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Abstract—Extracting spatio-temporally consistent segments
from a video sequence is a challenging problem due to the com-
plexity of color, motion and occlusions. Most existing spatio-tem-
poral segmentation approaches have inherent difficulties in
handling large displacement with significant occlusions.
This paper presents a novel framework for spatio-temporal
segmentation. With the estimated depth data beforehand by a
multi-view stereo technique, we project the pixels to other frames
for collecting the boundary and segmentation statistics in a video,
and incorporate them into the segmentation energy for spatio-tem-
poral optimization. In order to effectively solve this problem, we
introduce an iterative optimization scheme by first initializing
segmentation maps for each frame independently, and then link
the correspondences among different frames and iteratively refine
them with the collected statistics, so that a set of spatio-temporally
consistent volume segments are finally achieved. The effectiveness
and usefulness of our automatic framework are demonstrated via
its applications for 3D reconstruction, video editing and semantic
segmentation on a variety of challenging video examples.

Index Terms—3D reconstruction, spatio-temporal segmentation,
video editing.

I. INTRODUCTION

W ITH the increasing prevalence of digital cameras and
intelligent mobile phones, more and more videos are

shared and broadcasted over the Internet. An effective video
editing tool is highly on demand for users to conveniently
modify and enhance the video contents. However, compared
to image editing, video editing is much more challenging due
to much larger data and difficulty of maintaining the temporal
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coherence. To thoroughly solve these problems, we need a
powerful tool to segment the video into a set of temporally con-
sistent layers. However, spatio-temporal video segmentation is
very challenging due to the large number of unknowns, possible
colors and motion ambiguities, and complicated geometric
structure of the captured scenes.
Fortunately, with the recent advances in 3D vision area

[1]–[4] and the increasing prevalence of range sensors (e.g.
time-of-flight cameras and Kinects), achieving high-quality
depth maps or 3D models becomes much easier now. In the
future, most captured images/videos will have depth data. How
to appropriately utilize depth information for video segmenta-
tion is becoming an important issue. So far there are not many
works done for video segmentation utilizing depth information.
In this paper, we propose a novel depth-based video segmen-

tation method which can be used for large-scale 3D reconstruc-
tion and many other applications. The objective of our video
segmentation method is that the extracted segments not only
preserve object boundaries but also maintain the temporal con-
sistency in different images. With the spatio-temporal segmen-
tation results, we can reconstruct the 3D geometry model for
a large-scale scene. The spatio-temporal segmentation results
can also facilitate many other video applications, such as video
editing/stylization and semantic segmentation.

II. RELATED WORK

A. Image/Video Segmentation

During the past decades, many image segmentation methods
have been proposed, such as normalized cuts [5], mean shift [6],
segmentation via lossy compression [7], and segmentation by
weighted aggregation (SWA) [8]. For a video sequence, if we
directly use these image-based segmentation methods to seg-
ment each frame independently, the segmentation results will
be inconsistent for different images due to the lack of necessary
temporal coherence constraints.
Some spatio-temporal segmentation methods [9] have been

proposed to extend segmentation from single image to video.
Two main types of segmentation criteria (i.e. motion and color/
texture) were generally used alone or in combination for video
segmentation. Motion-based segmentation methods [10] aimed
to group pixels which undergo similar motion, and separate
them into multiple layers. Many of them [11]–[13] needed to
estimate optical flow first, and then segment the pixels based
on the learned motion models. Some of them [10], [14], [15]
combined motion estimation and segmentation together, and it-
eratively refined them. However, pure motion-based methods
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are difficult to achieve high-quality segmentation results and
usually produce inaccurate object boundaries due to the mo-
tion ambiguity and the difficulty of accurate optical flow estima-
tion. Some works combined color and motion cues for spatio-
temporal segmentation. Khan and Shah [13] proposed a MAP
framework for video segmentation combining multiple cues in-
cluding spatial location, color and motion.
For video segmentation, both spatial and temporal dimen-

sions should be considered. Most approaches handled these two
types of dimensions separately. For example, many approaches
[16], [17] first performed spatial segmentation of each frame,
and then performed temporal grouping to obtain spatio-tem-
poral volumes. Due to the complexity of color, motion and
occlusions in a video, it is challenging for spatial segmentation
to produce very consistent segments in different images, so
the obtained spatio-temporal segments by temporal grouping
will easily contain obvious artifacts. Some methods [18]–[22]
employed an online scheme to obtain consistent segments
across frames, that each frame was segmented according to the
segmentation information propagated from previous frames.
Zitnick et al. [15] proposed to combine segmentation and
optical flow estimation together to produce consistent segments
for a pair of images. Vázquez-Reina et al. [23] proposed to
extract multiple super-pixel flow trajectories as segmentation
hypotheses and temporally segment the video by the compe-
tition of the trajectories. Galasso et al. [24] proposed a novel
spectral clustering framework by incorporating motion based
superpixel affinities. Chang et al. [22] developed a temporal
superpixel video representation by modeling temporal flow
through bilateral Gaussian process. However, it is difficult for
all these methods to handle significant occlusions, where large
groups of segments appear or disappear. Our method uses a
matching graph to initialize volume segments, which is similar
to the super-pixel flow hypothesis in [23]. Different from [23],
our method achieves more consistent spatio-temporal volume
segmentation in an iterative optimization way, and better
handles the occlusion problem by incorporating 3D depth in-
formation. Recently, Abramov et al. [25] proposed a real-time
spatio-temporal segmentation method for color/depth videos
captured by a Kinect, which is quite similar to our depth-based
scheme. However, [25] only used depths to improve interaction
weights and temporal consistency was enhanced by optical
flow, while our segmentation uses depth information for col-
lecting multi-view statistics to ensure temporal consistency.
Some space-time segmentation methods [11], [12] were pro-

