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Figure 1: Comparison of our method, VRL [Novák et al. 2012b], and adaptive LightSlice [Frederickx et al. 2015] on a city scene with
heterogeneous smoke. Our method generates a high-quality result in approximately 20 min, whereas the other two algorithms produce results
with severe artifacts at equal rendering time.

Abstract

Several scalable many-light rendering methods have been proposed
recently for the efficient computation of global illumination. How-
ever, gathering contributions of virtual lights in participating media
remains an inefficient and time-consuming task. In this paper, we
present a novel sparse sampling and reconstruction method to ac-
celerate the gathering step of the many-light rendering for partici-
pating media. Our technique explores the observation that the scat-
tered lightings are usually locally coherent and of low rank even
in heterogeneous media. In particular, we first introduce a matrix
formation with light segments as columns and eye ray segments as
rows, and formulate the gathering step into a matrix sampling and
reconstruction problem. We then propose an adaptive matrix col-
umn sampling and completion algorithm to efficiently reconstruct
the matrix by only sampling a small number of elements. Experi-
mental results show that our approach greatly improves the perfor-
mance, and obtains up to one order of magnitude speedup compared
with other state-of-the-art methods of many-light rendering for par-
ticipating media.

Keywords: participating media, many-light rendering, matrix
completion, adaptive rendering

Concepts: •Computing methodologies→ Rendering;

1 Introduction

Participating media, such as clouds, fogs, liquid, and transparent
solid, significantly contribute to a wide variety of vivid visual ef-
fects. Different kinds of rendering methods have been proposed and
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developed based on the radiative transfer equation (RTE) [Chan-
drasekhar 1960] to simulate such effects. However, one of the
greatest challenges to solve this equation is the tremendous amount
of possible light transport and scattering among particles, which in-
spires a series of solutions [Lafortune and Willems 1996; Georgiev
et al. 2013; Jarosz et al. 2011b; Novák et al. 2012b; Novák et al.
2012a; Frederickx et al. 2015].

Many-light rendering is one class of methods having attracted in-
creasing attention and achieved significant progress. These meth-
ods simplify the rendering into two steps, namely, virtual light
shooting and virtual light gathering, as well as utilize the direct
illuminations of the virtual lights to approximate multiple bounces
of light reflection and scattering [Keller 1997; Raab et al. 2008;
Engelhardt et al. 2012; Novák et al. 2012b]. Different types of
virtual lights have been proposed and utilized to simulate differ-
ent scattered lightings, such as points, rays, and beams. However,
even when state-of-the-art representations, such as virtual ray lights
(VRLs) or virtual beam lights (VBLs), and the most recent scalable
approach [Frederickx et al. 2015] are used, gathering the contribu-
tions from a large number of virtual lights remains a tedious and
time-consuming task.

In this paper, we introduce a new sparse sampling and reconstruc-
tion scheme for rendering participating media. Our method is based
on the observation that the scattered lightings are usually locally
coherent and of low rank even in heterogeneous participating me-
dia. By formulating the gathering step in participating media as
a matrix sampling and reconstruction problem, we exploit the lo-
cal coherence and low rank properties of the matrix, and apply the
latest low-rank matrix completion technique [Krishnamurthy and
Singh 2014] to accelerate the gathering from a small number of
samples. Specifically, we first partition the VRLs and eye rays into
segments and pair them to construct the lighting matrix. The ma-
trix columns correspond to the segments of VRLs, and the rows
correspond to the segments of eye rays. A novel adaptive sampling
and reconstruction approach is then proposed to recover the matrix
by sparsely sampling and completing columns. The results show
that our method significantly improves the performance of render-
ing participating media, and obtains up to one order of magnitude
speedup compared with state-of-the-art methods of many-light ren-
dering for participating media.

The main contributions of this work are as follows:

• a new many-light rendering formation based on the segments
of VRLs and eye rays for rendering participating media;
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• a new graph-partitioning algorithm to group and refine VRL
and eye ray segments;

• a new adaptive matrix column sampling and completion
method to recover the lighting matrix from a small number
of elements; and

• an efficient rendering algorithm that heavily accelerates state-
of-the-art methods and is capable of rendering a large amount
of VRLs.

2 Related Work and Background

Many-light Rendering for Participating Media Numerous
methods have been proposed to study the rendering of participating
media. We recommend a survey [Pegoraro 2009] for a comprehen-
sive introduction. In this paper, we focus only on relevant works,
i.e., the many-light rendering approaches for participating media.

Many-light rendering originates from instant radiosity (IR) [Keller
1997], a special case of bidirectional path tracing, in which pho-
tons are first traced from light sources and stored as virtual point
lights (VPLs), and indirect illuminations are gathered and approx-
imated by these direct illuminations of VPLs. The reuse of light
sub-paths of the IR method exhibits better performance. However,
as the number of VPLs increases to thousands, millions, or more,
efficiently gathering their contributions becomes a challenge, and
motivates a series of scalable algorithms that are known as many-
light rendering. Dachsbacher et al. [2014] provided a comprehen-
sive survey on this class of methods.

Lightcuts [Walter et al. 2005] is a pioneer scalable solution that
uses tree cuts from light tree to gather contributions from a large
number of VPLs. Bidirectional Lightcuts [Walter et al. 2012] uses
multiple bounce shading points to handle a high range of glossy
material. Georgiev et al. [2012] sampled VPLs with sophisticated
PDF to capture complex illumination. Matrix row and column sam-
pling [Hašan et al. 2007] formulates the gathering of many lights
as a problem of filling a lighting matrix. LightSlice [Ou and Pel-
lacini 2011] clusters the rows of the lighting matrix into local slices
and selects different representative VPLs to better capture sub-
tle local lightings. Recently, a new matrix sampling-and-recovery
method [Huo et al. 2015] has been proposed to recover the visibil-
ity of sub-lighting matrices with sparsely sampled matrix elements.
Our work is inspired by this method, but solves a more challenging
problem, i.e., rendering participating media.

