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Abstract— Structure-from-motion (SfM) largely relies on fea-
ture tracking. In image sequences, if disjointed tracks caused
by objects moving in and out of the field of view, occasional
occlusion, or image noise are not handled well, correspond-
ing SfM could be affected. This problem becomes severer for
large-scale scenes, which typically requires to capture multiple
sequences to cover the whole scene. In this paper, we propose an
efficient non-consecutive feature tracking framework to match
interrupted tracks distributed in different subsequences or even
in different videos. Our framework consists of steps of solving
the feature “dropout” problem when indistinctive structures,
noise or large image distortion exists, and of rapidly recognizing
and joining common features located in different subsequences.
In addition, we contribute an effective segment-based coarse-
to-fine SfM algorithm for robustly handling large data sets.
Experimental results on challenging video data demonstrate the
effectiveness of the proposed system.

Index Terms— Non-consecutive feature tracking, track
matching, structure-from-motion, bundle adjustment.

I. INTRODUCTION

LARGE-SCALE 3D reconstruction [1]–[3] finds many
practical applications. It primarily relies on SfM algo-

rithms [4]–[8] to firstly estimate sparse 3D features and camera
poses given the input of video or image collections.
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Compared to images, videos contain denser geometrical
and structural information, and are the main source of SfM
in the movie, video and commercial industry. A common
strategy for video SfM estimation is by employing feature
point tracking [9], [10], which takes care of the temporal
relationship among frames. It is also a basic tool for solving a
variety of computer vision problems, such as camera tracking,
video matching, and object recognition.

In this paper, we address two critical problems for feature
point tracking, which could handicap SfM especially for large-
scale scene modeling. The first problem is the vulnerability
of feature tracking to object occlusions, illumination change,
noise, and large motion, which easily causes occasional feature
drop-out and distraction. This problem makes robust feature
tracking from long sequences challenging.

The other problem is the inability of sequential feature
tracking to cope with feature matching over non-consecutive
subsequences. A typical scenario is that the tracked object
moves out and then re-enters the field-of-view, which yields
two discontinuous subsequences containing the same object.
Although there are common features in the two subsequences,
they are difficult to be matched/included in a single track
using conventional tracking methods. Addressing this issue can
alleviate the drift problem of SfM, which benefits high-quality
3D reconstruction. A naïve solution is to exhaustively search
all features, which could consume much computation since
many temporally far away frames simply share no content.

We propose an efficient non-consecutive feature tracking
(ENFT) framework which can effectively address the above
problems in two phases – that is, consecutive point tracking
and non-consecutive track matching. We demonstrate their
significance for SfM using challenging sequence data. Con-
secutive point tracking detects and matches invariant features
in consecutive frames. A matching strategy is proposed to
greatly increase the matching rate and extend lifetime of the
tracks. Then in non-consecutive track matching, by rapidly
computing a matching matrix, a set of disjoint subsequences
with overlapping content can be detected. Common feature
tracks scattered over these subsequences can also be reliably
matched.

Our ENFT method reduces estimation errors for long
loopback sequences. Given limited memory, it is generally
intractable to use global bundle adjustment to refine camera
poses and 3D points for very long sequences. Iteratively
applying local bundle adjustment is difficult to effectively
distribute estimation errors to all frames. We address this issue
by adopting a segment-based coarse-to-fine SfM algorithm,
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Fig. 1. A large-scale “Garden” example. (a) Snapshots of the input videos.
(b) With the matched feature tracks, we register the recovered 3D points
and camera trajectories in a large-scale 3D system. Camera trajectories are
differently color-coded.

which globally optimizes structure and motion with limited
memory.

Based on our ENFT algorithm and segment-based coarse-
to-fine estimation scheme, we present the SfM system
ENFT-SFM, which can effectively handle long loopback
sequences and even multiple sequences. Fig. 1 shows an
example containing 6 sequences with about 95, 476 frames
in total in a large-scale scene. Our system splits them to 37
shorter sequences, quickly computes many long and accurate
feature tracks, efficiently estimates camera trajectories in
different sequences, and finally registers them in a unified
3D system, as shown in Fig. 1(b). The whole process only
takes about 90 minutes (excluding I/O) on a desktop PC, i.e.,
17.7 FPS on average. Our supplementary video1 contains the
complete result.

Compared to our prior work [11], in this paper, we make
a number of modifications to improve robustness and effi-
ciency. Particularly, we improve the second-pass matching by
formulating it as minimizing an energy function incorporating
two geometric constraints, which not only boosts the matching
accuracy but also reduces computation. The non-consecutive
track matching algorithm is re-designed to perform feature
matching and match-matrix update together. It is less sensitive
to initialization and reduces the matching time. Finally, we
propose a novel segment-based coarse-to-fine SfM method,
which performs efficient global optimization for large data
with only limited memory.

II. RELATED WORK

We review feature tracking and large-scale SfM methods in
this section.

A. Feature Matching and Tracking
For video tracking, sequential matchers are used for

establishing correspondences between consecutive frames.

1http://www.cad.zju.edu.cn/home/gfzhang/projects/tracking
/featuretracking/ENFT-video.wmv

Kanade-Lucas-Tomasi (KLT) tracker [9], [12] is widely
used for small baseline matching. Other methods detect
image features and match them considering local image
patches [13], [14] or advanced descriptors [10], [15]–[17].

Both the KLT tracker and invariant feature algorithms
depend on modeling feature appearance, and can be dis-
tracted by occlusion, similar structures, and noise. Generally,
sequential matchers are difficult to match non-consecutive
frames under large image transformation. Scale-invariant fea-
ture detection and matching algorithms [10], [17] are effec-
tive in matching images with large transformation. But they
generally produce many short tracks in consecutive point
tracking due primarily to the global indistinctiveness and
feature dropout problems. In addition, invariant features are
relatively sensitive to perspective distortion. Although varia-
tions, such as ASIFT [18], can improve matching performance
under substantial viewpoint change, computation overhead
increases owing to exhaustive viewpoint simulation. Cordes et
al. [19] proposed a memory-based tracking method to extend
feature trajectories by matching each frame to its neighbors.
However, if an object re-enters the field-of-view after a long
period of time, the size of neighborhood windows has to be
very large. Besides, multiple-video setting was not discussed.
In contrast, our method can not only extend track lifetime
but also efficiently match common feature tracks in different
subsequences by iteratively matching overlapping frame pairs
and refining match matrix. The computation complexity is
linear to the number of overlapping frame pairs.