posed to combine spatial and temporal grouping together, by
treating the image sequence as a 3D space-time volume and at-
tempting a segmentation of pixel volumes. These methods typ-
ically constructed a weighted graph by taking each pixel as a
node and connecting the pixels in the spatio-temporal neighbor-
hood of each other. Normalized cuts was typically used to par-
tition the spatio-temporal volume. Some space-time segmenta-
tion methods defined a high dimensional feature vector for each
pixel by integrating multiple cues (such as color, space, mo-
tion, and time), and clustered these feature points via mean shift
analysis [26], [27], GMM [28], or hybrid strategy [29]. Grund-
mann et al. [30] proposed an efficient hierarchical graph-based
spatio-temporal segmentation over 3D video volume, and Xu

et al. [31] extended it to a streaming framework. Lezama et
al. [32] extended [30] by incorporating long-range motion cues
with occlusion reasoning. However, these space-time methods
construct a volume representation on the entire video, which in-
evitably costs huge memory for a long sequence. Besides, all
these methods are sensitive to large displacement with signifi-
cant occlusions. Especially if an object temporarily disappears
due to occlusion or out-of-view, it is quite challenging for these
methods to cluster the corresponding regions into the same seg-
ment.
Our work is also closely related to joint segmentation tech-

niques [33], [34], which simultaneously segmented the recon-
structed 3D points and the registered 2D images. Given the
multiple view images, they aimed to semantically organize the
recovered 3D points and obtain semantic object segmentation,
which required user assistance. In contrast, our method can au-
tomatically obtain a set of spatio-temporally consistent volume
segments from a video sequence.
Gallup et al. [35] proposed to use temporal video segmen-

tation for reconstruction of more general scene containing
non-planar structures, which is similar to our method. However,
this method requires complicated learning for segmentation
of piecewise planar and non-planar regions. In comparison,
our method can achieve highly consistent spatio-temporal
video segmentation without any learning priors. By utilizing
the depth redundancy in multiple frames, our spatio-temporal
segmentation is rather robust to occlusions and out-of-view.
More importantly, our reconstructed geometry models have 3D
segmentation labeling and can be used for many other applica-
tions such as 3D/video editing, which may not be achieved by
previous 3D reconstruction methods.
In summary, spatio-temporal segmentation is still a very chal-

lenging problem. Previous approaches generally have difficul-
ties in handling large displacement with significant occlusions.
In this paper, we show that by associating multiple frames on the
inferred dense depth maps, surprisingly spatio-temporal con-
sistent segments can be obtained from video sequences. The
high-quality segmentation results can benefit many other appli-
cations, such as 3D reconstruction, video editing, and non-pho-
torealistic rendering.

B. Video Editing

With the increasing prevalence of digital video cameras,
video editing has been steadily gaining in importance. Many
video editing techniques have been developed during the past
decades. The main difficulty of video editing is how to maintain
the temporal coherence among temporally neighboring frames.
Sand and Teller [36] proposed to spatio-temporally align one
video with another with similar camera trajectories for per-
forming some video editing operations, such as background
subtraction and video composition. Several techniques have
been proposed to treat video as a space-time volume data, which
successfully demonstrated its capability for video stylization
[37], segmentation [38], completion [39] and summarization
[40]. However, these techniques are typically limited to the
videos captured by stationary cameras. For handling more com-
plex cases (e.g., the camera can freely move), we generally need
to recover depth/3D, motion and even layer information. With
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the recent advances of structure-from-motion and multi-view
stereo techniques, a few techniques have been proposed to
perform video editing based on high-quality depth information.
Xiao et al. [41] proposed a video composition technique which
can extract a static 3D object from a sequence and seamlessly
insert it to another sequence. Bhat et al. [42] proposed to use
some high resolution photos to enhance a video of a static
scene, based on multiview stereo and image-based rendering
techniques. Zhang et al. [43] presented a very impressive video
editing system based on dense depth recovery and layer sepa-
ration, which can create various kinds of refilming effects from
one or multiple input videos. In general, these methods rely on
the correspondences computed by depth or motion information
to maintain the temporal coherence, and may have accumula-
tion error or drift problem for a long sequence. In comparison,
with spatio-temporal segmentation and 3D representation, we
can directly perform video editing in a 3D way, so that the
operations are much simpler than those in a 2D way, and the
temporal coherence is maintained more easily.