Multidimensional Lightcuts [Walter et al. 2006] extends the idea
of Lightcuts to high dimensional light trees; thus, this method can
gather the scattered illuminations with a massive amount of VPLs
in the media. However, the point-based representation suffers from
either serious singularity artifacts or energy loss because of clamp-
ing. Raab et al. [2008] and Engelhardt et al. [2012] combined the
traditional point-based IR with local path tracing to compensate the
lost clamping energy. Nevertheless, the full compensation reverts to
brute-force path tracing. Lately, new methods [Jarosz et al. 2011a;
Jarosz et al. 2011b; Krivánek et al. 2014; Novák et al. 2012b; Novák
et al. 2012a] extend the representation of scattering illumination
from points to rays or beams, which significantly diminish the sin-
gularity artifacts. To represent virtual light, our method uses the
VRL [Novák et al. 2012b] rather than VBL [Novák et al. 2012a]
because the progressive scheme of the latter is more difficult to in-
tegrate in our matrix formation and sampling, although VBLs can
better suppress the singularity artifacts than VRLs can.

Ray or beam-based approaches are more efficient in gathering vir-
tual lights than point-based approaches. However, they still require
tremendous sampling and integrations to render complex scenes

with a large number, e.g., millions, of virtual lights. Frederickx et
al. [2015] adapted LightSlice [Ou and Pellacini 2011] to accelerate
the gathering in such a case. Different from their work, our method
proposes a new matrix formation and introduces a new matrix sam-
pling and reconstruction technique that completes the matrix only
from a small number of matrix elements.

Adaptive Sampling The strategy of adaptive sampling has been
widely used in rendering, especially in reducing the noise of Monte
Carlo path tracing. Following the classical work [Mitchell 1987]
in this field, adaptive sampling has achieved significant advances
in recent years. Comprehensive reviews were conducted by Sen
et al. [2015] and Zwicker et al. [2015]. In many-light rendering,
numerous methods employ the idea of adaptivity. Lightcuts can be
regarded as a generalized adaptive sampling algorithm [Walter et al.
2005; Walter et al. 2006; Walter et al. 2012; Frederickx et al. 2015],
where it builds tree hierarchies of light sub-paths and adaptively
connects them with eye sub-paths while considering a lower-error
bound metric. In this paper, our method also possesses adaptivity
by sampling matrix columns and completing the sampled columns
adaptively.

Matrix Completion Matrix completion has recently become a
popular topic in the research community. Theoretically, ma-
trix completion aims to recover a low-rank matrix L from a set
of sparsely sampled matrix elements by minimizing the matrix
rank [Candès and Recht 2009]. The matrix rank ofL is numerically
approximated by its nuclear norm, defined as the sum of its singu-
lar values. Instead of completing the entire matrix at once [Candès
and Recht 2009], Krishnamurthy et al. [2014] proposed an adaptive
matrix completion method that recovers the matrix columns one by
one by projecting each column into a low-rank sub-space of the
matrix. We adopt this method in our approach because it column-
wisely completes the matrix, so that we only need to sample and
complete a small part of columns and then estimate the integration
of all columns.

Matrix sampling and recovery techniques have also been used in re-
cent rendering works. Huang et al. [2010] sparsely sampled and re-
covered light transport for precomputed rendering. Matrix row and
sampling [Hašan et al. 2007] and its following work, LightSlice [Ou
and Pellacini 2011], samples a subset of columns and rows of the
lighting matrix to fill up the matrix. Wang et al. [2009] proposed a
kernel Nyström method to reconstruct the lighting transport matrix
from a few images. Peers et al. [2009] adopted compressive sens-
ing techniques to reconstruct light transport for relighting. Ren et
al. [2013] proposed to precompute radiance regression functions for
real-time global illumination. Huo et al. [2015] sparsely sampled
and recovered the visibilities of the lighting matrix. These methods
accelerate the rendering of certain scenes but are unable to handle
participating media.

3 Overview

In this section, we first present our matrix formation of rendering
participating media and then provide an overview of our adaptive
matrix column sampling and completion algorithm.

3.1 Rendering Participating Media with Virtual Lights

In our work, we follow the mathematical formation presented by
Dachsbacher et al. [2014]. Theoretically, to render the participating
media, the outgoing radiance at shading point x toward direction
−ω can be computed by gathering illuminations from VPLs as:

Lo(x,−ω) =
∑
j

Ijf(x)G(x,yj)V̂ (x,yj), (1)
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Figure 2: Four types of sub-lighting matrices: (a) VRL segment
to eye ray segment, (b) VPL to surface point, (c) VPL to eye ray
segment and (d) VRL segment to surface point.

where yj and Ij are the position and intensity of j-th VPL, respec-
tively; f(x), G(x,yj) and V̂ (x,yj) are the generalized scattering
distribution function (BRDF of the surface point or product of the
phase function and scattering coefficient of media), generalized ge-
ometry term, and generalized visibility (product of normal visibility
and transmittance), respectively. The detailed definitions of these
functions can be found in the work of Dachsbacher et al. [2014].

