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Multi-Viewpoint Panorama Construction
With Wide-Baseline Images
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Abstract— We present a novel image stitching approach, which
can produce visually plausible panoramic images with input
taken from different viewpoints. Unlike previous methods, our
approach allows wide baselines between images and non-planar
scene structures. Instead of 3D reconstruction, we design a mesh-
based framework to optimize alignment and regularity in 2D.
By solving a global objective function consisting of alignment
and a set of prior constraints, we construct panoramic images,
which are locally as perspective as possible and yet nearly
orthogonal in the global view. We improve composition and
achieve good performance on misaligned areas. Experimental
results on challenging data demonstrate the effectiveness of the
proposed method.

Index Terms— Image stitching, multi-view panorama, image
alignment, wide-baseline images.

I. INTRODUCTION

W ITH the prevalence of smart phones, sharing photos
has become popular. Since cameras generally have a

limited field of view, panoramic shooting mode is provided,
where the user can capture images under guidance to generate
a panorama.

Panoramic stitching from a single viewpoint has been
maturely studied. It is difficult however to generate reasonable
results from a set of images under wide baselines. To produce
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a large field-of-view image for a close object, the camera
needs to be shifted to capture various regions, which causes
trouble for general panorama construction. Images captured
from multiple cameras raise similar challenges. All such
applications require panorama techniques considering
non-ignorable baselines among different cameras.

Many previous image stitching methods require simple
camera rotation [1]–[3], or planar scene [4]. Violation of
these assumptions may lead to severe problems. Recent meth-
ods [5]–[7] relaxed these constraints by dual-homography [5],
or smoothly varying affine/homography [6], [7]. They work
for images with moderate parallax, but are still problematic
in the wide-baseline condition, as demonstrated in Figure 11.

In this paper, we propose a stitching approach for wide-
baseline images. Our main contribution is a mesh-based
framework combining terms to optimize image alignment.
A novel scale preserving term is introduced to make alignment
nearly parallel to image plane but still allow local perspective
correction. A new seam-cut model reduces visual artifacts
caused by misalignment that is difficult to be handled by
traditional seam-cutting algorithms [8], [9]. Figure 1 shows
a challenging urban scene example where 14 images are
captured in different positions. Our generated panorama is
visually compelling.

II. RELATED WORK

A. 3D Reconstruction
Given the dense depth maps of a scene, the panoramic

view can be generated by 3D modeling with texture map-
ping. However, multi-view stereo techniques [10]–[14] are
constrained by a series of conditions including camera motion
and Lambertian surface assumption. It is difficult to produce
perfect 3D models in many cases, especially when there are
only a few images. In the application of video stabilization
where the baseline between source and target images is small,
the reconstructed sparse 3D points may be enough for content-
preserving warp [15], [16]. But this does not work that well
for wide-baseline images with complex structure.

Agarwala et al. [4] constructed multi-viewpoint panoramas
for approximately planar scenes. Structure-from-motion was
used to recover camera poses and sparse 3D points. Then a
dominant plane was selected manually so that the input images
can be projected for stitching. In contrast, our method is an
automatic approach without recovery of camera motion and
3D structures.

B. Mesh Optimization
Mesh optimization and manipulation perform well on image

retargeting [17], [18], resizing [19]–[21], rectangling [22], and
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Fig. 1. Automatically constructed urban panorama with 14 wide-baseline images. (a) Input images. (b) The reconstructed panorama.

video stabilization [15], [16]. These methods use different
global energy functions depending on their targets, and solve
for the optimal mesh configuration. A similarity constraint
was usually used for regularization, which however is not
appropriate for perspective projection. For instance, parallel
lines are not parallel under perspective transformation. Differ-
ently, our proposed straightness constraint does not involve the
parallelism constraint and is more appropriate for perspective
transformation.

C. Panoramic Mosaics

Panoramic image techniques [1], [3] work best for camera
that undergoes only rotation. For other types of camera motion,
misalignment artifacts could be introduced. Although seam
optimization [8] and gradient domain fusion techniques [23]
can be used, they do not solve the problem by nature. Recently,
Gao et al. [5] proposed a dual-homography model to align
overlapping images, where warping can be modeled as linear
interpolation of two homographies. It is still insufficient for
complex scenes.

Lin et al. [6] employed a smoothly varying affine
model to stitch images with parallax. Zaragoza et al. [7]
extended this method to general scenes with smoothly varying
homographies. They use feature correspondence with adaptive
weights to estimate locally coherent homographies. Both these
methods assume that a global affine/homography can approxi-
mately represent image transformation and the local deviation
is minor. This assumption is violated on wide-baseline
images.

