try to use the 3D features for tracking on Kinect data because
of their sensitiveness to noise and outliers.

B. Multi-View Registration

Registration of multiple depth images is a significant and
fundamental research topic both in computer vision and com-
puter graphics. Strategies for registering multiple depth images
can be represented by two approaches, sequential or pairwise
registration and simultaneous registration. One straightforward
approach of sequential registration is to register each frame
to its previous frame. This method can easily accumulate
registration error. To alleviate this problem, frame-to-global-
frame methods [5], [12]–[15] were proposed. These methods
aligned each frame independently to a global model accu-
mulated from all previous frames. However, due to no loop
closure constraint, the drift problem still occurs especially for
a large scale scene.

Simultaneous registration aligns all frames at once.
Nishino and Ikeuchi [16] proposed a simultaneous registration
method based on an error metric computed from point-to-point
distance among each frame. This method needed to search
correspondence for each point in each frame with the point
clouds of all fames and minimize the global error metric
which is computationally expensive. Benjemaa et al. [17] and
Krishnan et al. [18] proposed to register multiple 3D point
sets using unit quaternions and through Optimization-on-a-
Manifold respectively. Both methods required known point
correspondences among overlapping parts of different point
sets. However, searching point correspondences among views
is exhaustive. Sharp et al. [19] and Lu et al. [20] defined a
graph of pairwise registration between the neighboring views
and distributed the accumulation error of pairwise registration
into all frames along the graph. Pairwise registration was first
estimated in geometry level. Accumulation error was then
distributed on an upper level, where the error was measured

in terms of the relative rotations and translations of pairwise
registration. These methods did not require point correspon-
dences between views, and can simultaneously minimize the
errors of all views rapidly. However, the input data used in
these methods are of high resolution and little noise, which
are typically acquired by a laser range scanner or a high
precision structured light 3D scanner. In addition, the manual
construction of a graph is complicated and tedious under a
long sequence of depth images with many closure loops. With
recent advancement in the development of graph optimization,
graph-based global alignment methods are popular in robotics
and computer vision. Kummerle et al. [21] summarized recent
works of graph-based SLAM and bundle adjustment, and
proposed a general framework for graph optimization.

C. 3D Reconstruction With RGB-D Data

Many RGB-D systems have been developed due to the
advent of RGB-D sensors, such as the Microsoft Kinect.
Steinbrucker et al. [22] introduced a fast energy-based
approach to rigidly align the RGB-D images for a static scene.
Khoshelham et al. [23] presented an epipolar search method
to obtain more accurate 3D correspondences and defined
adaptive weights for the 3D points based on their theoretical
random error to improve registration accuracy of RGB-D
data. By combining both low level feature correspondences
and high level plane primitives from an RGB-D camera,
Dou et al. [23] improved indoor 3D reconstruction in challeng-
ing cases with insufficient image features or geometry informa-
tion. Chen et al. [24] designed a compact GPU data structure
for live reconstruction of large-scale scenes. Whelan et al. [25]
made an extension to the Kintinuous [26] algorithm for spa-
tially extended KinectFusion, which is able to build dense fully
colored models of spatially extended extended environment in
real time. The above two real-time systems will fail when the
camera moves fast or the scene lacks visual/depth features.
Another limitation of these real-time systems is that they are
not able to solve drift problem. Methods for dealing with loop
closure were proposed in [27] and [28], which detected the
closure loops by frame-to-frame feature matching but relied
heavily on the distinctiveness of visual features and the high
inlier matching ratio. These two methods presented a similar
graph-based pose optimization which was also employed in
the recent work [29]. Fioraio et al. [30] detected loop closure
by performing a pairwise alignment using ICP in conjunction
with visual features between the first frame and the pre-
vious keyframe. However, many loop closures may be not
detected using the pairwise alignment method. What’s more
important is that using this simple loop closure constraint
is still difficult to thoroughly eliminate the drift, which is
demonstrated in the experiment of Section VI. Our method can
effectively eliminate the drift by detecting loop closure based
on the reference feature set relating many frames. Recently,
Whelan et al. [6] developed a method for handling loop closure
for large scale dense RGB-D SLAM which used the bag-of-
words-based loop detector [31] with SURF [32] descriptor.
By taking advantage of camera pose graph optimization and
non-rigid space deformation, they can obtain accurate dense
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Fig. 2. Overview of our system.

maps with local and global consistency over large scale trajec-
tories. However, the proposed loop closure detection method
highly relies on the distinctiveness of visual features, and
requires the inlier match ratio of two frames to be above 25%.
In contrast, our loop closure detection method utilizes 3D
information to significantly reduce matching ambiguity (only
needs 3 accurate 3D-3D correspondences). In addition, depth
missing and repeated texture/structure problems are not con-
sidered in their system. In contrast, with the proposed prior-
based multi-candidates RANSAC algorithm, our system can
handle very challenging cases where there are serious depth
missing and many repeated textures/structures.