To diminish the singularity produced by VPLs, Novák et al.
[2012b] proposed to use eye rays and VRLs to replace shading
points and VPLs, as well as integrated contributions between two
rays as:

Lm ≈
∫ s′

0

∫ t′

0

τ(a,xm)Ijτ(b,ym)

f(xm)f(ym)G(xm,ym)V̂ (xm,ym)dtds,

(2)

where xm = a+tω defines the eye ray starting from a to direction
ω; ym = b+sψ defines the light ray starting from b to directionψ;
τ(, ) is the transmittance between two points; f(xm) and f(ym)
are the generalized scattering distribution functions starting from
xm toward ym and vice versa; and Ij is the intensity of j-th VRL.

3.2 Matrix Formation

Inspired by previous many-light rendering approaches [Hašan et al.
2007; Ou and Pellacini 2011; Huo et al. 2015; Frederickx et al.
2015], we formulate the rendering of participating media as the
sampling and integrating of a lighting matrix. In particular, we
split the eye rays and VRLs in the media into segments, and use
the light transport between light and eye ray segments as the matrix
element. By introducing these segments, we can formulate the en-
tire rendering of the scene with participating media into four types
of matrices, with two types of virtual lights as matrix columns, i.e.,
VRL segments and VPLs, as well as two types of receivers as ma-
trix rows, i.e., shading points and eye ray segments. Examples of
these matrices are illustrated in Figure 2. The matrix element in i
row and j column is the contribution from j-th virtual light to i-
th receiver. If the virtual light is a VRL segment and the receiver
is an eye ray segment, then the matrix element of the segment-to-

segment contribution is computed as:

Essij =

∫ s′j

sj

∫ t′i

ti

τ(ai,xm)Ijτ(bj ,ym)

f(xm)f(ym)G(xm,ym)V̂ (xm,ym)dtds,

(3)

where xm = ai+ tω and ym = bj +sψ are the segments of VRL
and eye ray, respectively; ai is the origin of eye ray segment i; and
bj is the origin of VRL segment j.

Similarly, the other three types of matrix elements can be computed
as:

Epsij =
∫ t′i
ti
τ(ai,xm)Ijf(xm)G(xm,yj)V̂ (xm,yj)dt, (4)

Espij =
∫ s′j
sj
Ijτ(bj ,ym)f(xi)G(xi,ym)V̂ (xi,ym)ds, (5)

Eppij = Ijf(xi)G(xi,yj)V̂ (xi,yj), (6)

where Epsij , Espij and Eppij are the point-to-segment, segment-to-
point and point-to-point contributions from j-th virtual light to i-th
receiver, respectively; yj and xi are the VPL and surface shading
point, respectively.

3.3 Algorithm Overview

To calculate the final illumination of every row (receiver) of a sub-
lighting matrix, we need to integrate all columns as follows:

s =
∑
j

lj , (7)

where lj denotes the j-th column of the sub-lighting matrix and the
rows of s are the illuminations of the receivers. For a large scene
with thousands or millions of virtual lights, accurately sampling and
integrating every element of the lighting matrix are time-consuming
and impractical. Therefore, we present a new adaptive matrix col-
umn sampling and completion algorithm to efficiently compute the
final illuminations.

Based on the lighting matrix formations, three types of lighting ma-
trices are composed of segments in rows, columns, or both. We use
the matrix of eye ray and VRL segments as an example and show an
overview of our algorithm in Figure 3. For other types of lighting
matrices, these steps are similar but use points instead of segments.
Our algorithm starts with the eye rays and VRLs generated by pre-
vious approaches [Novák et al. 2012b]. The algorithm then takes
two steps, namely, matrix construction (Section 4) and adaptive col-
umn sampling and completion (Section 5). The basic idea is to first
use the locality and coherence of the scattered lighting in media by
slicing the entire lighting matrix on rows and building a hierarchy
of columns, and then adaptively sample and complete columns in
sliced sub-matrices. We take different strategies to explore the co-
herence of rows and columns. Compared with the number of eye
rays, the number of virtual lights may vary dramatically in different
scenes. Therefore, our algorithm slices the lighting matrix at first
but postpones the selection of columns at the sampling step rather
than at the matrix construction step to be scalable to these lights.

Matrix Construction Eye rays and VRLs are first divided into
segments, which are clustered into groups and refined locally. We
propose a similarity metric on segments and a graph-based parti-
tioning algorithm to perform the segment clustering. Then, these
clustered eye ray segments are used to slice the entire light matrix
into sub-matrices, and the clustered VRL segments are used to con-
struct a light tree. These sub-matrices with hierarchical columns
are processed individually in the following step.
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Figure 3: Algorithm overview.

Adaptive Column Sampling and Completion We adaptively
sample only a few columns instead of all columns, and these
columns are used to estimate the entire column integration. Fur-
thermore, we subsequently employ an adaptive matrix completion
technique that recovers these sampled columns by evaluating only
a few elements of rows. In summary, our scheme samples a subset
of the matrix columns and rows, thereby remarkably reducing the
sampling cost.

4 Matrix Construction

In this section, we describe the algorithm to construct the lighting
matrix. For simplicity, we focus on the construction of the segment-
to-segment lighting matrix. Other types of lighting matrices can be
constructed similarly if their rows or columns are ray segments.

Theoretically, the lower the rank of the matrix is, the fewer sam-
ples are required to complete it [Candès and Recht 2009; Krishna-
murthy and Singh 2014]. Therefore, the goal of matrix construction
is to obtain a lighting matrix with data coherence and low rank. In-
spired by LightSlice [Ou and Pellacini 2011], we group the eye ray
segments into clusters and slice the entire lighting matrix into sub-
matrices. Furthermore, inspired by Lightcuts [Walter et al. 2005],
we hierarchically group VRL segments into a light tree. These two
operations on eye ray and VRL segments require a similarity metric
to measure the difference in segments as well as a clustering algo-
rithm to group similar ones. In the following, we first introduce
the generation of an initial set of segments, then present a graph-
based partitioning algorithm to group these segments, and finally
describe the step to slice a matrix by eye ray segments and build the
hierarchy on VRL segments.