There are methods using invariant features for object
and location recognition in images/videos [20]–[24]. These
methods typically use bag-of-words techniques to perform
global localization and loop-closure detection in an image
classification framework. Nistér and Stewénius [25] pro-
posed using a hierachical k-means algorithm to construct
a vocabulary tree with feature descriptors, which can be
used for large-scale image retrieval and location recognition.
Cummins and Newman [26] proposed a probabilistic
approach called FAB-MAP for location recognition and
online loop closure detection, which models the world as
a set of locations and computes the probability of belong-
ing to previously visited locations for each input image.
Later, they proposed using a sparse approximation for
large scale location recognition [27]. However, FAB-MAP
assumes the neighboring locations are not too close, so
might perform less satisfyingly if we simply input a nor-
mal video sequence. In addition, existing methods gen-
erally divide the location recognition and non-consecutive
feature matching into two separated phases [28]–[31].
Because the match matrix by bag-of-words only roughly
reflects the match confidence, completely trusting it may lose
many common features. In this paper, we introduce a novel
strategy where the match matrix can be refined and updated
along with non-consecutive feature matching. Our method can
reliably and efficiently match the common features even with
a coarse match matrix.

Engels et al. [32] proposed integrating wide-baseline local
features with the tracked ones to improve SfM. The method
creates small and independent submaps and links them via
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feature recognition. This approach also cannot produce many
long and accurate point tracks. Short tracks are not enough
for drift-free SfM estimation. In comparison, our method
is effective in high-quality point track estimation. We also
address the ubiquitous nondistinctive feature matching prob-
lem in dense frames. Similar to the scheme of [33], we utilize
track descriptors, instead of the feature descriptors, to reduce
computation redundancy.

Wu et al. [34] proposed using dense 3D geometry informa-
tion to extend SIFT features. In contrast, our method only
uses sparse matches to estimate a set of homographies to
represent scene motion, which also handles viewpoint change.
It is general since geometry is not required.

B. Large-Scale Structure-From-Motion

State-of-the-art large-scale SfM methods can handle mil-
lions of images on a single PC in one day [3]. To this end,
large image data are separated into a number of independent
submaps, each is optimized independently. Steedly et al. [35]
proposed a partitioning approach to decompose a large-scale
optimization into multiple better-conditioned subproblems.
Clemente et al. [36] proposed building local maps indepen-
dently and stitching them with a hierarchical approach.

Ni et al. [37] proposed an out-of-core bundle
adjustment (BA) for large-scale SfM. This method decomposes
the data into multiple submaps, each of which has its
own local coordinate system for optimization in parallel.
For global optimization, an out-of-core implementation
is adopted. Snavely et al. [38] proposed speeding up
reconstruction by selecting a skeletal image set for SfM and
then adding other images with pose estimation. Similarly,
Konolige and Agrawal [39] selected a skeletal frame set
and used reduced relative constraints for closing large loops.
Each skeleton frame can actually be considered as a submap.
A similar scheme is applied to iconic views [40], which are
generated by clustering images with similar gist features [41].
In our work, a segment-based scheme is adopted, which first
estimates SfM for each sequence independently, and then
aligns the recovered submaps. Depending on estimation errors,
we split each sequence to multiple segments, and perform
segment-based refinement. This strategy can effectively
handle large data and quickly reduce estimation errors during
optimization.

Another line of research is to improve large-scale BA, which
is a core component of SfM. Agarwal et al. [42] pointed
out that connectivity graphs of Internet image collections are
generally much less structured and accordingly presented an
inexact Newton type BA algorithm. To speed up large-scale
BA, Wu et al. [43] utilized multi-core CPUs or GPUs, and
presented a parallel inexact Newton BA algorithm. Wu [44]
also proposed preemptive feature matching that reduces match-
ing image pairs, and an incremental SfM for full BA when the
model is large enough. Pose graph optimization [45]–[47] was
also widely used in realtime SfM and SLAM [48], [49], which
uses the relative-pose constraints between cameras and is more
efficient than full BA.

Most existing SfM approaches achieve reconstruction in an
incremental way, which may risk drifting or local minima

when dealing with large-scale image sets. Crandall et al. [8]
proposed combining discrete and continuous optimization to
yield a better initialization for BA. By formulating SfM esti-
mation as a labeling problem, belief propagation is employed
to estimate camera parameters and 3D points. In the contin-
uous step, Levenberg-Marquardt nonlinear optimization with
additional constraints is used. This method is restricted to
urban scenes, and assumes that the vertical vanishing point
can be detected for rotation estimation, similar to the method
proposed by Sinha et al. [50]. It also needs to leverage geotag
contained in the collected images and takes complex discrete
optimization. In contrast, our segment-based scheme can run
on a common desktop PC with limited memory, even for large
video data.

Real-time monocular SLAM methods [48], [49], [51], [52]
typically perform tracking and mapping in parallel threads.
The methods of [48] and [49] can close loops efficiently
for large-scale scenes. However, they could still have diffi-
culty in directly handling multiple sequences, as demonstrated
in Figs. 8 and 9.

III. OUR APPROACH

Given a video sequence V with n frames, V = {It |t =
1, ..., n}, our objective is to extract and match features in
all frames in order to form a set of feature tracks. A feature
track X is defined as a series of feature points in images: X =
{xt |t ∈ f (X )}, where f (X ) denotes the frame set spanned
by track X . Each SIFT feature xt in frame t is associated
with an appearance descriptor p(xt ) [10] and we denote all
descriptors in a feature track as PX = {p(xt )|t ∈ f (X )}.

With the detected m features in all frames, finding match-
able ones generally requires a large amount of comparisons
even using the k-d trees; meanwhile it inevitably induces
errors due to the fact that a large number of features make
descriptor space hardly distinctive, resulting in ambiguous
matches. So it is neither reliable nor practical to only compare
the feature descriptors to form tracks. Our ENFT method has
two main steps to address this issue. The framework is outlined
in Table I.