III. OVERVIEW

We propose an effective approach for robust and accu-
rate 3D reconstruction with a handheld RGB-D camera
(e.g. Kinect). Fig. 2 gives an overview of our system. There are
five steps. In the first step, we detect the features on each frame
using both color and geometry information. In the second step,
we create a reference feature set which contains the features
from the first frame initially. For each new frame, we build the
correspondences between the newly extracted features and the
reference features by estimating the camera pose. The matched
features are merged and the unmatched features are added into
the reference feature set. In the third step, we employ bundle
adjustment to simultaneously optimize 3D positions of the ref-
erence features and camera poses of the subsequences for each
l frames. l can be adjusted according to the frame rate. For a
normal frame rate sequence, we generally set l = 30. If loop
closure is detected, global refinement is applied to eliminate
the accumulation error. In the fourth step, after all frames are
registered into the reference coordinate frame, if necessary,
we can use multiview stereo technique [2] to recover the
depth maps, and use them to complete the missing geometry
caused by depth sensor. Finally, we can construct the 3D model

Fig. 3. Keypoint detection comparison. (a) 117 keypoints are found
using SIFT. (b) 261 keypoints are found using geometry information.
(c) 513 keypoints are found using both geometry and texture information.
The detected keypoints are circled in red.

using either Poisson surface reconstruction method [33] or the
surface reconstruction method by KinectFusion [5].

IV. FEATURE EXTRACTION AND POSE ESTIMATION

A. Feature Extraction

Feature extraction includes two steps, keypoint detection
and descriptor generation. Since our processed scene may be
very complex and there are large textureless regions with
strong occlusions, only using traditional feature extraction
methods (e.g. SIFT) may not extract sufficient and stable
features. Therefore, we propose to combine color and depth
information to extract more stable features.

1) Keypoint Detection: The Harris corner detector [34] is a
popular point detector due to its robustness to rotation, scale,
illumination variation and image noise. By combining the
surface normal and the intensity gradient, the Harris matrix
can be defined as follows:

C6Di =
∑

k∈W

GkG�
k , (1)

where Gk = (N�
k , D�

k )� = (Nx , Ny , Nz , Dx , Dy , Dz)
�, and

W is the neighbor set of point i . N�
k = (Nx , Ny , Nz) is the

surface normal of point k, and D�
k = (Dx , Dy, Dz) is the

intensity gradient at point k. D�
k is orthogonal to the surface

normal and points in the steepest descent direction of local
intensity. The vector’s magnitude indicates the rate of intensity
change.

The corner strength in a point is computed using the third
eigenvalue of the Harris matrix. If the corner strength of a
point is larger than a threshold and that of its neighbors, we
will detect the point as a corner. The number of keypoints
will increase if both surface normal and texture information
are used. A keypoint detection example is shown in Fig. 3.
The implementation of Harris corner detection on point cloud
and RGB image can be found in Point Cloud Library.1

1PCL: http://www.pointclouds.org/
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2) Descriptor Generation: For each detected keypoint, we
will generate a descriptor to describe it. We employ SIFT
descriptor [35] as the color component of our descriptor. The
geometry component is generated using FPFH [36] which
describes the local geometry around a point. We first normalize
the color and geometry components respectively, and then
combine them to define the final feature descriptor similar
to [37]:

f = (α f2D, β f3D), (2)

where f2D is the normalized vector of color component, and
f3D is the normalized vector of geometry component. The
color and geometry parts of the combined descriptor can be
scaled by a constant (α or β) to adjust their influences on
the whole descriptor. Actually, we find that good results can
be obtained only using the color or geometry component in
most of our examples except the extremely textureless cases.
Therefore, for speedup, in many examples, we only use the
SIFT descriptor as our feature descriptor.

B. Pose Estimation

By matching the 3D features of current frame with the ref-
erence features, we can obtain some 3D-3D correspondences,
many of which are incorrect. Here, we propose a Prior-based
Multi-candidates RANSAC, which can efficiently and reliably
find the inliers and estimate the camera pose of current frame
by minimizing the following energy function:

E(R, t) =
∑

i

‖(Rgi + t) − pi‖2, (3)

where (pi , gi ) is a pair of 3D-3D correspondence ( pi is
a 3D feature on the current frame, and gi is a reference
feature). R is the rotation matrix of the current frame, and
t is the translation vector. R and t transform the point from
the reference coordinate frame to local coordinate frame of
the camera. We call this pose estimation method as 3D-3D
method. The proposed Prior-based Multi-candidates RANSAC
will be described in the next section. If at least three cor-
respondences with the reference feature set are built during
feature matching, the 3D features of the current frame can be
transformed into the reference coordinate frame successfully.
However, Kinect only can capture valid depth information
within a certain range (approximately 0.5–6m) and is easily
interfered by infrared. When most depth information is not
captured for current frame, it is challenging for the above
registration to work well. Especially, if less than 85% of the
mapped features find the corresponding reference features, we
will employ another two methods (i.e. 2D-3D and 2D-2D
camera pose estimation), to make the registration more robust.

First, we match the extracted 2D features on the cur-
rent frame with the reference features by comparing their
descriptors (only color component). With the obtained 2D-3D
correspondences, the camera pose of the current frame can be
estimated by minimizing the following energy function:

E(R, t) =
∑

i

‖K (Rgi + t) − xi‖2, (4)

Fig. 4. Examples with significant depth missing. Top row: three selected color
images. Bottom row: the corresponding depth images. The black regions are
the depth missing areas.

where (xi , gi ) is a pair of 2D-3D correspondence (xi is a
2D feature on the current frame and gi is a reference feature).
K is the intrinsic matrix. We call this camera pose estimation
method as 2D-3D method. After registering 2D features into
the reference coordinate frame, we compute the ratio of the
number of 3D features on the current frame that find corre-
sponding reference features to the total number of 3D features.