III. OUR APPROACH

Given a video sequence of frames, our objective is to es-
timate a set of spatio-temporal volume segments

, and fuse the volume segments to reconstruct
a complete 3D scene, where is the volume segment number.
For a pixel in frame , we denote if .
The color of pixel is denoted as , defined in Luv color
space. Denoting by the depth value of pixel , the disparity

is defined as by convention.
Our system overview is shown in Fig. 1. We assume that a

depth map is available for each frame of the input video. The
depth data could be got by using a depth camera or multi-view
stereo techniques [2], [3], [44]. In our experiments, we start
by using the structure-from-motion (SFM) method proposed in
[45] to recover the camera motion parameters from the input
video sequence. The set of camera parameters for frame is de-
noted as , where is the intrinsic matrix,
is the rotation matrix, and is the translation vector. With

the recovered camera poses, we then employ the multi-view
stereo method of Zhang et al. [3] to recover a set of consistent
depth maps. With the computed depth maps, we first perform
spatial segmentation for each framewith probabilistic boundary,
and then iteratively optimize the segmentation results by en-
forcing the temporal coherence constraints amongmultiple tem-
poral frames. The spatio-temporal segmentation can be used
for many applications such as 3D reconstruction, video editing,
stylization and semantic segmentation.

IV. SPATIAL SEGMENTATION WITH PROBABILISTIC BOUNDARY

Directly obtaining spatio-temporal volume segments in a
video is difficult due to the large number of unknowns and the
possible geometric and motion ambiguities in the segmenta-
tion. Therefore, we design an iterative optimization scheme to
achieve spatio-temporal video segmentation. For initialization,
instead of directly segmenting each frame independently, we
first compute the probabilistic boundary map by collecting
the statistics of segment boundaries among multiple frames.
Then we perform spatial segmentation for each frame indepen-

Fig. 1. System overview.

dently with the computed probabilistic boundary maps. Our
experimental results demonstrate that much more consistent
segmentation results can be obtained than those of directly
using mean shift algorithm.

A. Probabilistic Boundary

We first use mean shift algorithm [6] to segment each frame
independently with the same parameters. The 2D segments in
frame are denoted as , where
denotes the number of segments in frame produced by mean
shift. For a pixel in frame , we denote if .
Fig. 2(b) shows the segmentation results of the selected frames,
which are not consistent in different images. The segmented
boundaries are quite flickering, and a segment may span over
multiple layers, which is obviously not good enough as a starting
point for spatio-temporal segmentation.
With the computed depths, we can project each pixel to other

frames to find the correspondences. Considering a pixel in
frame , with the estimated depth value , its projection in
frame can be computed as follows:

(1)

where the superscript denotes the vector in the homogeneous
coordinate system. The 2D point is computed by dividing
by the third homogeneous coordinate. Then we compute the

probabilistic boundary as follows:

(2)

where is a neighboring pixel of in frame , and de-
notes the number of valid mapping. A mapping is defined to be
valid, if the projection points and in frame are neither
occluded nor out-of-view. If is large, it is very likely
that there is a boundary across pixels and . Compared to
the traditional segmentation boundaries in a single image, our
probabilistic boundary map is computed with multiple frames,
which is robust to image noise and occasional segmentation
errors. The computed probabilistic boundary maps are shown
in Fig. 2(c), which are surprisingly consistent among different
frames. The reason is that mean shift segmentation can pre-
serve object boundaries well. Although the generated segment
boundaries by mean shift may be occasionally inaccurate in one
frame, it still has large chance to be accurate in other frames. By
collecting the boundary statistics in multiple frames, the com-
puted probabilistic boundaries can naturally preserve the object
boundaries and maintain consistency in neighboring frames.
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Fig. 2. Spatial segmentation with probabilistic boundary. (a) Three selected frames. (b) The segmentation results with mean shift. (c) The computed probabilistic
boundary maps. (d) Our spatial segmentation results. (e)–(h) The magnified regions of (a)–(d). Compared to the results of mean shift, our segmentation results
better preserve object boundaries and are much more consistent in different images.

Fig. 3. Flow illustration of spatial segmentation. (a) One original image.
(b) The computed probabilistic map. (c) The segmentation results by watershed
algorithm based on the computed probabilistic map. (d) After solving (3), the
unlabeled pixels are fused into nearby segments. (e)–(h) The magnified regions
of (a)–(d), respectively.

B. Spatial Segmentation

With the computed probabilistic boundary map, we use the
watershed algorithm [46] to segment the image. We compute
a topographic surface , the
maximal probabilistic boundary over the 4 connected proba-
bilistic edges for each pixel, and applywatershed transformation
on the surface. The topological map is clipped with a threshold
value to avoid over segmentation. Fig. 3(c) shows the segmen-
tation result. We notice that some quite small segments appear
around the areas with strong probabilistic boundaries, most of
which are segmentation noise and do not consistently appear
in neighboring frames. So, we eliminate segments that are too
small (with less than 30 pixels), and set the pixels in these seg-
ments as unlabeled ones. The remaining 2D segments in frame
are denoted as . The set of unla-
beled pixels is denoted as , which will be assigned to these
segments. We use to denote the assigned 2D segment

for pixel .