For reducing computation, we can extract one frame for
every 3 ∼ 5 frames to constitute a new sequence and then
perform feature tracking on it. In the consecutive tracking
stage, we employ a two-pass matching strategy to extend the
track lifetime. Then in the non-consecutive tracking stage,
we match common features in different subsequences. With
the obtained feature tracks, a segment-based SfM scheme is
employed to robustly recover the 3D structure and camera
motion. Finally, if necessary, we propagate feature points from
sampled frames to others. Since the 3D positions of these
features have been computed, we can quickly estimate the
camera poses of remaining frames with the obtained 3D-2D
correspondences.

IV. CONSECUTIVE TRACKING

For video sequences, feature tracks are typically obtained
by matching features between consecutive frames. However,
due to illumination change, repeated texture, noise, and large
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TABLE I

FRAMEWORK OVERVIEW OF ENFT-SFM

image distortion, features are easily dropped out or mis-
matched, resulting in breaking many tracks into shorter ones.
In this section, we propose an improved two-pass matching
strategy to alleviate this problem. The first-pass matching
is the same as our prior method [11], which uses SIFT
algorithm [10] with RANSAC [53] to obtain high-confidence
matches and remove outliers. In the second pass match-
ing, we firstly use the inlier matches to estimate a set of
homographies {H k

t,t+1|k = 1, ..., N} with multiple RANSAC
procedures [11], [54]. To handle illumination change, we
estimate global illumination variation Lt,t+1 between images
It and It+1 by computing the median intensity ratio between
matched features. Here, It denotes the gray scale image of
frame t .

We first linearly scale image It with Lt,t+1, and then
transform it with homography H k

t,t+1 to obtain the rectified
image Î k

t . Correspondingly, xt in image It is rectified to
x̂k

t where x̂k
t ∼ H k

t,t+1xt in Î k
t . The distance between a

2D point xk
t+1 and the epipolar line lt,t+1(xt ) is denoted

by d(x̂k
t , lt,t+1(xt )). If x̂k

t largely deviates from the epipolar
line (i.e., d(x̂k

t , lt,t+1(xt)) > τe), we reject H k
t,t+1 since it does

not describe the motion of xt well. For each remaining H k
t,t+1,

we track xt to xk
t+1 by minimizing the matching cost:

Sk
t,t+1(x

k
t+1) =

∑

y∈W

| Î k
t (x̂k

t + y) − It+1(xk
t+1+y)|2

+ λed(xk
t+1, lt,t+1(xt ))

2+λh ||x̂k
t − xk

t+1||2 (1)

where x̂k
t + y are the points in the window W centered

at x̂k
t . Different from our prior method [11], the matching cost

incorporates two geometric constraint terms, which encourage
xk

t+1 to be along the epipolar line and obey homography.
||.|| is the Euclidean distance and |.| is the absolute value.
The corresponding weights are λe = |W |σ 2

c /σ 2
e and

λh = |W |σ 2
c /σ 2

h , where σc, σe, and σh account for the
uncertainty of intensity, epipolar geometry and homography

transformation respectively. In our experiments, these values
are by default σc = 0.1 (for intensity values normalized to
[0, 1]), σe = 2 and σh = 10. Note that σh is relatively large
because we do not require the points to strictly lie on the same
plane. As long as the point is near the plane, Hk can alleviate
the major distortion and provide a better matching condition.

Similar to KLT tracking, we solve for St,t+1(xk
t+1) itera-

tively by taking the partial derivative w.r.t. xk
t+1 and setting it

to zero:

∂Sk
t,t+1(x

k
t+1)

∂xk
t+1

= 0. (2)

It+1(x+�x) is approximated by a Taylor expansion truncated
up to its first order:

It+1(x + �x) ≈ It+1(x) + g�
t+1(x) · �x (3)

where g�
t+1 is the image gradient in the (t + 1)th frame.

With the computed gradients, we propose an iterative solver to
optimize (1) by first initializing xt+1 as the midpoint between
x̂k

t and its projection to lt,t+1(xt ), as shown in Fig. 3. Then
we iteratively update xt+1 by solving (2). In iteration i + 1,
xt+1 is updated as

xk,(i+1)
t+1 = xk,(i)

t+1 + �x

where xk,(i)
t+1 denotes the value of xk

t+1 in iteration i . This
procedure continues until �x is sufficiently small.

The found match is denoted as xk
t+1. With the set of

homographies {H k
t,t+1|k = 1, ..., N}, we can find several

matches {xk
t+1|k = 1, ..., N}. Only the best one j =

mink
∑

y∈W | Î k
t (x̂k

t + y) − It+1(xk
t+1 + y)| is kept.

In case the feature motion cannot be described by any
homographies or feature correspondence is indeed missing,
the found match is actually an outlier. We detect it with the
following conditions:

⎧
⎪⎨

⎪⎩

∑
y∈W | Î j

t (x̂ j
t + y) − It+1(x

j
t+1 + y)| > τc|W |;

d(x j
t+1, lt,t+1(xt )) > τe;

||x̂ j
t − x j

t+1|| > τh .

These conditions represent the constraints of color constancy,
epipolar geometry and homography respectively. If any of
them is satisfied, x j

t+1 is treated as an outlier. τc is set to
a small value (generally 0.02 in our experiments) since the
image is rectified. The remaining two parameters are τe = 2
and τh = 10. Considering points may not strictly undergo
planar transformation, τh is set to a relatively large value.

Fig. 2(c) shows the result after the second-pass matching.
Compared to our prior method [11] (Fig. 2(d)), the improved
two-pass matching method does not need to perform additional
KLT matching. It thus runs faster. The computation time is
only 18ms with GPU acceleration on a NVIDIA GTX780
display card. The number of credible matches also increases.