Second, we match the extracted 2D features on the current
frame with the 2D features on the previous frame by compar-
ing their descriptors (only color component). Then, the relative
camera pose between these two frames can be estimated
using the Five-Point method [38]. The translation scale can
be easily estimated by the inlier correspondences which have
depth information on both frames. The rotation matrix remains
the same. Finally, the camera pose for the current frame
is estimated according to the relative camera pose and the
camera pose of previous frame. We call this camera pose
estimation method as 2D-2D method. The number ratio of
3D features that find correspondences is also computed. From
the estimated poses using the above three methods, we choose
the pose estimated by the method with the highest ratio.

By projecting the reference feature points to the current
frame using the estimated camera pose, we can build more
2D-3D correspondences for the current frame with the refer-
ence features. For the 3D features on the current frame that
have depth information, we will find their correspondences
with the reference features, and the unmatched ones are added
into the reference feature set. For the 2D features without
depth information, their 3D positions can be triangulated with
the matched 2D positions, and then added into reference
feature set.

We capture a sequence of 1, 228 frames to test the effective-
ness of our algorithm on depth missing data. During capture,
we put the Kinect very close to the objects so that most
areas of the captured frames may miss depth information, as
shown in Fig. 4. The final reconstructed 3D model and camera
trajectory are shown in Fig. 5, which demonstrates that our
algorithm can handle this challenging case successfully.

V. FEATURE MATCHING

We define a reference feature set and initialize it by adding
the extracted features on the first frame. Then for the following
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Fig. 5. The reconstruction result from the captured RGB-D data with
significant depth missing. Left: the reconstructed 3D model. Right: the
recovered camera trajectory.

Fig. 6. Illustration of multi-candidates feature matching. (a) Features in
frame f1 may find false correspondences on frame f2 through the nearest
feature matching. The false correspondences are highlighted by red dotted
lines. Using these correspondences, two frames will not be aligned. (b) Each
feature in frame f1 searches multiple nearest neighboring features on frame f2
as correspondence candidates. The correct correspondences are included in
the multi-candidates and highlighted using green dotted lines. By searching
among all correspondences, two frames can be registered successfully.

frames, we match the extracted features with the reference
ones, and estimate the camera pose with the proposed Prior-
based Multi-candidates RANSAC. The correspondences found
by feature matching may contain many outliers, so they
cannot be directly used for bundle adjustment. Instead, more
accurate and dense correspondences are found according to
the 3D position distances between the registered features of
the current frame and the reference features.

A. Multi-Candidates Feature Matching

The 2NN heuristic matching method described in [35]
highly relies on the distinctiveness of the features, which
may have problems in the challenging cases with repeated
textures/structures. In addition, it is also very likely that
the found correspondence with the most similar descriptor
is not the correct one, especially in the case with repeated
textures/structures. So it is not robust to use a standard match-
ing method to find correct correspondences. Here, we pro-
pose to find multiple nearest neighboring features from the
reference feature set as the correspondence candidates for
each feature on the current frame. An illustration is shown
in Fig. 6. The set of found neighboring features is denoted as
C = (c1, c2, . . . , cb) in ascending order of feature descriptor
distance. It is reasonable to assume that the correct correspon-
dence is in the candidate set, so the following procedure is to
find the correct one.

In order to handle fast camera motion, for frame i , we first
match the extracted features with those on frame i − 1, and

Algorithm 1 A Brief Summary of Our Proposed PMCSAC

estimate its camera pose. Then we transform the features of
frame i to the reference 3D coordinate with the estimated cam-
era pose for initial alignment, and search the correspondences
from the neighboring reference features. The searching range
is limited to a small sphere which is centered at the mapped
feature. The radius of the sphere is generally set to 0.05m. This
local searching strategy not only can accelerate the matching
process but also improve the robustness.

B. Prior-Based Multi-Candidates RANSAC

It will be time-consuming to use a traditional RANSAC to
find a good hypothesis if the inlier ratio is rather low. Here, we
propose a Prior-based Multi-Candidates RANSAC (PMCSAC)
to handle this problem. Inspired by [39], since both depth and
color image contents are similar among adjacent frames, we
can use the inlier distribution information from the previous
frames to guide the point sampling of the current frame.
The sample with higher inlier probability is more likely to
be selected than a sample with a lower value. In this way,
an all-inlier minimal subset can be retrieved much earlier.
In addition, we fuse the idea of local optimization proposed
in LoSAC [40] into our PMCSAC framework. The procedure
of the PMCSAC algorithm is summarized in Algorithm 1.
The PMCSAC algorithm can be extended for a variety of
model estimation. In the case of pose estimation, the inputs
of the algorithm are the matched feature correspondences
between current frame and the reference feature set, and
the inlier distribution information of previous frames. The
outputs are the pose parameters of the current frame. Sampling
strategy, hypothesis evaluation and termination criterion, will
be discussed below. Different to [39], our sampling strategy is
defined in 3D space, and supports multiple candidates.