4.1 Generating Initial Segments

Once the rays are obtained, we first generate a set of initial ray
segments by distributing h points along each ray to partition it into
h+ 1 segments, where h = 16 is set as default. We use Woodcock
tracking to generate samples proportional to the transmittance to
spread more samples in dense medium regions, which have more
visual contributions to the image. A 2D VRL case is shown in
Figure 4(a). However, even considering the importance of medium
properties to generate points, these randomly distributed points may
still fail to capture the local coherence of lighting transport among
rays. Therefore, these segments are only regarded as an initial set
of segments and will be refined later.

4.2 Graph-based Partitioning Algorithm

Given the initial set of segments, we propose a graph-based par-
titioning algorithm to group them into similar clusters and refine
these ray segments using cluster boundaries. We first introduce the

graph representation, then describe the partition algorithm, and fi-
nally present the step to refine the segments.

4.2.1 Graph Representation

We organize the segments into a graph, where the graph node is
the segment and the edge weight is the similarity between two seg-
ments. The eye ray and VRL segments are separately organized
into two graphs. The similarity defined on two segments, oi and oj ,
is computed as:

we(oi, oj) = S(oi, oj) +D(oi, oj) + T (oi, oj) + P (oi, oj), (8)
wl(oi, oj) = S(oi, oj) +D(oi, oj) + T (oi, oj), (9)

where we and wl are the similarities of eye ray and VRL segments
respectively; S is the spatial distance term; D is the directional
scattering term; T is the transmittance term; and P is the pixel-
filtering term. The spatial distance S is computed as:

S(oi, oj) = η(max(0, B− ‖ x0
i − x0

j ‖ − ‖ x1
i − x1

j ‖)), (10)

where x0
i and x1

i are the start and end points of oi, respectively;
x0
j and x1

j are the start and end points of oj , respectively; B is 1/8
of the diagonal length of the scene bounding box; and η = 1

B
is

a weight to normalize the spatial distance. The directional term D
depicts the directional scattering difference between two segments
as:

D(oi, oj) = κ(2− d(x0
i ,x

0
j )− d(x1

i ,x
1
j )),

d(xi,xj) = max(
pxi(θ

m
xi)− pxj (θ

m
xi)

pxi(θ
m
xi)

,
pxi(θ

m
xj )− pxj (θ

m
xj )

pxi(θ
m
xj )

),

(11)
where κ = 0.5 is a weight to normalize the term; pxi and pxj are
the phase functions at two points of xi and xj , respectively; θmxi
and θmxj are the angles in the wold space that produce maximum
phase function values at xi and xj , respectively; and max(, ) re-
turns the larger difference between these two phase functions. We
use the maximum value difference of these two phase functions
to depict the difference between them, because the computation is
much cheaper. T distinguishes the energy attenuations caused by
transmittance variations, especially in heterogeneous media, of two
segments as:

T (oi, oj) = 1− ‖τ(x0
i ,x

1
i )− τ(x0

j ,x
1
j )‖, (12)

of which the values can be directly computed from the cached trans-
mittance along VRLs. The pixel filtering term is a Gaussian filter
specifically defined for eye rays as:

P = 1− 1

2πσ
e
− x̄

2+ȳ2

2σ2 ,
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Figure 4: Illustration of ray partitioning and clustering process. (a) Tracking sample points to generate initial segments. (b) Constructing
a graph from segments, in which the graph is visualized by linking one point on each segment. (c) Partitioning the graph into red and white
clusters. (d) Finding the cluster boundary. (e) Refining segments with the boundary.

where x̄ and ȳ are the horizontal and vertical image distances be-
tween oi and oj , respectively; and σ is a parameter set to 4. We
define this term in the image space to differentiate eye ray segments
with close start points from the camera.

Ideally, for each pair of segments, an edge with similarity exists.
However, considering that the spatial distance of two segments is
large, the similarity distance becomes dominated by the spatial dis-
tance. Therefore, in practice, we consider only the spatial neigh-
bors of segments. Each segment is linked to its nearest five spatial
neighbors by searching the nearest start or end points of segments
in a point KD-tree. Figure 4(b) illustrates a VRL segment graph, in
which graph nodes are in orange dot and edges are in black lines.

4.2.2 Graph Partitioning

Given a graph, we convert the clustering problem into a graph-
partitioning problem to partition graph nodes (segments) into
groups. These groups are then used to slice the lighting matrix
and build the VRL hierarchy, which is discussed in Section 4.2.3.
We use the K-cut graph-partitioning algorithm to partition the graph
into K groups while minimizing the sum of the edge weights that
connect nodes in different groups. The accurate K-cut graph par-
titioning is a NP-hard problem, but with several efficient approxi-
mation algorithms. We adopt the mtMetis proposed by LaSalle et
al. [2013]. Figure 4(c) illustrates an example, in which the nodes are
partitioned into two groups that are denoted as red and white. We
select the graph-partitioning algorithm because this approach effec-
tively preserves segments of the same rays; therefore, the segments
of different clusters are not interlaced with other rays. The K-means
clustering may fail to preserve the spatial connection because it di-
rectly encompasses spatial information into a high-dimensional dis-
tance metric, in which spatial connections might be suppressed by
other factors. We present further comparisons in Section 6.1.