The two-pass matching can produce many long tracks. Each
track has a group of descriptors. They are similar to each other
in the same track due to the matching criteria. We compute
average of the descriptors over the track, and denote it as track
descriptor p(X ). It is used in the following non-consecutive
track matching.
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Fig. 2. Feature matching comparison. (a) First-pass matching by SIFT descriptor comparison. There are 958 features detected in the first image, but only
53 matches are found. (b) Additional match by directly searching the correspondences along the epipolar lines with SIFT descriptor comparison. Only 11
additional matches are found. (c) Second-pass matching with outlier rejection. 399 (i.e. 53 + 346) matches are obtained. (d) Matching result of [11]. 314
matches are obtained.

Fig. 3. Constrained spatial search with planar motion segmentation. Given
homography H k

t,t+1, we rectify It to Î k
t such that x̂k

t ∼ H k
t,t+1xt . Then

we select the midpoint between x̂k
t and its projection to lt,t+1(xt ) for

initialization, and search the matched point by minimizing (1). The red
dot xk

t+1 is the result.

V. NON-CONSECUTIVE TRACK MATCHING

In this stage, we match features distributed in different
subsequences, which is vital for drift-free SfM estimation.
If we select all image pairs in a brute-force manner, the
process can be intolerably costly for a long sequence. A better
strategy is to estimate content similarity among different
images first. We propose a non-consecutive track matching
(NCTM) method to address this problem.

There are two steps. In the first step, similarity of different
images is coarsely estimated by constructing a n×n symmetric
match matrix M , where n is the number of frames. M(i, j)
stores overlapping confidence between images Ii and I j .
We use the same method of [11] to quickly estimate the
initial matching matrix M , which first uses hierarchical
K-means to cluster the track descriptors and then compute the
similarity confidence of frame pairs by counting the number
of potentially matched tracks that are clustered into the same
leaf node.

For acceleration, we only select long tracks that span 5
or more keyframes to estimate overlap confidence. In our
experiments, for the “Desktop” sequence, the initial match
matrix estimation only takes 1.08 seconds, with a total
of 5, 935 selected feature tracks. Fig. 4(a) shows the ini-
tially estimated match matrix for the “Desktop” sequence.
Bright pixels are with high overlapping confidence where
many common features exist. Because we exclude track self-
matching, the diagonal band of estimated match matrix has

Fig. 4. Match matrix estimation for the “Desktop” sequence containing
941 frames. (a) Our initially estimated match matrix based on the keyframes.
The matrix size is scaled for visualization. (b) Estimated match matrix by
FAB-MAP [27] on the re-sampled sequence that contains 26 frames. (c) The
final match matrix for all frames after our non-consecutive matching based
on (a). (d) The final match matrix after our non-consecutive matching based
on (b).

no value. Our method handles dense image sequences, unlike
FAB-MAP [26], [27] that assumes sparsely sampled ones.
When applying FAB-MAP to the original “Desktop” sequence,
no loop is detected. So we manually sample the original
sequence until common points between adjacent sampled
frames are no more than 100. This generates 26 sampled
frames. As shown in Fig. 4(b), in this case, a few overlapping
image pairs are identified by FAB-MAP; but they are not
enough to match many common features.
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In the second step, with the initially estimated match
matrix, we select the frame pairs with maximum overlapping
confidence to perform feature matching, and update the match
matrix iteratively. Matrix estimation and non-consecutive fea-
ture matching are benefitted from each other to simplify
computation. Fig. 4(c) shows our finally estimated match
matrix.

For speedup, we extract keyframes based on the result of
consecutive feature tracking described in Section IV. Frame 1
is selected as the first keyframe. Then we select frame i
as the second keyframe if it satisfies N1(1, i) ≥ m1 and
N1(1, i + 1) < m1, where N1(i, j) denotes the number of
common features between frames i and j . Other keyframes
are selected as follows. For the two recent keyframes with
indices i1 and i2 in the original sequence, we select frame
j ( j > i2) as the new keyframe if it is the farthest one
from i2 that satisfies {N1(i1, j) ≥ m1, N2(i1, i2, j) ≥ m2},
where N2(i1, i2, j) denotes the number of common points
among the three frames (i1, i2, k). This step is repeated until
all frames are processed. In our experiments, m1 = 100 ∼ 500
and m2 = 50 ∼ 300. Without special notice, the following
procedures are only performed on keyframes.

A. Non-Consecutive Track Matching

Since the number of common features between two frames
can be coarsely reflected by the initially estimated match
matrix M , we select a frame pair (t0

1 , t0
2 ) with the largest

value in M to start matching. After matching (t0
1 , t0

2 ), the set of
matched track pairs CX = {(X1,X2)} approximately represent
the number of common tracks for neighboring frame pairs. The
matched track pairs in frame pair (t1, t2) can be expressed as

CX (t1, t2) = {(X1,X2)|t1 ∈ f (X1), t2 ∈ f (X2),

×(X1,X2) ∈ CX }. (4)

The number of common features in (t1, t2) can be approx-
imated by |CX (t1, t2)| as long as (t1, t2) shares sufficient
common tracks with (t0

1 , t0
2 ). We maintain an updating match

matrix M∗, computed as

M∗(t1, t2) = |CX (t1, t2)| (5)

to propagate the overlapping confidence from (t0
1 , t0

2 ) toward
the neighboring frame pairs, and determine where the next
matching should be performed. Details are given below.

1) Main Procedure: We first detect the largest ele-
ment (t0

1 , t0
2 ) in M . The value of M(t0

1 , t0
2 ) is also denoted

as Mmax. If M(t0
1 , t0

2 ) is larger than a threshold, several
common features may exist. After matching (t0

1 , t0
2 ), we collect

and put the matched track pairs into CX and update M∗
according to Eq. (5). In particular, we set M∗(t0

1 , t0
2 ) = 0,

indicating (t0
1 , t0

2 ) is matched. Next, we repeatedly select the
largest element (tk

1 , tk
2 ) in the updating matrix M∗, match

(tk
1 , tk

2 ), and update CX and M∗ accordingly. This procedure
continues until M∗(tk

1 , tk
2 ) < 50. Then we go to another region

by re-detecting the brightest point in M that has not been
processed. The step ends if the brightest value is smaller
than 0.1Mmax.