1) Sampling Strategy: Generally, we evenly divide the
whole space surrounding the object into 30 ∗ 30 ∗ 30 grids.
In each grid Gi , we record the inlier ratio of the previous
frames. Assume that n features accumulate in grid Gi and
each feature has b correspondence candidates. If nc features
find the correct correspondences among their candidates, we
can estimate the probability of sampling an inlier in the
grid Gi as

ε∗
i = nc

n
. (5)

We then define the probability distribution as

pi = ε∗
i /

∑

j

ε∗
j , (6)
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where pi denotes the probability of sampling a point from Gi .
After sampling a point xi from a grid, the correspondence
from all b candidates is selected for xi . According to the 3D
Euclidean distance between each candidate and the point, we
define the probability for sampling candidate ck as

qk = δ

d + δ
, (7)

where d is the 3D Euclidean distance between candidate
ck and xi , and δ is a parameter for adjusting the effect
of distance on the probability. The probability for sampling
candidate ck is normalized as

q∗
k = qk∑b

j=1 q j
. (8)

Thus, a point sample for the current frame is drawn in two
steps. In the first step, a point is selected from a grid according
to probability defined in Equation (6). In the second step, the
correspondence candidate of the point is sampled according to
candidate sampling probability defined in Equation (8).

2) Hypothesis Evaluation: Since the outlier number may
be much larger than the inlier number, we do not use the
inlier number as the evaluation criterion for a hypothesis.
We evaluate a hypothesis using the distribution of inliers. The
distribution of inliers is described by a covariance matrix,

C = 1

N − 1

∑

i

( fi − f̄ )( fi − f̄ )T , (9)

where N is the number of inliers, fi is the 3D position of
i th inlier feature, and f̄ = 1

N

∑
i fi is the mean 3D position

of all inliers. The score of the evaluated hypothesis is calcu-
lated as

s = 4π
√

det (C)

3A
, (10)

where A is the grid volume for normalization, and
4
3π

√
det (C) is the volume of the ellipsoid representing the

inlier distribution. The intuition of this evaluation is that the
best hypothesis should have a large number of inliers which
are evenly distributed in the whole space.

3) Termination Criterion: We denote ε̂i as the inlier ratio of
Gi for the current best hypothesis. The probability of selecting
an inlier sample is

∑
i pi ε̂i/b. The probability of selecting

an all-inlier minimal subset is (
∑

i pi ε̂i/b)m , where m is the
size of minimal subset. For camera pose estimation in our
case, m = 3. The number of the iterations Ks should satisfy
the following termination criterion,

(1 − (
∑

i

pi ε̂i/b)m)Ks < η. (11)

If the probability of all the Ks samples containing outliers is
less than η, the sampling process will be terminated.

C. Building Correspondences With Refinement

With the matched 2D-3D and 3D-3D correspondences, we
can employ the joint 2D+3D bundle adjustment framework
proposed by [41] to jointly refine the camera motion and the
3D positions of the reference features. We divide the whole

sequence into a set of subsequences S = (S1, S2, . . . , Sn)
where each subsequence contains at most 30 frames. When
we have recovered the camera poses of all frames in Si , we
will perform a local bundle adjustment for Si (the 3D points
and camera poses in previous subsequences (S1, S2, . . . , Si−1)
are fixed). This strategy can refine the 3D positions of the
reference features in time to alleviate the drift problem. For
each frame t ∈ Si , with the estimated camera pose, we can
project its extracted features to the reference 3D coordinate,
and search their nearest reference features according to the
Euclidean distance of 3D positions. Taking into account of
the potential drift problem, for each feature, we first search
its closest correspondence from the refined reference features
in the last subsequence Si−1. If the distance is lower than
0.006m, we think they are matched. Otherwise, we further seek
its closest correspondence in Si . This strategy can effectively
reduce the false matching caused by drift problem.

VI. GLOBAL REFINEMENT

Performing local bundle adjustment on consecutive sub-
sequences can alleviate but not completely address the drift
problem, especially for loopback sequences. We need to detect
the loop closure, and build a loop closure constraint to
eliminate the drift problem. According to the estimated camera
poses, each frame can find its overlapping frames from the
whole sequence. If two non-consecutive frames (i, j) have
large overlapping, we will extract the reference features dis-
tributed in frame i and its neighboring frames. The reference
feature subset is denoted as Fi . We also extract the reference
features distributed in frame j and its neighboring frames.
The reference feature subset is denoted as Fj . We align these
two reference feature subsets. If more than 20% of feature
points in Fi find correspondences in Fj , we think the loop
closure is detected, and merge the matched reference features.
With the updated reference features and correspondences, we
can employ bundle adjustment to globally refine the camera
motion and 3D points.

It will be time-consuming to perform bundle adjustment
with a large number of frames and 3D points. Therefore,
we propose to reduce the number of involved features, which
can significantly speed up the bundle adjustment without
reducing much accuracy. For each reference 3D feature gi ,
we compute the frame set Fi where each frame has a feature
corresponding to gi . For each frame j in Fi , we count the num-
ber ni j of feature correspondences with the reference feature
set. If for all frames in Fi , ni j −1 is larger than a threshold κ ,
we will remove gi and set ni j = ni j − 1. After the above
process, the number of reference features can be significantly
reduced but all frames still have at least κ corresponding ref-
erence features. This simple strategy works rather well in our
experiments.