4.2.3 Segment Refinement

The initial segments are randomly generated. Consequently, they
may not effectively capture the local coherence of the media. We
observe that these segment clusters, after the graph partitioning, ex-
pose global information on how segments should be distributed in
the media. For example, the boundary among clusters reflects cer-
tain changes in the media. Therefore, these segments across the
boundary should be divided into two segments, so that such changes
among clusters can be better preserved and in-cluster coherence can
be improved. We propose a three-step refinement procedure to uti-
lize the underlying information of segment clusters and improve the
segments along rays, i.e., find better start or end points of segments.

The first step is to determine the boundary between two neighbor-
ing clusters. We adopt the support vector machine (SVM) to find
an optimal decision hyperplane between two clusters. We use only
the start or end points of boundary segments as the training data
in the SVM to simplify the computation. The radial basis function

K(x,y) = e
− ‖x−y‖2

2γ2 with γ = 0.5 is used as a nonlinear kernel
to compute the support vector, where x and y are positions of the
points. The nonlinear kernel enables us to compute the non-planar
boundary between clusters. Given the boundary, we then split the
segments across the boundary and create new segments. Finally,
each newly created segment is compared with the connecting seg-
ment in the same cluster using the similarity metric (Eq.(8) or (9)).
They are merged if they are similar enough, i.e., the similarity met-
ric is larger than a threshold of 2.5.

4.3 Slicing Lighting Matrix and Building Light Tree

For VPLs or shading points, we use the methods proposed in pre-
vious studies [Ou and Pellacini 2011; Frederickx et al. 2015; Huo
et al. 2015] to cluster rows and build a hierarchy of lights.

For eye rays, w e directly partition them into K clusters. K is em-
pirically set to 0.008 times the total number of eye rays. With this
setting, each group contains approximately 500 to 1000 segments
(rows) after the partition. Such a setting experimentally suits our
matrix completion algorithm in terms of efficiency. Upon obtaining
the clusters of eye ray segments, we use them to slice the lighting
matrix into sub-matrices.

For VRLs, we iteratively apply two-cut partitions on the VRL seg-
ments until all segments in the same node reach the fixed similarity
threshold. At each iteration, a graph is partitioned into two sub-
graphs. These partitions result in a hierarchy of subgraphs, which
directly maps to a virtual light tree.

5 Adaptive Sampling Algorithm

With sliced sub-lighting matrices and virtual light trees, the next
step is to compute the final illumination of every receiver (point or
segment) by sampling and integrating columns of each sub-lighting
matrix. In this section, we introduce our sampling and reconstruc-
tion algorithm that adaptively samples columns and completes the
sampled columns from a small number of elements.

The pseudo code of the entire algorithm is shown in Algorithm 1.
The overall procedure of our algorithm exhibits certain similarities
to the tree traversal scheme proposed by Lightcuts [Walter et al.
2005]. In particular, we hierarchically traverse the light tree to com-
pute a cut. All tree nodes on the cut are stored in a priority queue,
Queue, and sorted by errors. At each traversal, one node with the
largest error is popped and split into children nodes, where each
child node is sampled and evaluated in the SampleAndEvaluate
routine. Once the error of this child node is less than a threshold,
we accumulate its contribution to receivers and stop the traversal on
this node; otherwise, this child node is pushed into the queue.

However, our method fundamentally differs from the standard
Lightcuts procedure in several aspects. First, in Lightcuts, a rep-
resentative light is used to estimate the overall contribution of a



Algorithm 1 Adaptive Sampling Algorithm
1: function ADAPTIVE SAMPLING(tree)
2: Queue← ø
3: Queue.PUSH(tree.root)
4: while Queue 6= ø do
5: node← Queue.POP()
6: left child, right child← REFINE(node)
7: SAMPLEANDEVALUATE(left child)
8: SAMPLEANDEVALUATE(right child)
9: if left child.clustering error > threshold then

10: Queue.PUSH(left child)
11: else
12: TERMINATE(left child)
13: end if
14: if right child.clustering error > threshold then
15: Queue.PUSH(right child)
16: else
17: TERMINATE(right child)
18: end if
19: end while
20: end function
21:
22: function SAMPLEANDEVALUATE(node)
23: {columns} ←SAMPLECOLUMN(node)
24: for each column in {columns} do
25: COMPLETECOLUMN(column)
26: end for
27: EVALUATENODEILLUMINATION(node, {columns})
28: EVALUATECLUSTERINGERROR(node, {columns})
29: end function

node; in our method, constructing a representative light segment
for segments with varying lengths, intensities and scattering coeffi-
cients is impractical. Thus, we propose a column sampling method
to sample a subset of columns in the node and estimate the overall
contribution from them. Second, while sampling the column, our
method only uses a small number of rows to complete the entire
column instead of fully sampling all rows. Finally, instead of using
a conservative error bound, our method computes the error from a
number of columns at a tree node because of the difficulty in esti-
mating an error bound on VRLs. In the following subsections, we
first describe the procedures to sample and complete columns and
then introduce the step to evaluate the node error.

5.1 Computing Node Illumination

A tree node on the cut contains a set of light segments. Given a
tree node and receivers represented in columns and rows of a sub-
matrix, integrating of node illumination aims to compute all illu-
minations from light segments of the node to all rows. Instead of
densely sampling all elements, we adopt the idea of adaptive matrix
column completion [Krishnamurthy and Singh 2014] that utilizes
the sub-column space to reconstruct columns by sampling only a
few elements of rows. However, even when the sub-column space
is used, still many columns have to be sampled remain. Instead,
inspired by the idea proposed by Georgiev et al. [2010] to sample
VPLs, we use the Monte Carlo integration that only randomly sam-
ples a small number of columns. In the following, we first introduce
the column completion step and then describe the Monte Carlo in-
tegration step.