Different from the above methods, Zhang and Liu [24]
focused on improving seam optimization. This method ran-
domly picks subsets of correspondences and align only local
parts of images. This process is repeated for optimizing seams
to generate multiple candidate panoramas. The best panorama
can be measured and chosen. Chang et al. [25] proposed
combining the projective and similarity transformation to
reduce distortion. This technique can be combined with that
of [7]. But it still faces challenges in handling wide-baseline
images. All above methods select one image as the reference,
and warp other images to it, which may cause large perspective
distortion when photographing a long scene.

D. Seamless Composition

Graph cuts algorithm [8] stitches images by optimizing a
Markov random field (MRF). Agarwala et al. [4] proposed
incorporating 3D information, while several other methods
used a binary function depending on the visibility of pixels.
The smoothness term penalizes color differences on the
seams. In our wide-baseline cases, misaligned pixels may
coincidentally have similar colors, which makes it difficult to
detect bad seams via color. In order to address this problem,
we combine alignment errors and colors in a new way.

III. FEATURE MATCHING WITH OUTLIERS REJECTION

Like many previous approaches [3], [7], we use SIFT [26]
to find correspondences. For extremely challenging data,
ASIFT [27] can be adopted to obtain more feature matches.

Estimating epipolar geometry with RANSAC [28] can reject
mismatched correspondences. But outliers along the epipolar
line are usually difficult to be eliminated, which may influence
stitching. If the scene is planar, global homography estimation
can also reject outliers. The method of [7] increases error
threshold to accept feature correspondence from different
planes. It works for small-baseline images. Our method is
different–we use local homographies to robustly remove out-
liers, which works even in wide-baseline images.

For each feature point, we assume there is a plane in its
local area, so that all neighbors are approximately on the
same plane. For two arbitrary feature points, we regard them
as neighbors if their distance is smaller than R. We use
DLT [29] to fit a homography for all neighboring feature
correspondences, and compute the residual error. If the error
is less than a threshold γ , we mark it as an inlier. In our
experiments, we generally set R = 50 and γ = 5.

The procedure is depicted in Algorithm 1. For image
pair (Ii , I j ), we first define the neighboring sets for each fea-
ture point in Ii and estimate the corresponding homographies.
Each correspondence (p′, q ′) is verified with several homo-
graphies since it can be included in different neighborhood
sets. As long as it fits one homography, this correspondence
will be recognized as an inlier. After enumerating all feature
points in Ii , we obtain the inlier set S1 for (Ii , I j ). Then we
swap Ii and I j to get another inlier set S2 by Algorithm 1.
The final inlier set is S1 ∩ S2.
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Algorithm 1 Outliers Rejection With Local Homographies

Fig. 2. Outliers rejection comparison. (a) Matched features by SIFT.
(b) Recognized inliers by RANSAC with global homography. (c) Recognized
inliers by our approach.

As shown in Figure 1, the urban scene contains two major
planes. With our local homography verification, outliers are
rejected. Figure 2 gives a comparison with the methods using
global and local homographies respectively. As shown in (b),
traditional RANSAC with global homography eliminates many
correspondences from the desktop. In contrast, our method
preserves inliers in the same place. The stitching result is
shown in Figure 3.

IV. ENERGY FUNCTION OF IMAGE STITCHING

After feature matching, we build regular mesh grids for all
images, and index the control vertices from 1 to m. Then we
put their coordinates into a 2m dimension vector

V = [
x1 y1 x2 y2 ... xm ym

]�
,

and optimize V to align corresponding feature points. Once V
is solved for, the images are warped to a reference plane to
generate desired panorama.

The energy function is defined as

E(V ) = E A(V ) + λR ER(V ) + λS ES(V ) + EX (V ), (1)

Fig. 3. Mesh based framework. (a) Regular mesh grids on input images.
(b) Manipulating images via optimized mesh vertices. (c) Warping the images
to a common plane.

where E A(V ) is the alignment term, enforcing corresponding
feature points to be warped to the same position. ER(V ) is the
regularization term, encouraging neighboring vertices to take
similar transformation. ES(V ) is the scale term, preventing
large image scale change. λR and λS are the weights, which
are usually set to 1 in our system. Optionally, EX (V ) is an
extra constraint used in cases of stronger regularization. The
optimal vertex coordinates Vopt = arg minV E(V ) are used to
manipulate the images for generating a panorama.

In the example of Figure 3, the screen and desktop form two
different planes, and our mesh-based model approximately fits
two homographies as shown in (b). Compared to the single or
dual homography representation, our multi-homography model
has more degrees of freedom and can represent warping of a
general smooth scene.