We investigate the effectiveness of error distribution
using our global registration. The test RGB-D data (about
1, 400 frames) is captured around a computer box. We com-
pare our method with another strategy that assumes the camera
returns to the original position and only matches the first
and last frames. The Mean Correspondence Error (MCE)
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Fig. 7. Distribution of accumulation error using the simple loop closure
constraint based on the correspondences between the first and last frames.
The last frame has a large MCE error due to the additionally added corre-
spondences with the first frame. After global refinement, the error is reduced
but still much larger than the mean error.

for each frame measures the mean Euclidean distance of
correspondences which is defined as

MCE(i) =
∑mi

k=1

√
d(Q(Ti , g j ), pik)

2

mi
, (12)

where pik is the kth 3D feature on frame i , g j is the
corresponding reference feature of pik , mi is the number
of feature correspondences with the reference feature set on
frame i , and Q(Ti , g j ) is the transformed 3D position of
reference feature g j under transformation Ti . We compute
the MCE for each frame before and after global refinement.
Fig. 7 shows the error for each frame using the loop closure
constraint based on the correspondences only between the first
and last frames. We find that the last frame cannot align well
with the first frame due to error accumulation. Before global
refinement, the MCE error of the last frame is 21.8mm. After
global refinement, the MCE error is reduced to 6.9mm but
still much larger than the mean error 1.9mm. It demonstrates
that using this simple loop closure constraint is still difficult
to eliminate the drift problem. Fig. 8 shows the results of our
method. Before global refinement, the last frames still have
large MCE error. After global refinement, they are reduced to
the mean error level, which demonstrates the effectiveness of
our method.

Fig. 9 shows the reconstructed models of a computer box
using different loop closure constraints. We find that the gen-
erated results are distorted due to large registration error using
both Kinectfusion [5] and loop closure constraint between the
first and last frames. The computer box includes two large
planes, while Kinectfusion fails in the case when the sensor
is faced by a large planar scene. In contrast, our method can
recover the detailed model for the computer box with high
registration accuracy. Note that in this example we only use
the depth in a predefined bounding box surrounding the object
in the reference coordinate frame.

Fig. 8. Distribution of accumulation error using our method. The frames in
the end part have high MCE error due to the correspondences with reference
features distributed near the first frame. After global refinement, the error is
successfully distributed through all frames evenly.

Fig. 9. The reconstructed computer box models using different methods.
(a) Kinectfusion [5]. (b) Using the loop closure constraint only between the
first and last frames. (c) Our method.

VII. GEOMETRY COMPLETION

To reconstruct a complete model for missing data, we first
fuse all depth maps using TSDF and fill the missing depth for
each frame through ray casting. Then, we recover the depth
of each frame using the method proposed by [2], and further
complete the missing depth of each frame using the proposed
geometry completion algorithm.

Many factors, such as occlusion, textureless region, and
strong reflection, can easily cause erroneous depth recovery by
multi-view stereo (MVS) technique [2]. Generally, the scanned
depth maps by Kinect are more precise than the recovered
depth maps by MVS. By combining the captured depth
data and recovered depth maps by MVS, we can complete
the missing depth to obtain an as-complete-as-possible 3D
model. For each frame, we triangulate the captured depth
map to obtain a 3D mesh, and define it as target model. The
3D model generated with the recovered depth map by MVS
is defined as source model. We use the surface registration
method proposed in [42] to align the source model to the
target model to complete the missing geometry. In [42],
preliminary correspondences are found by a nearest point
search and updated after each deformation. In our geometry
completion, since the color images and captured depth maps
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are already calibrated, the correspondences between the source
and target models can be easily determined and fixed. The
surface registration method proposed in [42] defined three
terms in its cost function, i.e. distance term, stiffness term, and
landmark term. Based on the fixed correspondences, we only
utilize distance term and stiffness term in the cost function of
our geometry completion. Similar to [42], each vertex on the
source model is assigned one affine 3 ∗ 4 transformation Xi

that deforms the vertex into the corresponding vertex on the
target model. The unknown transformations for all vertices are
organized in a 4n ∗ 3 matrix, X := [X1 · · · Xn]T .

A. Distance Term

With the fixed correspondences (vi , ui ) between the source
model and the target model, the sparse matrix D which maps
the 4n ∗ 3 matrix of unknown X onto displaced vertices can
be defined as,

D :=

⎡
⎢⎢⎢⎣

vT
1

vT
2

. . .

vT
n

⎤
⎥⎥⎥⎦ , (13)

vi is represented with homogeneous coordinate vi =
[x, y, z, 1]T . The corresponding vertices on the target model
are arranged in a matrix U := [u1, . . . , un]T. The distance
term is expressed under Frobenius norm ‖ · ‖F,

Ed(X) = ‖W(DX − U)‖2
F , (14)

where W is a weight matrix denoted as W :=
diag(w1, . . . , wn). If a vertex on the source model does not
find the corresponding vertex on the target model, its weight
wi is set to zero.