5.1.1 Column Completion

An adaptive matrix completion algorithm [Krishnamurthy and
Singh 2014] is adapted for our column completion. Technically, we
maintain a sub-column spaceU of the matrix to complete columns.
We useL ∈ Rm×n to denote a sub-lighting matrix andU ∈ Rm×k

Algorithm 2 Column Completion Algorithm
1: function MATRIXCOMPLETION(L)
2: U ← ø
3: Ω← DRAWROWINDICES()
4: for each column l of L to sample do
5: lΩ ← DRAWROWSAMPLES(l,Ω)
6: if ‖lΩ −UΩ(UT

ΩUΩ)−1UΩlΩ‖1 > threshold then
7: densely sample l then add to U (orthogonalize U )
8: Ω← DRAWROWINDICES()
9: else

10: l̄← U(UT
ΩUΩ)−1UT

Ω lΩ
11: end if
12: end for
13: end function

to denote the sub-column space of L, where k � n. Each col-
umn of U is one orthogonal basis of the sub-column space. When
sampling a new column, l, we first sample a few elements of this
new column, where Ω ∈ Rbρmc denotes uniformly sampled indices
ranging from 0 tom, and lΩ ∈ Rbρmc is the down-sampled version
of l, which contains only sampled rows, i.e. the rows indexed by
Ω. Then, the entire column l can be reconstructed by projecting the
down-sampled column back into the column space U as:

l ≈ l̄ = U(UT
ΩUΩ)−1UT

Ω lΩ, (13)

where UΩ ∈ Rbρmc×k is a down-sampled version of U that only
contains rows indexed by Ω and removes other rows. If L is char-
acterized by low rank and low matrix coherence [Candès and Recht
2009; Krishnamurthy and Singh 2014], then only a small ratio of
randomly sampled elements is sufficient to recover the entire ma-
trix, thereby reducing the computational cost of completing l̄.
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Figure 5: Illustration of one column recovery.

The pseudo code of this column completion algorithm is provided
in Algorithm 2, and an illustration of the recovery of one column is
shown in Figure 5. The column completion algorithm draws a small
set of row indices from the routine DrawRowIndices and places
them in Ω. Rows of unknown columns are sampled according to
the indices in Ω in the routine DrawRowSamples. In line 6, we
test whether the down-sampled column lΩ is in the down-sampled
space UΩ. If this down-sampled column lΩ is in the space, then it
is directly projected back into the full column space U (line 10).
Otherwise, the entire column l is sampled and added to the column
space U .

We use EΩ(lΩ) to represent the operation that projects a
down-sampled column lΩ into the space U as EΩ(lΩ) =
(UT

ΩUΩ)−1UT
Ω lΩ, and e ∈ Rk = EΩ(lΩ) to denote the projection

of lΩ on the sub-column spaceUΩ. Such a projection e can be used
to recover the entire column l from the down-sampled column lΩ as
l ≈ l̄ = Ue, where l̄ is the approximation of the original column
l. Using these projections and recoveries, we can efficiently per-
form the integration and error estimation in the sub-column space
U , in which the column size of sub-column space is much smaller
than the original column space, k � n, and the dimension of the
projection e is much smaller than the row size, ρm� m.

5.1.2 Integrating Columns

Based on the sub-column space reconstruction, the integration of
the entire sub-lighting matrix is the summation of all columns



∑
j l
j ≈ U

∑
j e

j . By combining the idea of Monte Carlo sam-
pling in VPLs [Georgiev and Slusallek 2010], we can compute the
integration of the node as:

i(node) ≈ Ue(node) = U
1

K

K∑
k=1

EΩ(lkΩ)

PDF (lkΩ)
, (14)

whereK is the number of sampled columns in the node, PDF (lkΩ)
is the sampling probability of column k, lkΩ is the randomly sampled
column, EΩ(lkΩ) calculates the projection of column lk in spaceU ,
and e(node) is the integration of projections. We simply use inten-
sities of virtual lights as the PDF and sample 10 columns per node
as default. More details can be found in the supplementary docu-
ment. By taking Eq.(14) into Eq.(7), we compute the final illumina-
tion of the entire sub-lighting matrix by summing all contributions
of nodes as:

s =
∑

Ue(node) = U
∑

e(node), (15)

where, we first accumulate the projections in the sub-column space
and then project them back to the full column space, which further
reduce the computation of integration.

5.2 Estimating Node Errors

Two kinds of errors are used in our algorithm to control the proce-
dures of sampling and reconstruction. The first error is the comple-
tion error in line 6 of Algorithm 2. This error represents the energy
loss in the column completion. If one column l cannot be well re-
constructed by sub-column space U , then this column will be fully
sampled. Such an error is computed as:

‖lΩ −UΩe‖1
‖lΩ‖1

‖e‖1 > σ‖eall‖1, (16)

where eall is the accumulated contribution of all nodes in the cur-
rent tree cut; σ is a predefined ratio parameter, with 0.05 as default;
and ‖lΩ−UΩe‖1

‖lΩ‖1
estimates the percentage of energy loss for l.

The second error is introduced to evaluate how well the node con-
tribution is estimated by some of its columns (lines 9 and 14 of
Algorithm 1). We use an error metric similar to the adaptive clus-
tering metric proposed by Hachisuka et al. [2008]. Specifically, the
column sampling error r(node) for node is computed as:

r(node) =
1

N

n∑
N

(e(node)− EΩ(lnΩ)

PDF (lnΩ)
)2. (17)

The average squared difference between sampled columns and the
estimated node contribution in spaceU is calculated. If r(node) >
βeall, then the estimate of this node is not good enough, and the
node is split. We set β = 0.01 as default.