For each frame , we define the following energy for spatial
segmentation:

(3)
where denotes the set of neighbors of pixel . Data term
measures how well the pixels fit the assigned clusters,

and the spatial smoothness term encodes the segmentation
continuity.
The data term is defined using the Gaussian models of

color, disparity, and spatial distributions

(4)

where , and are the weights.
describes the color distribution of segment , where

and are the mean color and covariance matrix,
respectively. describes the disparity
distribution, which is similarly defined.
describes the spatial distribution of the segment , where

is the mean position coordinate, and is the co-
variance matrix.
In order to preserve discontinuity, our spatial smoothness

term is defined in an anisotropic way, encouraging the segment
discontinuity to be coincident with the probabilistic boundary,
color contrast and depth discontinuity. It is defined as

(5)

where , and are the smoothness weights. , , and
control the contrast sensitivity.
Since it is a labeling problem, we can use belief propagation

algorithm to solve (3) for spatial segmentation. We only need to
solve the segment labeling of the pixels in , and the segment
labels of other pixels are all fixed. In our experiments, the 2D
segment number for each frame is around . So it
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Fig. 4. Segment matching and linking. (a) Segments and are projected to frame and , respectively, for segment matching. (b) The connected segment
components. Each component represents a volume segment.

Fig. 5. Spatio-temporal segmentation results of “Desktop” sequence. (a) Two selected original images. (b) The initialized volume segments. The pixels in the
same volume segment are represented with the same color. (c) The final volume segments after iterative optimization, which become more consistent and better
preserve object boundaries. (d)–(f) The magnified regions of (a)–(c), highlighted with yellow rectangles.

will be very time-consuming and requires a very large memory
space if we use a standard belief propagation algorithm like [47]
to solve (3). In order to speed up and break through the limita-
tion of memory space, we perform label pruning. In fact, only
a small number of labels need to be considered for each pixel,
since the cost of most labels are very large. Therefore, for each
pixel, we only consider a few closest segments (70 segments
in our experiments) with similar colors and depths. Since the
time complexity of BP is linear to the number of labels [47], this
label pruning strategy can well address the limitation of memory
space and dramatically accelerate BP optimization, without af-
fecting the segmentation results. The spatial segmentation re-
sults are shown in Figs. 2(d) and 3(d). The segmentation results
in different images are rather consistent, which provide a good
starting point for the following spatio-temporal segmentation.

V. SPATIO-TEMPORAL SEGMENTATION

Due to the lack of explicit temporal coherence constraint, the
spatial segmentation results may contain inconsistent segments.
In addition, the segments in different images are not matched. In
the following stage, we will perform spatio-temporal segmenta-
tion to achieve a set of pixel volumes. First, we need tomatch the
segments in different images and link them to initialize volume
segments.

A. Initializing Spatio-Temporal Volumes

Without loss of generality, we consider two 2D segments
in frame and in frame . With the depths, we can project
from frame to , and from frame to , respectively.

The projection mask of from frame to is denoted as
, and the projection mask of from frame to is

denoted as . An illustration is shown in Fig. 4. We can
use their overlapping rate to define the matching confidence. If

, where is a
threshold, we think and are matched.
Each 2D segment can be projected to other frames, to find

its matched segments in other frames. With these correspon-
dences, we can build a matching graph. It is an undirected graph

. Each 2D segment corresponds to a vertex
, and every pair of matched segments ( and )

has an edge connecting them, as illustrated in
Fig. 4(b). Each connected component represents a volume seg-
ment. The initialized volume segments are denoted as

. One example is shown in Figs. 5(b) and
(d). Most segments are already quite consistent. Then we per-
form an iterative optimization to further improve the results. The
initialized volume segments are used as candidate labels for fur-
ther optimization.

B. Iterative Optimization

For a pixel in frame , its corresponding pixel in frame
can be computed by (1). Due to segmentation error, the segment
labels of pixels and may be different, i.e. .
If there is no occlusion or out-of-view, each projection should
correspond to a valid segment. In our experiments, we found
that most of these projected segments are the same, which in-
dicates that our initialized volume segments are already quite
good. We use to denote the set of segment candidates for
pixel , which includes these projected volume segments and

. Then, we define the segment probability of pixel as

(6)
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where is the projected pixel in frame of pixel .
denotes the probability of each segment label for pixel . Ob-
viously, will be a large value if the assigned segment
label is consistent with most of the projected segments. For
each pixel , we only need to consider the segment candidates
in , because the probabilities of other labels are all zeros.
We define the spatio-temporal segmentation energy in a video

as follows:

(7)
where denotes the set of spatial neighbors of pixel in
frame . The energy contains two components, i.e. data term
and smoothness term . is the same as that of (5), and only
is largely modified by incorporating the temporal coherence

constraint in a statistical way.
The data term contains four components

(8)

where , , and are the cost weights.
describes the Gaussian distribution of color, and is simply de-
fined as