B. Stiffness Term

The stiffness term is defined to penalize the differences
between transformations of neighboring vertices using a
weight matrix G := diag(1, 1, 1, γ ).

Es(X) =
∑

i, j∈ε

‖(Xi − X j )G‖2
F . (15)

In our case, the edge set ε is obtained according to neighboring
pixels. If two pixels are neighbors, there is an edge between
their corresponding vertices. The edges and vertices of the
source model are numbered and its edges are directed from the
lower numbered vertex to the higher numbered one. If edge r
connects the vertices (i, j), the nonzero entries of the node-arc
incidence matrix M in row r are Mri = −1 and Mr j = 1. The
stiffness term can be represented in matrix form as follows,

Es(X) = ‖(M ⊗ G)X‖2
F , (16)

where ⊗ is Kronecker product.
By combining the distance and stiffness terms, we define

the following registration cost function similar to [42],

E(X) = Ed(X) + αEs(X), (17)

where α is the stiffness weight. The registration cost function
can be rewritten in the matrix form,

E(X) =
∥∥∥∥

[
αM ⊗ G

WD

]
X −

[
0

WU

]∥∥∥∥
2

F

= ‖AX − B‖2
F (18)

The cost function can be minimized and solved in the least-
square sense.

In order to simultaneously keep the geometry detail of the
source model and smoothly connect with the target model,
the stiffness weight α is adjusted in a descending manner
during deformation as [42]. In the beginning, α is set to a
large value to rigidly align the source model to the target
model. Then, α is set to a smaller value to allow more
local deformation. When the change of X is lower than a
threshold, the deformation converges. Then, we can use the
corresponding deformed geometry to fill the missing parts
on the target model. After completing depth maps of all
frames, we can construct the complete 3D model using either
Poisson surface reconstruction method [33] or the surface
reconstruction method by KinectFusion [5].

VIII. EXPERIMENTS

To evaluate the performance of the proposed approach, we
have conducted various experiments (including human head
and body modeling). All the RGB-D datasets are captured by
a Kinect.

We measure the average computation time for each step of
our algorithm on a desktop PC with Intel i5 3.1 GHz CPU and
Nvidia GeForce GTX 560 SE display card. Table I lists the
time statistics of different examples. We use parallel computa-
tion during feature extraction and matching process with four
threads. The major computation is spent on bundle adjustment
and global refinement. The times of bundle adjustment and
global refinement, the total running time, and normalized
time (seconds per frame) are listed for each dataset. Since
serious depth missing occurs in the “Desk” and “Indoor”
datasets, we need to use 2D-3D and 2D-2D correspondences
for camera pose estimation, therefore the feature matching
time is larger than other examples. In the “Synthetic Head”,
“Porcelain”, and “Pottery” datasets, the frame number of each
subsequence on which local bundle adjustment is applied, is
set to 4, 5 and 6 respectively. In other datasets, it is set to 30.

A. Evaluation of Global Registration

We first compare our global registration with other two
methods (i.e. Global-ICP and Kinectfusion) using synthetic
data. Masuda et al. [15] registered the new frame using ICP
with the merged point cloud from all previously processed
frames, which we call as Global-ICP. A merged global point
cloud is generated by merging points on each frame into
the global coordinate frame in this method. Kinectfusion [5]
fused all previous frames using a volumetric representation
(TSDF) [43], rendered a dense surface prediction by ray-
casting the TSDF into the camera pose of previous frame,
and tracked the new frame by registering it against the
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TABLE I

TIME STATISTICS FOR THE EXAMPLES USED IN OUR EXPERIMENTS. AVERAGE RUNNING TIME IS COMPUTED FOR EACH STEP: FEATURE EXTRACTION,

FEATURE MATCHING, BUNDLE ADJUSTMENT, AND GLOBAL REFINEMENT. THE TOTAL RUNNING TIME OF THESE

STEPS AND NORMALIZED TIME (SECONDS PER FRAME) ARE ALSO LISTED

Fig. 10. Head and bear models for generating synthetic sequences. (a) Head
model. (b) Bear model.

Fig. 11. The depth images of frames 66, 123, and 133 in the “Synthetic
Bear” sequence. The black regions are those depth missing areas.

surface prediction. To demonstrate the effectiveness of our
global refinement, we also compare our result with that
without global refinement.

Synthetic Data: We first generate a head model and a bear
model using our proposed reconstruction method. The recon-
structed models are shown in Fig. 10. We then produce the
color images and the corresponding depth images of two syn-
thetic sequences by rendering the head and bear models from
surrounding viewpoints respectively. The “Synthetic Head”
sequence consists of 14 frames with wide baselines. The “Syn-
thetic Bear” sequence consists of 134 frames. Since the bear
mainly lies in center of the rendered images, we set the depth
values of all pixels within the 250 × 250 window centered
at the depth images to zero. This makes sure more than half
of the whole depth is lost on all frames. The depth of some
frames are shown in Fig. 11. Fast camera motion and large
missing depth makes the data challenging to be accurately
registered. The camera trajectories of the two sequences are

Fig. 12. (a) Camera trajectory of “Synthetic Head” data with 14 frames.
(b) Camera trajectory of “Synthetic Bear” data with 134 frames.

shown in Fig. 12. We make the resolution of rendered images
nearly the same as the real data. Distances between synthetic
camera and the model are always within 1.0m. The noise level
in depth data is about 2 ∼ 3mm when Kinect data is captured
at a range 0.8 ∼ 1.0m. So we add a random noise between
[−3mm, 3mm] into all rendered depth images to simulate the
real data.