6 Results

We implement our method on a PC with two Intel Xeon E5-2630
CPUs and 32GB memory. The matrix computation is conducted
using the Intel MKL library. Different virtual lights, including di-
rectional, omni and diffuse oriented VPLs [Walter et al. 2005] and
standard VRLs [Novák et al. 2012b], are used in test scenes. We
compare the quality and performance of our method with those
of the original VRL [Novák et al. 2012b] and the recent adaptive
LightSlice [Frederickx et al. 2015]. All algorithms are parallelized
in our test machine, but the reference images are rendered by a clus-
ter with 32 PCs in tens of hours. The statistics of demo scenes
are listed in Table 2. The column sampling ratio is manually set

as 0.1 in most cases. The maximum memory consumptions of our
method, adaptive LightSlice and VRL are 470, 280 and 200 MB, re-
spectively. Compared with previous methods, the additional mem-
ory used in our method is for storing the hierarchies of VPLs and
segments. Unless mentioned specifically, we use the same original
method of VRL [Novák et al. 2012b] to compute the segment-to-
segment illuminations.

6.1 Comparison of Different Partitions of Rays

(a) Our method (b) K-Means (c) No Partitioning

Figure 6: Comparison of different partitions of rays. The eye rays
are partitioned by three different strategies and rendered with equal
sampling ratios. The reference image of this scene is shown in Fig-
ure 7(d).

Figure 6 shows the results generated with three ray-partitioning
strategies, namely, the proposed graph-based partitioning, K-
Means clustering, and no partitioning on rays. The previous ap-
proaches [Frederickx et al. 2015] can be regarded as using no parti-
tioning strategy. We visualize the ranks of sub-lighting matrices in
Figure 6 (bottom). A lower rank indicates fewer samples to sample
and complete these matrices. In Figure 6 (top), we render the scene
with an equal sampling ratio. As can be seen, our graph-based parti-
tioning obviously outperforms the other two ray partitioning strate-
gies.

6.2 Results of Column Completion

We show several results that are only produced by column comple-
tion without adaptive column sampling (i.e, we fully sample every
column but we only complete each column by a few row elements)
to better evaluate the completion step in our algorithm. We first
show the effect of the error threshold σ on the quality of the col-
umn completion algorithm in Figure 7. Large σ results in some
loss of lighting details. In our practice, σ = 0.005 is good enough
to recover subtle lighting effects; therefore, it is used as default in
all our experiments.

We then use a studio scene to show the effect of the sampling ra-
tio ρ on the quality of the column completion algorithm. In this
scene, the major light source comes from the window and directly
illuminates the smoke, in which the major illumination of the scene
is contributed by indirect VRLs. We forcibly sample every col-
umn of the sub-lighting matrix, and test various sampling ratio ρ of
rows. As shown in Figure 9, with only 10% of elements per col-
umn, the resultant image is close to the reference. After counting
the overhead to conduct the column completion, our column com-
pletion achieves over 7 times speedup in generating an image with a
similar quality. While the column sampling ratio decreases, blocky



(a) σ = 0.05 (b) σ = 0.01 (c) σ = 0.005 (d) Reference

Figure 7: Comparisons of results using different error thresholds σ in the column completion. The rendering time for σ = 0.05, σ = 0.01
and σ = 0.005 are 40, 48, 52 s respectively.

artifacts appear. Such artifacts appear first at the boundary of light
shaft, where the rank is higher, and then in the entire image.

6.3 Results of Anisotropic Materials

We apply our algorithm to render participating media with
anisotropic materials, and show the results in Figure 8. From
left to right, the Buddha models have different coefficients g of
the Henyey-Greenstein (HG) phase function, ranging from purely
isotropic 0 to highly anisotropic 0.99. At the top row of Figure
8, the ranks of sub-lighting matrices are presented, in which the
rank increases as the anisotropic coefficient increases. We use two
sampling ratios, 0.1 and 0.2, to render the scene. As shown in the
middle and bottom rows of Figure 8, when the material becomes
increasingly anisotropic, the lower sampling ratio tends to produce
more noticeable artifacts because of the lack of samples. The in-
crease rank of the lighting matrix leads to the increase of sampling
ratio. Therefore, if the scene is complex both in lighting and ma-
terial, our algorithm might degrade to the traditional full sampling
algorithm.

6.4 Final Results and Comparison

We compare the overall performance of our method with those of
VRLs [Novák et al. 2012b] and adaptive LightSlice [Frederickx
et al. 2015] by rendering various scenes at equal time. Error images
show the relative L1 absolute errors. Specifically, e = ‖Lo−L‖1

Lo
,

where Lo is the intensity of the reference image, and L is the in-
tensity of the test image. We also plot the curves of time versus
number of virtual lights for different methods to better compare the
scalability of different methods.

The city scene in Figure 1 is the largest scene in our paper. The
entire city is covered by heterogeneous smoke and lit by sky light-
ing from the sun and several street lamps. The sun and the lamps
produce light shafts in the smoke. The complex effects require a
large number of virtual lights to capture the lighting. At equal time,
the VRL method generates serious artifacts because of only a small
number of VRLs that can be processed during a limited time. For
the same reason, the adaptive LightSlice has some obvious blocky
artifacts, especially in the regions lit by the lamps. By contrast,
our algorithm works well in this scene because our method sam-
ples 10% of the elements per column. In this way, our method can
process more columns in the same time.