(9)

where and are the mean color and covariance
matrix of volume segment , respectively.
describes the Gaussian distribution of disparity, and is similarly
defined as

(10)

where and are the mean disparity and covariance
matrix of volume segment , respectively.

describes the shape distribution by mixture of
Gaussians, which is defined as follows:

(11)
where denotes the frames spanned by , and
is the corresponding pixel in frame for pixel . is the
subset of in frame . and are the mean
coordinate and covariance matrix of , respectively.
With the above energy definition, we iteratively refine the

segmentation results using belief propagation. Each pass starts
from frame 1. While solving the segmentation for frame , the
segment labels of other frames are fixed. After solving the seg-
mentation of frame , the related volume segments are imme-
diately updated. One pass completes when the segmentation of
frame is optimized. In our experiments, three passes are suffi-
cient to produce spatially and temporally coherent volume seg-
ments. One example is shown in Fig. 5. Compared to the initial-
ized volume segments [Fig. 6(b)], the refined volume segments

1The supplementary video can be found at: http://www.cad.zju.edu.cn/home/
gfzhang/projects/coseg/TMM-video.rar.

Fig. 6. Segmentation result with imperfect depth data. (a) One selected frame
from “Dionysus” sequence. (b) The magnified region of (a), the estimated
depths, and the segmentation result. (c) Three selected frames from “Lab”
sequence, the inconsistent depth maps, and the consistent segmentation results.

[Fig. 6(c)] become more consistent and better preserve object
boundaries.

VI. EXPERIMENTAL RESULTS

We experimented with several challenging examples where
the sequences are taken by a moving camera. The tested se-
quences generally contain frames. For the sequence
with resolution , computing probabilistic boundary re-
quires 26 seconds per frame on a desktop PC with Intel 4-Core
2.83 GHz CPU. The spatial segmentation requires 2 minutes per
frame, and each pass of spatio-temporal optimization requires
1.5 minutes per frame. The performance of our method is ac-
ceptable for many video applications, and allows further accel-
eration using GPU.
The configuration of the parameters in our system is easy.

Most parameters are fixed in our experiments. Specifically,
, , , , , ,

. Here, is the disparity
range of the scene. For spatial segmentation, we set ,

, . For spatio-temporal segmentation, we
set , , , . Since
mean shift allows the control of segmentation granularity, we
can obtain different numbers of volume segments by adjusting
the parameters of mean shift in the initialization stage.

A. Segmentation Results of Ordinary and Low-Frame-Rate
Video Sequences

We have experimented many ordinary and low-frame-rate se-
quences. Please refer to our supplementary video1 for the com-
plete frames and results. Our segmentation method has mod-
erate tolerance to depth estimation error, as shown in Fig. 6. Al-
though the estimated depth maps contain noticeable artifacts as
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shown in Fig. 6(c), the segmentation results still preserve accu-
rate object boundaries and are quite temporally consistent in the
whole sequence. The reason is that our method mainly uses the
depth information to connect the correspondences among mul-
tiple frames and collect the statistics information (such as proba-
bilistic boundaries and the segment probability) for spatio-tem-
poral segmentation, which is more robust than directly using
depth information as an additional color channel.
Fig. 7 gives a comparison of our method with Grund-

mann’s efficient hierarchical graph-based approach [30],2 Xu’s
streaming hierarchical approach [31] and Chang’s Temporal
Superpixels [22]. Generally, our method can achieve more tem-
porally consistent segments, as shown in the magnified regions
in Fig. 7(e). Besides, complex occlusions are better handled by
our method, such as the tree trunk illustrated in Fig. 7(f). Please
refer to our supplementary video for the complete comparison
result.
Though our method is developed to solve the video segmen-

tation problem, it can also handle low-frame-rate sequences
that contain a relatively small number of frames with moder-
ately wide baselines between consecutive frames. Although
the “Cones” dataset from [48] contains only 9 images, our
segmentation results still preserve fine structures and faithfully
maintain the coherence in different images. Please refer to our
supplementary video for the segmentation results.

B. Quantitative Evaluation of Segmentation

Our supplementary video already allows a perceptual judg-
ment of the spatio-temporal segmentation results. To further
demonstrate the effectiveness of the proposed method, we also
use the metrics similar to [49] (i.e., intra-object homogeneity,
depth uniformity and temporal stability) to objectively evaluate
the quality of our segmentation results. We use the texture vari-
ance employed in [49] tomeasure intra-object homogeneity, and
use the projection overlapping rate to measure the temporal sta-
bility. All the metrics are normalized to [0, 1], and higher values
indicate better results.
We first give the definitions of texture variance and depth

uniformity metrics. Both kinds of metrics are normalized to the
[0, 1] range, using the following formula employed in [49]:

(12)

where denotes the normalized metric, is the original
metric value, and is a truncation value determined empir-
ically or by the nature of the metric. In our experiments, the
truncation values are set to 256 and for the
texture variance and depth uniformity metrics, respectively.
For video segmentation, is computed by the weighted av-

erage metric of all the individual segments

(13)

where is the weight defined as: , where
denotes the number of pixels in the 3D video volume, and

is the metric value for segment . Texture variance

2We used the authors’ segmentation web-service at: http://neumann.cc.gt.atl.
ga.us/segmentation/.