Since we know all ground truth camera parameters, the
registration result can be evaluated easily. All points p (p ∈
[1, . . . , P]) on frame i are transformed into the global coor-
dinate frame using the estimated camera parameters and the
ground truth parameters respectively, generating two trans-
formed point clouds Xe(p) and Xg(p). The two transformed
points should be identical if the parameters are accurately
estimated. We compute the Root Mean Square error (RMSE)
to measure the registration error by

RMSE(i) =
√√√√ 1

P

P∑

p=1

‖Xe(p) − Xg(p)‖2. (19)

Table II lists the measured registration error of each frame
for “Synthetic Head” data and Fig. 13 shows the registration
error of “Synthetic Bear” data. Tables III and IV show
the average and maximum errors of different methods. The
results show that our approach can align all depth images
of each sequence with a lower error. In particular, the error
without global refinement is higher than that with our global
refinement. For “Synthetic Head” data, since the accumulation
error is already rather small, the difference between with and
without global refinement is also not obvious.
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TABLE II

REGISTRATION ERROR(mm) FOR EACH FRAME OF “SYNTHETIC HEAD” DATA USING DIFFERENT REGISTRATION METHODS. SINCE THE FIRST FRAME

IS SET TO THE REFERENCE FRAME, THE ERROR IS ZERO FOR ALL METHODS

Fig. 13. Registration error (mm) for each frame of “Synthetic Bear”
data using different registration methods. (a) KinectFusion [5]. (b) Global-
ICP [15]. (c) Our method without global refinement. (d) Our method with
global refinement.

TABLE III

THE AVERAGE AND MAXIMUM REGISTRATION ERROR (mm) USING

DIFFERENT METHODS FOR “SYNTHETIC HEAD” DATA

TABLE IV

THE AVERAGE AND MAXIMUM REGISTRATION ERROR (mm) USING

DIFFERENT METHODS FOR “SYNTHETIC BEAR” DATA

However, we find that fast camera motion and large missing
depth dramatically affect the performance of Global-ICP and
Kinectfusion. Independent registration error for each frame is
fused into the global model, and the registration error accu-
mulates. We see the error under Kinectfusion is higher than
that of Global-ICP. This is because that Global-ICP aligns the
new frame into the merged global point cloud directly while
Kinectfusion aligns the new frame to the surface prediction
generated from the previous frame pose. The registration error
of previous frame affects the registration of the new frame.

Fig. 14. Comparison with [29]. (a) Zhou and Koltun [29]. (b) Our approach.
Because the residual error is too large to be smoothed out, there are visible
artifacts in the reconstructed surface by [29]. In contrast, our method can
effectively eliminate the accumulated error and achieve better reconstructed
surface.

We also capture a challenging indoor sequence with com-
plex camera motion. Serious depth missing occurs in some
frames. Fig. 15 illustrates the reconstruction result of the
indoor scene. In addition, we extensively test the RGB-D data
from [29]. The comparison result is shown in Fig. 14. In [29],
relative pose estimates between connector frames are treated as
soft constraints during global optimization of the pose graph.
When the residual error is too large in relative pose estimates
of some connector frames, the error cannot be eliminated
completely. This leads to visible artifacts in the reconstructed
surfaces, as shown in Fig. 14(a). In contrast, our method can
achieve better result thanks to using bundle adjustment and
global refinement based on point-to-point correspondences.
The reconstructed 3D models of bag, bear, and human head are
shown in Fig. 16. Fig. 17 shows the reconstructed 3D model
of a human body.

B. Evaluation of PMCSAC

We compare the proposed PMCSAC algorithm with the
standard RANSAC [44], LoSAC [40], and Multi-GS [45].
To test the effectiveness of the inlier ratio prior, we compare
PMCSAC with MCSAC (without inlier ratio prior). The inlier
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Fig. 15. Reconstruction result of an indoor scene. The length of camera
trajectory (shown right) is about 73.5m.

Fig. 16. Reconstructed 3D models by our method from bag, bear, and human
head datasets, respectively. (a) A color image. (b) The corresponding captured
depth data. (c)∼(e) Different views of the reconstructed models.

Fig. 17. The reconstructed human 3D model by our method.

threshold of LoSAC is set to 6mm as used in our method. The
feature matching is performed with two strategies, local match-
ing and global matching. The local matching strategy searches
the corresponding features within a sphere around the feature
with the radius of 50mm, while the global matching strategy
searches among all reference features. So the comparison is
performed in the cases of local matching and global matching,
respectively. We search 3 candidate correspondences from the
reference features for each feature. For other methods, the
nearest neighboring feature is found as the correspondence
for each feature. We use all candidates of each feature for
hypothesis evaluation. The termination criterion is the same
for all algorithms as Equation (11), and the probability of
selecting an inlier sample is computed according to the method
of point sampling for different algorithms. We capture a

Fig. 18. The box data with checkerboard texture used in evaluation of
PMCSAC.