TABLE II

NON-CONSECUTIVE TRACK MATCHING COMPARISON BETWEEN
THE METHOD OF [11] AND OURS FOR THE “DESKTOP”

AND “CIRCLE” SEQUENCES

2) Frame Pair Matching and Outlier Rejection: When
entering a new bright region, we perform the classical
2NN matching for (t0

1 , t0
2 ). Then each matching pair (tk

1 , tk
2 )

is detected from the updating matrix M∗. Thus there are
M∗(tk

1 , tk
2 ) common features found previously. We use these

matches to estimate the fundamental matrix Ftk
1 ,t k

2
of frame

pair (tk
1 , tk

2 ), and re-match those outlying features along the
epipolar lines. We further search the correspondences for other
unmatched features along epipolar lines.

Along with the fundamental matrix estimation between
tk
1 and tk

2 , these M∗(tk
1 , tk

2 ) matches are classified into inliers
and outliers. Since only part of matches are used to estimate
Ftk

1 ,t k
2
, the estimated Ftk

1 ,t k
2

could be biased. So we do not
reject outliers immediately. Fortunately, each matched track
pair (X1,X2) undergoes multi-pass epipolar verification during
processing the whole bright region. We record all the verifica-
tion results for each (X1,X2), and determine inliers/outliers
after all bright regions are processed. Suppose (X1,X2) is
classified as an inlier match NI times and as an outlier match
NO times. We reject (X1,X2) if NI < s · NO (s = 1 ∼ 4 in
our experiments). In addition, we use the following strategy
to remove the potential matching ambiguity. For example, a
track X1 may find two corresponding tracks X2 and X ′

2, where
X2 and X ′

2 have overlapping frames. So the track matches
(X1,X2) and (X1,X ′

2) conflict with each other. In this case,
we simply select the best match with the largest NI , and regard
the other as an outlier.

3) Benefits: The proposed matching method outperforms
previous ones in the following aspects. In our prior
method [11], a rectangular region in the roughly estimated
match matrix M is sought each time and local exhaustive
track matching is performed for all frame pairs in it. It could
involve a lot of unnecessary matching for non-overlapping
frames and repeated feature comparison. Our current scheme
only selects the frame pairs with sufficient overlapping, and
matches each pair of frames and most tracks at most once.
As shown in Table II, compared to the method of [11], our new
non-consecutive track matching algorithm is more efficient.
Both methods are implemented without GPU acceleration.

Standard image matching is to find a set of most similar
images given the query one. This scheme has been extensively
used in large-scale SfM [3], [7] and realtime SLAM systems
for loop closure detection [28], [29], [55]. It, however, also
may involve unnecessary matching for unrelated frame pairs
and miss those with considerable common features. It is
because image similarity based on appearance may not be suf-
ficiently reliable. In contrast, we progressively expand frames
with track matching. The expansion is not fully related to the
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initial match matrix. Therefore a very rough matrix is enough
to give a good starting point. Practically, as long as there
is one good position, our system can extend it to the whole
overlapping region accurately. To verify this, we provided two
refined match matrices based on two different rough match
matrices, as shown in Figs. 4(a) and (b). Although the two
initially estimated match matrices are different and only based
on keyframes, the finally estimated match matrices after our
non-consecutive track matching are quite similar (except the
bottom right area, where the initial match matrix by FAB-
MAP does not provide any high confidence elements), which
demonstrates the effectiveness of our method.

B. SfM for Multiple Sequences

Our method can be naturally extended to handle multiple
sequences. Given one or multiple sequences, we first split
long ones, making each new sequence generally contains only
1000 ∼ 3001 frames. The splitted neighboring sequences can
contain some overlapping frames for reliable matching. The
sequence set is denoted as {Vi |i = 1, ..., n}. Then we apply
our feature tracking to each Vi , and estimate its 3D structure
and camera motion using a keyframe-based incremental SfM
scheme similar to that of [6]. The major modification is that
we use known intrinsic camera parameters, and simply select
an initial frame pair that has sufficient matches and a large
baseline to start SfM. For each sequence pair, we use the
fast matching matrix estimation algorithm [11] to estimate
the rough match matrix such that related frames in any two
different sequences can be found and common features can be
matched by the algorithm introduced in Section V-A. Then we
use the segment-based SfM method described in Section VI to
efficiently recover and globally register 3D points and camera
trajectories, as shown in Fig. 1(b).

VI. SEGMENT-BASED COARSE-TO-FINE SFM

With the independently reconstructed sequences and
matched common tracks, we align them in a unified 3D coordi-
nate system. For a long loopback sequence, error accumulation
could be serious, making traditional bundle adjustment stuck
in local optimum. It is because the first a few iterations
of bundle adjustment aggregate accumulation errors at the
joint loop points, which are hard to be propagated to the
whole sequence. To address this problem, we split each
sequence into multiple segments – each is with a similarity
transformation. Only these transformations and overlapping
points across different segments are optimized. We name it
segment-based bundle adjustment and illustrate it in Fig. 6.
Lim et al. [28] performed global adjustment by clustering
keyframes into multiple disjoint sets (i.e. segments), which
is conceptually similar to our idea. But the geodesic-distance-
based segmentation to cluster frames could make inconsistent
structure be put into a single body, complicating alignment-
error reduction. This method also did not adaptively split the
segments in a coarse-to-fine way to minimize the accumulation
error. Local optimization within each body may not suffi-
ciently minimize the error which is mainly caused by global
misalignment.

In the beginning, we order all sequences and define the
one that contains the maximum number of tracks merged with
others as the reference. Without losing generality, we define it
as sequence #1, denoted as V1. Its local 3D coordinate system
is also set as the reference. Then with the common tracks
among different sequences, we can estimate the coordinate
transformation for each sequence j (i.e., Vj ), denoted as
Tj = (s j , R j , t j ), where s j is the scale factor, R j is the
rotational matrix, and t j is the translation vector. For the
reference sequence, s1 have value 1, R1 is an identity 3 × 3
matrix, and t1 = (0, 0, 0)�.

Each segment is assigned with a similarity transformation,
and the relative camera motion between frames in each seg-
ment is fixed, so that the number of variables is small enough
for efficient optimization. Different from [28], which clusters
frames using geodesic distances, we propose clustering neigh-
boring and geometrically consistent frames into segments. The
position at which two consecutive frames are inconsistent is
defined as a “split point”. We project the common points in
each consecutive frame pair into the two images and check
the re-projection error.