Fig. 7. Comparison to other spatio-temporal segmentation approaches [22],
[30], [31]. (a) Two selected frames. (b) The spatio-temporal segmentation
by Grundmann's method [30]. (c) The spatio-temporal segmentation by Xu’s
method [31]. (d) The spatio-temporal segmentation by Chang’s method [22].
(e) Our segmentation results. (f) The magnified the regions of the yellow
rectangles in (a)–(e), showing the better temporal coherence of our method.
(g) The magnified red rectangles in (a)–(e), showing our better occlusion
handling.

metric measures the color variance in , as defined in
[49], while depth uniformity metric collects the statis-
tics of depth boundaries (i.e., depth maps convolved with Sobel
operator) contained inside the segment , which is defined as

(14)
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TABLE I
QUANTITATIVE EVALUATIONS OF ALL THE TESTED SEQUENCES IN THE PAPER

where denotes the interior of excluding the boundary.
For measuring temporal stability, we can use the projection

overlapping rate as introduced in Section V-A. The overall pro-
jection overlapping rate is computed as follows:

(15)

where denotes the neighboring frames of frame (40
nearest neighboring frames in our experiment). The corre-
sponding segment is the one that has the largest overlapping
rate with , which is determined by the following formula:

(16)

Table I shows the three kinds of metrics on all the tested se-
quences in our paper. For each sequence, we evaluate the results
of image-based mean shift segmentation (MS) [6], our spatial
segmentation with probabilistic boundary (SS) and our itera-
tive spatio-temporal segmentation (STS). As can be seen, the
segmentation results by our spatial segmentation method have
comparable texture variance with mean shift, and significantly
improve the depth uniformity and temporal stability. After iter-
ative optimization, the temporal stability is further significantly
improved.

C. Special Cases Discussion

If the sequence is captured by a static or rotating camera,
the depth information cannot be recovered. Even in this case,
our method still works by simply assigning constant depth for

Fig. 8. Segmentation results of “Walking” sequence. Top: Three selected
frames. Bottom: The extracted volume segments represented with unique color.

Fig. 9. Segmentation result of “Lighting Variation” sequence. (a) Three
selected frames. (b) The estimated depth maps. (c) The segmentation results.
(d) The magnified regions of (a) and (c).

all pixels so the probabilistic boundary map computation and
spatio-temporal optimization still can be performed. Our sup-
plementary video includes a video sequence (“Rotation” se-
quence) captured by a rotating camera. Our method can faith-
fully obtain a set of spatio-temporally consistent segments for
this example.
Our method is restricted to a static scene. So if there are dy-

namic foreground objects in the scene, their segmentation re-
sults may be inconsistent or even erroneous. One dynamic ex-
ample is shown in Fig. 8. Two men walk towards each other
at different depths and one occludes the other in some frames.
The obtained foreground segments are indeed inconsistent, and
some of them are fused into the background segments. The
produced background segments are still quite consistent and
not influenced much by dynamic foreground. “Hand-Waving”
sequence in our supplementary video shows a case with little
foreground motion (i.e., a man is waving his right hand). Our
method can extract spatio-temporal segments for the static back-
ground and the man’s body, while the produced segments in the
moving hand are inconsistent. If there is strong lighting vari-
ation, both the appearance and estimated depth information of
the influenced areas will be changed, so that the segmentation
results of these areas may be inconsistent in different frames.
Fig. 9 shows an example where two flashlights irradiate the
desk in a back and forth way. Due to the significant appearance
change, the produced segments of the bottle are inconsistent in
different frames.
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Fig. 10. (a) Representation frame selection. Volume segment completely appears in frames and with full coverage rate, and has the maximal segment area
in . Therefore is chosen as the representation frame. (b) The representation frame map of “Desktop” sequence, visualized in 2D and 3D ways, respectively.
The number of representation frame is coded with unique color.

Fig. 11. Surface reconstruction and merging of volume segments. (a-b) One selected frame from the input sequence and the spatio-temporal segmentation. (c) The
reconstructed 3D model without boundary merging. (d) The obtained 3D model by merging common boundaries of the neighboring segments. (e) The magnified
red rectangles in (c) and (d). Seams and holes are significantly reduced after segment merging.

VII. APPLICATIONS

A. 3D Geometry Reconstruction

With the spatio-temporally consistent segmentation results,
the process of fusing multiple depth maps and obtaining com-
plete 3D geometry model can be greatly facilitated.
Since the neighboring depth maps contain large overlapping

content, it will result in large data redundancy if we directly fuse
all depth maps to obtain the geometry model. For each volume
segment , its corresponding 2D regions in different frames
should be consistent to each other. In most cases, we can se-
lect a frame where the corresponding 2D region can represent
the whole volume segment (i.e., all pixels in the volume seg-
ment can find their correspondences in this frame). We define
this frame as the representative frame for . We can simply tri-
angulate the corresponding 2D pixels (with depth information)
in the representative frame to construct a mesh surface.
There are two criteria for representation frame selection.