TABLE V

THE RUNNING TIME OF DIFFERENT ALGORITHMS

WITH LOCAL MATCHING

TABLE VI

THE RUNNING TIME OF DIFFERENT ALGORITHMS

WITH GLOBAL MATCHING

sequence around a large box with checkerboard texture as
the test data, as shown in Fig. 18. The sequence contains
900 frames in total. The average number of extracted features
over all frames is 1, 270. The maximal iteration number is
set to 20, 000 and 200, 000 for cases of local matching and
global matching, respectively. Tables V and VI report the
average running time and iteration number of all matching
algorithms and total running time over the sequence. From the
results, we can see that there is a remarkable improvement
of our PMCSAC both in running time and iterations over
other methods. Multi-GS requires a large running time due to
high computational demands of sorting residual and computing
preference correlation especially when the size of datasets
is larger than 500. Under the case of global matching, the
inlier ratio becomes much lower and more iterations are
required. Because Multi-GS with global matching is too time-
consuming (taking about 2, 112s to process one frame), we do
not make the experiment of Multi-GS with global matching.

We use the success ratio to qualify the convergence rate.
The success ratio is computed as the score of current best
hypothesis to that of the best hypothesis. The score of the
best hypothesis is set to the maximal score obtained over all
methods over all iterations. The success ratios of all methods
along with the growing iteration number are shown in Fig. 19.
From the results, we can see that our proposed PMCSAC can
achieve a much higher success ratio at early stage of iterations
and reach a stable state faster than other methods. Without
inlier ratio prior, the performance of MCSAC is comparable
with LoSAC. Multi-GS fails to estimate a good model at the
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TABLE VII

THE RESULT STATISTICS USING DIFFERENT NUMBER OF CANDIDATES IN THE CASE OF LOCAL MATCHING

TABLE VIII

THE RESULT STATISTICS USING DIFFERENT NUMBER OF CANDIDATES IN THE CASE OF GLOBAL MATCHING

Fig. 19. The success ratio of different algorithms. (a) In the case of local
matching. (b) In the case of global matching.

early stage since there are many outliers which make the
preference analysis of Multi-GS unreliable. In contrast, our
PMCSAC can achieve higher accuracy of model estimation in
much less time.

Fig. 20. Results of geometry completion. (a) Raw model captured by the
depth sensor. (b) Completed model using captured depth from other frames.
(c) Recovered model from the color image sequence. (d) Geometry completion
result. (e) Different views of reconstructed model. Note that the missing parts
in (a) are filled up.

We examine the effects of the number of candidate cor-
respondences. The candidate number ranges from 1 to 10.
For each number of candidate, we record the average running
time, iteration number, and the inlier ratio. The inlier ratio
is computed between the number of features that find correct
correspondences and the total number of features. The results
are shown in Tables VII and VIII. As the candidate number
increases, the inlier ratio also becomes higher. However, the
running time increases accordingly. Thus, it is better to strike
a balance between the inlier ratio and the running time. In our
experiments, we empirically use 1 ∼ 3 candidates.

C. Evaluation of Geometry Completion

In order to demonstrate the effectiveness of the proposed
geometry completion algorithm, we capture a sequence around
the pottery with two infrared flashlights interfering the depth
sensor. To enlarge the camera motion, we only sparsely sample
120 frames. Influenced by the infrared, most depth maps
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miss over 50% depth information, so Kinectfusion [5] cannot
handle this data. Please refer to the supplementary video for
the complete frames. We first apply our global registration
algorithm to register all frames into the same coordinate frame.
We then fill up the missing depth of each frame with the
depth information from other frames, as shown in Fig. 20(b).
Then we use the color images to recover the depth maps for
each frame by MVS technique [2], and use them to complete
the depth data. Fig. 20(c) shows the recovered model by [2].
Although the geometry is relatively coarse and some parts
are even inaccurate due to strong reflection and textureless
problem, the major shape of the pottery is faithfully recovered.
The geometry completion results are shown in Fig. 20(d).
The final model is obtained by using the completed depth
maps, as shown in Fig. 20(e). The geometry details are
faithfully preserved, which demonstrates the effectiveness of
the proposed method.

IX. CONCLUSION

In this paper, we propose a novel robust 3D reconstruction
system with an RGB-D camera. We use visual and geometry
features and combine SFM technique to make registration
more robust especially in depth missing cases. In order to
handle the repeated textures/structures, we propose a Prior-
based Multi-Candidates RANSAC (PMCSAC) algorithm to
make the feature matching more robust and efficient. We also
use 3D information to help detect the loop closure and perform
global refinement to eliminate the drift problem. The missing
geometry due to depth missing can be effectively completed
by combining multi-view stereo and mesh deformation tech-
niques. Experimental results demonstrate that our method can
achieve better 3D reconstruction results than the state-of-the-
arts especially in challenging examples.

Currently, our system still cannot be applied to real-time
applications. There is much room for our system to be accel-
erated since the proposed system is implemented using our
unoptimized code. For long loopback sequences, the bundle
adjustment and global refinement dominate the computation.
There is already real-time bundle adjustment implementa-
tion [46] which can benefit our system. In addition, since our
feature extraction and matching can be easily parallelized, we
plan to use GPU to dramatically accelerate the system so that
it can be applied in real-time applications in the future.
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