However, directly detecting the split points according to
reprojection error is not optimal since it is generally large at
loop closure points. Splitting such frame pairs does not help.
We instead find split points that the re-projection error is most
likely to be reduced. Assume each frame k is associated with
a small similarity transformation Tk , which is parameterized
as a 7-vector ak (three Rodrigues components for rotation, 3D
translation and scale). If we minimize the re-projection error
w.r.t. ak , the steepest descent direction is

gk =
∑

i=1···Nk

AT
i ei (6)

where Nk is the number of points visible in frame k, and Ai is
the Jacobian matrix Ai = ∂π(Pk Xi )/∂ak . π is the projection
function. ei is the re-projection error ei = xi − π(Pk Xi ),
which is reduced along the direction of gk . For two consecutive
frames (k, k + 1), if their gk and gk+1 have similar directions,
their re-projection errors both can be reduced with the same
similarity transformation. Otherwise, these two frames are
better to be assigned to different segments. The inconsistency
between two consecutive frames is defined as the angle
between the two steepest descent directions

C(k, k + 1) = arccos
gT

k · gk+1

||gk|| · ||gk+1|| . (7)

For verification, we group every 100 consecutive frames into
one segment for the “Desktop” (Fig. 5(a)), and apply a certain
transformation to each segment (Fig. 5(b)). As expected,
the re-projection errors distribute in the whole overlapping
regions. In contrast, the angle between the steepest descent
directions reliably reflects the splitting result.

We progressively segment the sequences. At the t th itera-
tion, each sequence is divided into 2t segments. We compute
C(k, k + 1) for all k and detect the 2t − 1 split points with
the largest C(k, k + 1). In order to evenly spread the split
points across the whole sequence, we perform non-maximal
suppression during selecting split points. While selecting the
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Fig. 5. Split point detection. (a) Original camera trajectory of the “Desktop” sequence. (b) Splitted camera trajectories. Each segment contains 100 frames.
(c) Re-projection errors (green curve) and angles of steepest descending direction (blue curve). Values are all normalized to [0,1] for better comparison. The
angle more accurately reflects the split result quality compared to the re-projection error.

Fig. 6. Segment-based coarse-to-fine refinement. (a) Recovered camera
trajectories marked with different colors. (b) Each sequence is split into 2
segments where endpoints and split points are highlighted. (c) Refined camera
trajectories after the first iteration, where errors are redistributed. (d) “Split
points”, which are joints of largely inconsistent camera motion for consecutive
frames. (e) Sequence separation by split points. Two dark points denote the
splitted two consecutive frames in a split point. (f) Refined camera trajectories
after 2 iterations.

largest one, its neighboring N j
2t candidates (N j is the number

of frames in sequence j ) are suppressed and then select the
next largest one from the remaining ones with non-maximal
suppression. This procedure is repeated until 2t − 1 split
points are selected. We put the consecutive frames in between
two adjacent split points into a segment, and use the method
described as follows to estimate the similarity transformations
and submaps jointly for all segments. When the optimization
is done, we detect split points for each sequence again, and re-
separate the sequence into multiple segments. We can repeat
this process until the average reprojection error is below a
threshold or each segment contains only one frame. Errors are
progressively propagated and reduced. The procedure of our
segment-based coarse-to-fine refinement scheme is illustrated
in Fig. 6.

Algorithm Details

Suppose the number of detected split points among all
n sequences is m. We break the sequences into a total of
n′ = n + m segments. Each of them is with a similarity trans-
formation T w

j = (sw
j , Rw

j , twj ), where j = 1, · · · , n′, w.r.t.
the world coordinate. We use BA to refine the reconstructed
3D feature points with these similarity transformations. Dif-
ferent from traditional BA, the camera parameters inside each
segment are fixed, we thus only update the similarity trans-
formation. The procedure is to first transform one 3D point

in the world coordinate to a local one with parameters T w.
Then traditional perspective camera projection is employed to
compute the re-projection error. Our BA function is written as

min
N ′∑

i=1

n′∑

j=1

n j∑

k=1

wi, j,k‖π(K j,k(R j,k(s
w
j Rw

j Xi +twj )+t j,k))

−xi, j,k‖2 (8)

where n j is the number of frames in the j -th segment, N ′ is
the number of the 3D feature points, and n′ is the number
of the segments. π is the projection function. xi, j,k is the
image location of Xi in the k-th frame of the j -th subsequence.
K j,k , R j,k , and t j,k are the intrinsic matrix, rotational matrix,
and translation vector, respectively. wi, j,k is defined as

wi, j,k =
{

1, If point i is visible in frame k in sequence j

0, Otherwise

We use Schur complement and forward substitution [56]
to solve the normal equation, which separates the updating
of rigid transformation and of 3D points in each iteration.
It reduces the large linear system to a linear symmetric one
with scale 7n′ × 7n′ for updating transformation. It makes
3D point estimation much cheaper because each point can be
updated independently by solving a 3×3 linear symmetric sys-
tem. Moreover, since only a few segment pairs share common
points, the Schur complement is rather sparse. In SBA [57], the
system of Schur complement was explicitly constructed and
solved by Cholesky decomposition. Wu et al. [43] implicitly
built the Schur complement for parallel computing. They
did not take full advantage of the sparsity property. For
acceleration, sSBA [58] proposed to utilize the sparse structure
of Schur complement and solve it with sparse Cholesky
decomposition. We also utilize the sparsity and solve it with
efficient preconditioned conjugate gradient similar to that
of [43], which can significantly reduce the computation.

Because the size of the linear system is actually determined
by n′, we can estimate n′ based on the available memory.
Once the size n′ linear system is reached, SfM refinement is
performed in the following two steps. In the first step, we
only select the m = n′ − n split points to split the sequences,
and solve (8) to refine the result. In the second step, we
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TABLE III

RUNNING TIME OF ENFT-SFM

perform a local BA for each sequence j iteratively by re-
splitting sequence j to multiple segments with detected split
points and refining them by solving (8) while fixing cameras
and 3D points in other sequences. This process stops when
all sequences are processed. This strategy makes it possible to
efficiently and robustly handle large data with limited memory
consumption.