The Sponza scene in Figure 10 is a small but commonly used scene
to test the complex indirect lighting transport in the corridor. At the
same processing time, only a small number of virtual lights coming
into the yard are captured by the VRL method. As a result, this
method produces a large light shaft and spiky lighting artifacts. The

(a) g = 0 (b) g = 0.5 (c) g = 0.99

Figure 8: Buddha model with different anisotropic coefficients.
The scattering and absorption coefficients are set to (1, 1, 1) and
(0.002, 0.005, 001), respectively, for all models. However, the
anisotropic coefficient g of HG phase functions differs. The top
row visualizes the rank. The middle and bottom rows are rendered
with sampling ratios of ρ = 0.1 and ρ = 0.2, respectively. The
time needed to render models with g = 0, g = 0.5 and g = 0.99 at
ρ = 0.2 is 62, 68 and 75 s, respectively.

adaptive LightSlice captures most lighting features of the scene but
still has blocky artifacts as shown in the error map. Our method
generates a smoother result at the same processing time. The curves
on the bottom right of Figure 10 show the scalabilities of the three
methods under the same error threshold. For one millions virtual
lights, our method outperforms the adaptive LightSlice over one
order of magnitude because of our sparse sampling and completion
scheme.

Finally, we test the three methods on a laboratory scene with various
participating media, as shown in Figure 11. From left to right, the
media are soft drink (Gatorade), jade, soap, juice (grapefruit), skin
and milk with different HG phase functions. These material pa-
rameters are from previous studies [Gkioulekas et al. 2013b; Jakob
2010; Gkioulekas et al. 2013a] and listed in Table 1. These media
comprise anisotropic media (such as jade, beverage and soap) and



(a) Reference (b) ρ = 0.1 (c) ρ = 0.05 (d) ρ = 0.01

Figure 9: Studio scene.

σs σa g
Drink 0.04,0.04,0.06 0.02,0.02,0.009 0.93,0.93,0.94
Jade 1,1,1 0.002,0.004,0.007 0.9,0.9,0.9
Soap 0.2,0.2,0.22 0.001,0.001,0.002 0.96,0.95,0.94
Juice 0.15,0.15,0.16 0.03,0.17,0.48 0.93,0.93,0.93
Skin 0.74,0.88,1 0.03,0.17,0.48 0,0,0
Milk 1,1,1 0.0026,0.005,0.01 0.82,0.8,0.75

Table 1: Media parameters in the Lab scene.

thick media (such as soap, skin and jade). As shown in the results,
with the anisotropic media, our method still produces an image with
a much better quality than those of the VRL and adaptive LightSlice
within the same time period. The VRL method has obvious singu-
larities and the adaptive LightSlice has blocky artifacts, especially
in the shadow regions. By contrast, our method generates smoother
results. However, because of anisotropic scattering, our method re-
quires a higher sampling ratio of 0.2 in column completion to cap-
ture the high-frequency light transport and has less speedup than
that in the Sponza scene.

In summary, under equal time comparison, the quality of our
method is better than those of VRL and adaptive LightSlice. With
more virtual lights being processed in the equal time, our method
can generate smoother and more accurate results. As a result of the
adaptive sampling of columns, the cost of our method is sublinear
to the number of virtual lights. In our test scenes, we gain up to
two orders of magnitude speedup compared with the VRL [Novák
et al. 2012b] and one order of magnitude speedup compared with
the adaptive LightSlice [Frederickx et al. 2015].

7 Conclusion and Future Work

In this paper, we present a new adaptive matrix column sampling
and completion method to accelerate the rendering of participat-
ing media. Our method formulates the final gathering of virtual
lights, especially gathering VRLs to eye rays, into a matrix forma-
tion with segment-to-segment contributions. VRLs and eye rays in
the media are partitioned into local segments and clustered to form
sub-lighting matrices and a light tree. We design an adaptive matrix
column sampling and completion algorithm to efficiently compute
the integration along columns. This algorithm utilizes the local co-
herence and low-rank property of the sub-lighting matrix by sam-
pling only a small number of elements of the matrix to gather con-
tributions from virtual lights. Such a sampling and reconstruction
strategy can be regarded as performing sparse sampling at two di-
mensions, namely, along columns and rows. In columns, we sam-
ple only a subset of columns to reconstruct the integration of all
columns; for each column, only a small number of rows are sam-
pled to reconstruct the entire column through column completion.
Adaptive sampling in these two dimensions effectively exploits the
low rank of the lighting matrix and significantly accelerates the
gathering from the VRLs.

Our method, however, has several limitations. First, the sampling
ratio increases with the rank of the lighting matrix. Therefore, our
method might need a higher sampling ratio to render scenes with
a high frequency of light scatterings. Second, we cannot automati-
cally detect the best sampling ratio for different scenes or different
regions of the scene. Adaptively estimating the optimal sampling
ratios for different matrices is a promising future direction, but it re-
mains challenge in the research of matrix completion. Third, simi-
lar to many other many-light methods, our method does not explic-
itly support temporal coherence. Preserving temporal coherence
involves a series of works that are beyond the scope of our paper,
such as ways to distribute virtual point lights to diminish flickering
[Dachsbacher et al. 2014]. Addressing this limitation is a highly
challenging and interesting future task to explore the potential of
our method in time domain.

The proposed algorithm is a general framework for other effects
that can be formulated as matrix integration problems, including
extending this method to a higher dimension, such as motion blur,
depth of field, or temporal coherent animation. Applying the adap-
tive matrix column sampling and completion or the sparse sampling
concept to other rendering methods, such as bidirectional volumet-
ric path tracing, and even problems outside rendering, is worth ex-
ploring in future.
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