First, this frame should have large segment area so that the re-
constructed mesh surface can faithfully preserve the geometry
details. Second, in order to guarantee the completeness of the
reconstructed geometry model, the volume segment should be
fully visible in this frame, without any occlusion or out-of-view.
For volume segment and view , we compute the coverage
percentage by the average projection overlapping rate
(as introduced in Section V-A) of with other frames, which
is defined as

(17)

where is defined the same as in (11). If is low,
there are some occlusions or out-of-view for 2D segment in
, so that frame is not in the candidates of representation frames
of .

We first select a set of candidate frames which satisfy
, as illustrated in Fig. 10(a). Then the frame

with maximal number of pixels is selected as the representation
frame. Fig. 10(b) shows an example of representation frame
selection. Each segment is encoded with a color, indexing the
frame number of the selected representation frame.
Due to serious occlusion or out-of-view, there are some seg-

ments which do not satisfy the hypothesis that each volume seg-
ment can always find at least one frame where the segment is
fully visible. For these segments, we need to split each of them
to a number of smaller segments which can satisfy the hypoth-
esis. To split volume segment , we first assign all the 2D
pixels of as unlabeled. The set of all unlabeled pixels is de-
noted as , and the set of unlabeled pixels in frame is de-
noted by . Then we iteratively split the segment and create
new segments. In each iteration, we find a frame which has
largest projection overlapping rate , defined by

(18)

Then we create a new segment which includes and its
projections in neighboring frames. This process is repeated until
only contains a small number of pixels ( in

our experiment), which are caused by segment noises around
the boundaries. These unlabeled pixels are finally fused to
the neighboring segments using the method introduced in
Section IV-B.
After representation frame selection, we triangulate the pixels

of each segment in its representation frame. Then 3D surface
of each segment can be constructed by projecting the pixels to
3D space with depth information. In order to avoid unexpected
gaps along the boundaries between neighboring 3D surfaces, as
shown in Figs. 11(c) and (e), we need to connect the neighboring
3D surfaces by merging their common 3D boundaries.
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Fig. 12. Comparison to PMVS2 [4] on “Desktop” sequence. (a) Our recon-
struction result (top) and the result by PMVS2 (bottom). (b)–(d) The magnified
surface of the regions in (a), highlighted with yellow rectangles.

Both segmentation and depth information can be utilized to
verifywhether two volume segments share a common boundary.
If two neighboring volume segments have common 2D bound-
aries in their respective representation frames, and the common
2D boundaries should be depth continuous, we consider these
two volume segments as neighbors. For each volume segment
with its representation frame , we check all the 2D neighbor

segments in frame . For a 2D segment ,
if most of the pixels ( pixels in our experiments) along the
common 2D boundary are depth continuous, we think and
are neighbors, and share a common 3D boundary. Similar to

[50], the depth continuity of two neighboring pixels and
can be verified by the following criteria:

(19)

where is a threshold and set to 0.03 in our experiments. After
merging neighboring volume segments, we apply Laplacian sur-
face smoothing [51] method to refine the unsmooth boundaries
caused by depth inconsistency in different frames, and detect
and fill small isolated holes with fewer than 200 edges to com-
plete the surface mesh. As shown in Fig. 11(d) and (e), most
unwanted seams are removed by merging common boundaries.
Fig. 12 gives a comparison between our reconstruction method
and PMVS2 [4] with Poisson surface reconstruction [52]. As
can be seen in the magnified regions in Fig. 12(b)–(d), our re-
constructed model can preserve better geometry details.
Fig. 13 shows the reconstructed scene geometry of the

“Dionysus” example. Our method can naturally handle the 3D
reconstruction of large-scale scenes, because we can always
perform spatio-temporal segmentation first, and separate the
whole scene into a set of relatively small volume segments.
Since the 3D geometry of each segment can be reconstructed
independently, and then connected to construct a complete 3D
geometry, our method can handle large-scale 3D reconstruction
with limited memory. In contrast, large-scale 3D reconstruction
is difficult for voxel-based methods [52], [53].

B. Video Editing

Given the 3D geometry model incorporating segmentation
labeling, we can easily mark out the objects of interest for
cloning with a few user interactions (e.g., draw a rectangle). The
3D segmentation labeling greatly facilitates the object selection
and cloning, as demonstrated in Fig. 14 and our supplementary
video. The cloned objects can be added to the designated posi-
tion in the original scene model with simple user interactions.

We can also render them to the original video for novel video
synthesis, as shown in Figs. 14(d)–(e). The occlusions can be
naturally handled with the 3D information. Please refer to our
supplementary video that gives a better presentation of the
edited results on both “Desktop” and “Dionysus” examples.