Finally, we fix the 3D points and estimate the camera poses
respectively for all frames. During the course of iterations,
errors are quickly reduced.

VII. EXPERIMENTAL RESULTS

We evaluate our method with several challenging datasets.
Running time is listed in Table III excluding I/O, which is
obtained on a desktop PC with an Intel i7-4770K CPU, 8GB
memory, and a NVIDIA GTX780 graphics card. The operating
system is 64-bit Windows 7. Only the feature tracking compo-
nent is accelerated by GPU. We use 64D descriptors for SIFT
features. Our SIFT GPU implementation is inspired by [59]
but runs faster. For SfM estimation, we optimize the code
by applying SSE instructions, but only use a single thread
without parallel computing. For the sequences captured by
us, since the intrinsic matrix is known, we optimize the SfM
code by incorporating this prior to improve the robustness
and efficiency. Garden dataset contains 6 sequences, which
are further splitted into 37 shorter sequences, from which we
sample the frames by setting the step to 3 or 5. The source
code and datasets can be found in our project website.2

As our consecutive point tracking can handle wide-baseline
images, frame-by-frame tracking is generally unnecessary. For
our datasets listed in Table III, we usually extract one frame
for every 3 ∼ 5 frames to apply feature tracking. We quickly
propagate the feature points to other frames by KLT with GPU
acceleration. This trick further saves computation. In addition,
in order to reduce image noise and blur, for each input
frame It , we perform matching with two past frames. One is
the last frame It−1, and the other (denoted as It ′ ) is the farthest
frame that shares over 300 common features with It−1. Note
that only a small number of features in It ′ need to be matched
with It , which does not increase computation much.

A. Quantitative Evaluation of Feature Tracking

We compare the feature tracking methods of consecu-
tive SIFT matching (C-SIFT), our consecutive point track-
ing (CPT), brute-force SIFT matching (BF-SIFT), our

2http://www.zjucvg.net/ls-acts/ls-acts.html

consecutive point tracking with non-consecutive track
matching (CPT+NCTM), our consecutive point track-
ing with keyframe-based non-consecutive track matching
(CPT+ KNCTM).

C-SIFT extracts and matches SIFT features only in con-
secutive frames. It is a common strategy for feature tracking.
The advantage is that the complexity is linear to the number
of frames. However, feature dropout could occur due to global
indistinctiveness or image noise, which causes producing
many short tracks. The brute-force SIFT matching exhaus-
tively compares extracted SIFT features, whose complexity is
quadratic to the number of processed frames. In comparison,
the complexity of our method (CPT+NCTM) is linear to the
number of processed frames and the number of overlapping
frame pairs while high quality results are guaranteed.

The “Circle” sequence contains 2, 129 frames. To make
computation feasible for a few prior methods, we select one
frame for every 3 consecutive ones, which forms a new
sequence containing 710 frames in total. Table IV lists the
running time with GPU acceleration. Our consecutive point
tracking (CPT) needs a bit more time than C-SIFT. But
it significantly extends the lifetime of most tracks. With
our non-consecutive track matching, common feature tracks
scattered over disjoint subsequences are connected, further
expanding track lifetime. Compared with the computationally
most expensive BF-SIFT, our result (CPT+NCTM) obtains
more long feature tracks and the computation is much
faster. With keyframe-based acceleration, our non-consecutive
track matching time is further significantly reduced (from
87.6s to 40.9s), without influencing much matching result.
Table IV lists the average length of tracks for all tracks with
length ≥ 1. The computed average length is short because we
also take into account unmatched features with track length 1.
The quality of SfM computed by BF-SIFT, CPT+NCTM
and CPT+KNCTM are quite comparable, as shown in our
supplementary material.3

B. Comparison With Other SfM/SLAM Systems

We compare our ENFT-SFM system with state-of-the-art
SfM/SLAM systems (i.e. ORB-SLAM [49], VisualSFM [60],
[43], [44] and OpenMVG [61]) using our datasets and other
public benchmark datasets (i.e. KITTI odometry dataset [62]
and TUM RGB-D dataset [63]). Since VisualSFM and Open-
MVG are mainly designed for unordered image datasets, we
extract keyframes from the original sequences as input for

3http://www.cad.zju.edu.cn/home/gfzhang/projects/tracking/featuretracking/
ENFT-supple.pdf
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Fig. 7. The recovered camera trajectories by ENFT-SFM in KITTI 00, 01, 05 and 08 sequences.

TABLE IV

PERFORMANCE OF DIFFERENT ALGORITHMS

TABLE V

LOCALIZATION ERROR (RMSE (M)/COMPLETENESS) COMPARISON IN

KITTI ODOMETRY DATASET

VisualSFM and OpenMVG. For fair comparison, our method
processes both original sequences and extracted keyframes for
KITTI odometry dataset and TUM RGB-D dataset.

For KITTI and TUM RGB-D datasets, we align recovered
camera trajectories and ground truth by estimating a 7DoF
similarity transformation. The RMSE and completeness
of camera trajectories for all methods are listed in
Tables V and VI. “X” denotes that the map cannot be
accurately initialized or processed. The recovered camera
trajectories of sequences 00, 01, 05 and 08 from KITTI
odometry dataset by our method are shown in Fig. 7. The
complete results are included in our supplementary material
(see previous footnote link). Because sequences 01 and 08
do not contain loops, the drift cannot be corrected, leading to
large RMSE.

For ORB-SLAM, we directly quote reported RMSE
error of keyframe trajectory in their paper. Compared with
ORB-SLAM, our method achieves comparable results in
KITTI odometry dataset. We note only our method is able
to process all sequences (the camera poses of some frames in
TUM RGB-D sequences are not recovered due to extremely

TABLE VI

LOCALIZATION ERROR (RMSE (CM)/COMPLETENESS) COMPARISON IN

TUM RGB-D DATASET

serious motion blur, occlusion or there are not sufficient texture
regions). We fix the parameters for both KITTI and TUM
RGB-D datasets except for the maximum frame number for
each sequence segment. It is set as 300 for KITTI odometry
dataset and 1, 500 for TUM RGB-D dataset respectively.
Since the camera moves fast in KITTI odometrry dataset, the
maximum frame number for each segment should be smaller
to reduce the accumulation error.