C. Video Stylization

Video stylization and abstraction are useful in many applica-
tion areas, such as broadcast and communications, video games,
and many other entertainments [54]. The temporal coherence of
stylization effects is very important in such applications. With
our segmentation results, spatio-temporally consistent stylized
effects can be faithfully created. An example is shown in Fig. 15,
using a method similar to [20], [54]. Each region is represented
by its mean color, with DoG-edges overlayed. We first pre-
smooth each frame by bilateral filtering [55], and then use the
method proposed in [54] to detect DoG edges. The spatio-tem-
poral consistency of our segmentation can guarantee the high
coherence of non-photorealistic stylization effects [Fig. 15(b)].
In contrast, if we use mean-shift [Fig. 15(c)] to segment each
frame independently, the obtained stylization effects is quite
flickering as shown in our supplementary video.

D. Consistent Semantic Segmentation

Our spatio-temporal segmentation results can be directly ap-
plied to semantic segmentation. Since our video segmentations
are consistent among temporal frames, corresponding segments
across different frames can be jointly segmented into a same
semantic label, which makes semantic segmentation easier and
produces more consistent semantic labeling.
To perform semantic segmentation on “Campus” sequence,

we use another sequence capturing a similar scene for feature
training, as in Fig. 16(a). We use SLIC [56] to segment each
frame of the training sequence into superpixels [Fig. 16(b)], and
extract five kinds of features for each superpixel. The first four
features are extracted from the dense depth values of each su-
perpixel as in [57], which are surface normal, surface local pla-
narity, height above ground and distance to camera path respec-
tively. The fifth feature is the RGB color histogram of the su-
perpixel. The five features are cascaded as a high-dimensional
descriptor for each superpixel. Besides, the superpixels of each
frame of the training sequence are manually classified into sev-
eral predefined semantic objects, as shown in Fig. 16(c). All the
descriptors and semantic object segments are used to train a se-
mantic classifier using randomized decision forest [58]. Finally,
with the spatio-temporal segmentation result of the “Campus”
sequence, we use the trained randomized decision forest classi-
fier to decide the best semantic label for each volume segment
in “Campus” sequence.
The semantic segmentation results are shown in Fig. 16(e),

which are both accurate and consistent among temporal frames.
Another semantic segmentation example of “Building” se-
quence is included in the supplementary video.

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we have proposed a novel video segmentation
method, which can extract a set of spatio-temporal volume seg-
ments from a depth-inferred video. Most previous approaches
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Fig. 13. Spatio-temporal segmentation and 3D reconstruction of the “Dionysus” sequence, which captures the “Theatre of Dionysus” in the Acropolis of Athens.
(a) Selected original frames, the recovered depth maps and the spatio-temporal consistent segmentation results. The extracted volume segments are represented
with unique color. (b) The reconstructed 3D scene by fusing depth maps with the consistent segmentation. (c) The reconstructed volume segments represented
with unique color. (d) The texture-mapped scene model. (e) The magnified reconstructed surface mesh of the regions in (b), highlighted with yellow rectangles.

Fig. 14. Scene/video editing of “Desktop” sequence. (a)–(c) Object selection
and cloning. The 3D segmentation information significantly facilitates the ob-
ject selection. The user only needs to draw a rough rectangle to quickly select
the hat or magic cube. (d) Two selected video frames. (e) The composite frames
after editing.

rely on pairwise motion estimation, which are sensitive to large
displacement with occlusions. By utilizing depth information,
we can connect the correspondences among multiple frames, so
that the statistics information, such as probabilistic boundaries
and the segment probability of each pixel, can be effectively col-
lected. By incorporating these statistics information into the seg-
mentation energy function, our method can robustly handle sig-
nificant occlusions, so that a set of spatio-temporally consistent
segments can be achieved. Using our spatio-temporal segmen-
tation, we can reconstruct 3D geometry models for large-scale
scenes containing 3D segmentation information, which is useful
in many other applications such as video editing/stylization and
semantic segmentation.
Our method uses a single handheld camera and multiview

stereo method to recover the depth maps and collect multi-frame
statistics, which is restricted to videos of a static scene. We
believe our method can be improved in the future to handle

Fig. 15. Non-photorealistic video stylization effects of “Angkor Wat”
sequence. (a) Two selected original images. (b) The stylization effects of
mean-shift, which are flickering among different frames, as highlighted in
yellow rectangles. (c) The highly consistent stylization of our segmentation
without flickering.

Fig. 16. Consistent semantic segmentation of “Campus” sequence. (a) One
frame of the training sequence. (b) SLIC Superpixels of (a). (c) Manually
marked semantic classification of (b). (d) Two selected original images of
“Campus” sequence. (e) The consistent semantic segmentation results of (d).

dynamic scenes. For moving objects, the temporal correspon-
dences among the different frames should be built by motion
estimation or 3D scene flow tracking with a depth camera or
multiple synchronized video cameras, so that the temporally co-
herence constraint can be reliably enforced. In addition, given
an extremely small number of wide-baseline images, the col-
lected statistics may be degraded and handling the problems
of large occlusions or out-of-view will become more difficult,
which may cause our method to produce unsatisfactory segmen-
tation results. Fig. 4 in our supplementary document3 shows a
failure example. How to solve this problem remains to be our
future work.

3The supplementary document can be found at: http://www.cad.zju.edu.cn/
home/gfzhang/projects/coseg/TMM-supple.pdf.
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