For our multi-sequence data, since ORB-SLAM cannot
directly handle multiple sequences, we constitute multiple
sequences into a single sequence by re-ordering the frame
index. The input frame rate is set to 10fps for ORB-SLAM.4

The recovered camera trajectories by ORB-SLAM are shown
in Figs. 8 and 9. The camera poses of many frames are not
recovered due to unsuccessful relocalization. Although some
loops are closed, the optimization is stuck in a local optimum.
The reason is twofold. On the one hand, the matched common
features among non-consecutive frames by a traditional bag-
of-words place recognition method [64] are insufficient for
robust SfM/SLAM. On the other hand, using pose graph
optimization [46], [47] may not sufficiently minimize accu-
mulation error, and traditional BA is easily stuck in a local
optimum if a good starting point is not provided.

VisualSFM does not work that well in KITTI odometry
dataset and our long sequences, as shown in Table V and

4We use ORB-SLAM2: https://github.com/raulmur/ORB_SLAM2.
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Fig. 8. Reconstruction comparison on the “Street” example. (a) SfM result of
ENFT-SFM. (b) SfM result of VisualSFM, which is separated to 3 individual
models. (c) The recovered camera trajectory by ORB-SLAM.

Fig. 9. Reconstruction comparison on the “Garden” example. (a) Two
individual models reconstructed by VisualSFM. The reconstructed SfM result
contains 60 individual models. (b) The recovered camera trajectory by
ORB-SLAM.

Figs. 8 and 9. Note the matching time in our data is overly
long for VisualSFM. We have to use our non-consecutive
feature tracking algorithm to get the feature matching results.
The produced SfM results still have the drifting problem and
the whole camera trajectory is easily separated into multiple
segments. We thus select the largest segment for computing
RMSE and completeness. One reason for this drifting problem
is the incremental SfM, which may not effectively eliminate
accumulated errors. Another explanation is that sequence
continuity/ordering is not completely utilized. Since the KITTI
dataset is captured by an autonomous driving platform and
each frame is only matched to its consecutive frames. Once
camera tracking fails in one frame, the connection between two
neighboring subsequences will be broken. In our experiments,
OpenMVG usually performs worse than VisualSFM.

C. Results on General Image Collections

Although our segment-based SfM method is originally
designed for handling sequences, it can be naturally extended
to work with general image collections. The basic idea is

Fig. 10. The reconstruction result of “Colosseum” dataset by our method.
Cameras in the same sequence are encoded with the same color.

to separate the unordered image data to a set of sequences
according to their common matches.

We first select two images with the maximum number of
common features to constitute an initial sequence. Then we
select another image, which has the most common features
with the head or tail frame, and add it into the sequence as
the new head or tail. This process repeats until no image can
be added. Then we begin to build another sequence based on
remaining images. For some 3D points that have only one or
two corresponding features in one sequence, we additionally
select related images from other sequences to help estimate
the 3D positions.

Fig. 10 shows our SfM result on Colosseum
dataset [65], [66], which contains 1, 164 images. We directly
use the feature matching result obtained by VisualSFM.
Because our current SfM implementation requires that the
intrinsic camera parameters and radial distortion are known
for each image, we calibrate the matched feature positions
according to the calibrated parameters by VisualSFM. Then
we use our extended segment-based SfM method to estimate
camera poses and 3D points. The processing time of our SfM
estimation in a single thread is 125 seconds, which is even
shorter than that of VisualSFM enabling GPU (269 seconds).

D. Parameter Configuration and Limitation

The parameters can be easily set in our system because
most of them are not sensitive and use default values. The
most important parameter is τc, which controls the strength to
mark outliers during feature tracking. A large τc could result
in many matches, and introduce outliers. In our experiments,
we conservatively set τc to a small value 0.02. By removing
a small set of matches, the system becomes reliable for
high-quality SfM. Fig. 11 shows the matching result with
different τc. After the fist-pass matching, 35 matches are
obtained. The second-pass matching result with τc = 0.06
is shown in Fig. 11(b). A few features that do not belong to
the green book are included. These outliers are removed by
using smaller τc values, as shown in (c) and (d). By setting
τc = 0.02, almost all outliers are removed and 95 reliable
matches are obtained.

The proposed two-pass matching works best if the scene can
be represented by multiple planes. For a video sequence with
dense frames, this condition can be generally achieved because
image transformation between two consecutive frames is small
for viable approximation by one or multiple homographies.
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Fig. 11. Matching result with different τc. (a) First-pass matching result. (b-d) Results of the second-pass matching only using the homography corresponding
to the left green book with τc = {0.06, 0.04, 0.02}, respectively. The matches that do not belong to the green book are outliers. (e) Second-pass matching
result using all homographies with τc = 0.02. 95 matches are obtained.

We note even if the scene deviates from piecewise planarity,
our second-pass matching still works as rectified images are
close to the target ones. Our method may be not suitable for
wide-baseline sparse images where the number of matches by
first-pass matching is too small.

VIII. CONCLUSION AND DISCUSSION

We have presented a robust and efficient non-consecutive
feature tracking (ENFT) method for robust SfM, which
consists of two main steps, i.e., consecutive point tracking
and non-consecutive track matching. Different from typical
sequential matchers, e.g., KLT, we use invariant features and
propose a two-pass matching strategy to significantly extend
the track lifetime and reduce the feature sensitivity to noise and
image distortion. The obtained tracks avail estimating a match
matrix to detect disjointed subsequences with overlapping
views. A new segment-based coarse-to-fine SfM estimation
scheme is also introduced to effectively reduce accumulation
error for long sequences. The presented ENFT-SFM system
can handle tracking and registering large video datasets with
limited memory consumption.

Our ENFT method greatly helps SfM, and considers feature
tracking on non-deforming objects by tradition. Part of our
future work is to handle dynamic objects. In addition, although
the proposed method is based on SIFT features, there is no
limitation to use other representations, e.g., SURF [17] and
ORB [67], for further acceleration.
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