In addition, traditional image stitching methods [5]–[7]
select one input image as the reference and warp other
images towards it, which may cause perspective distortion for
long sequences. Similar to [4], we project all images onto a
common plane. The generated panorama is nearly orthogonal
while the local perspective property is still preserved. In order
to achieve this goal, we contribute a novel scale preservation
term, which can constrain the image size to be nearly constant
for ensuring this transformation. Our Laplacian regularization
term also corrects local perspective distortion better than the
similarity term used in [15], [20], and [22].

A. Feature Alignment

We represent each feature point as a weighted sum of their
four enclosing control vertices, and minimize alignment errors
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Fig. 4. Feature point interpolation. (a) Original mesh grid and a feature
point p. (b) The warped vertices and feature point p∗.

of the warped points over all features. Similar to [16], we
use bilinear interpolation to calculate weights on the original
meshes, which is equivalent to the barycenter representation.

As illustrated in Figure 4, there is a feature point p inside
the grid whose four vertices are denoted as v1, v2, v3, and v4.
The interpolation weights are computed as

w1 = (v3x − px)(v3y − py),

w2 = (px − v4x )(v4y − py),

w3 = (px − v1x )(py − v1y),

w4 = (v2x − px)(py − v2y). (2)

We assume that the interpolation weights are fixed after
warping the grids (i.e., assuming affine transformation for
each grid). As demonstrated in our supplementary document,1

this assumption is reasonable in a typical panorama scenario
especially when the mesh grid size is small. So we define the
alignment term as

E A(V ) =
∑

(pi ,p j )∈C

1

Npi ,p j

‖p∗
i − q∗

i ‖2

=
∑

(pi ,p j )∈C

1

Npi ,p j

‖Wi V − W j V ‖2, (3)

where C is a set containing feature correspondences of all
image pairs. p∗

i and q∗
i are warped positions of the two

matched points, whose coordinates are weighted sums of the
mesh vertices in V . Wi is a sparse m ×2 weight matrix of pi ,
formed as

[
... w1 0 ... w2 0 ... w3 0 ... w4 0 ...
... 0 w1 ... 0 w2 ... 0 w3 ... 0 w4 ...

]
,

where each column consists of 0 except the four positive val-
ues that sum to one. W�

i V provides a 2D vector with x and y
coordinates of p∗

i . Npi ,p j is the total number of feature points
in the two cells containing pi and p j respectively. It is used to
normalize the alignment error for different regions and prevent
grids with rich features from dominating the alignment term.
We note that even each grid performs affine transformation,
the whole mesh grids can perform perspective alignment well
as long as feature correspondences are accurate.

1http://www.cad.zju.edu.cn/home/gfzhang/projects/panorama/pano-supple.
pdf

B. Regularization

The alignment term only affects grids with feature points.
We need a regularization term to propagate transformation to
other regions. In [15], [20], and [22], a similarity term is
used to preserve the shape for each mesh grid. It however
does not work well in our cases. For panoramic stitching, it is
not reasonable to enforce similarity constraints, since perspec-
tive correction is generally necessary. With the local planar
assumption, we prefer meshes that warp local neighboring
regions with similar homographies.

As shown in Figure 6, for each vertex v, we estimate a
local homography H with its four neighbors v1, v2, v3, v4 and
their warped positions v∗

1 , v∗
2 , v∗

3 , v∗
4 . Then we apply H on

the vertex v to get the regular position v ′. We minimize the
Euclidean distance between v ′ and real position v∗.

Again, affine transformation was used to approximately
constrain the coherence. So v ′ was replaced by Av where A is
the affine transformation fitting warping of v1, v2, v3, v4. With
the linearity of affine transformation, we directly represent v ′
as a weighted sum of neighbors instead of solving for A.
Since we divide the mesh grids evenly, the weights can be
set as equal. Thus v ′ is simply the average of v∗

1 , v∗
2 , v∗

3 , v∗
4 ,

which leads a Laplacian operator on the mesh grids,
i.e. (v∗

1 +v∗
2 +v∗

3 +v∗
4 )−4v ′ = 0. Therefore, our regularization

term is defined as

ER(V ) =
∑

v

‖Wv V − 1

|Nv |
∑

vi∈Nv

Wvi V ‖2, (4)

where Nv is a 4-connected neighboring set of vertex v. For the
vertices on the image boundary, we only use 2 horizontal or
vertical neighbors. Wv and Wvi are index matrices defined as

[
0 ... 1 0 ... 0
0 ... 0 1 ... 0

]
,

which extracts x and y coordinates of v and vi from V ,
respectively. As a result, ER(V ) enforces neighboring vertices
to favor similar affine transformation.

As shown in Figure 5, given two wide-baseline images, our
approach can achieve better alignment than content-preserving
warping [15], which preserves the shape of mesh grids.
In order to measure the alignment quality, we average the
warped images for a composite. The area with large alignment
error is blurry. For fair comparison, we set the first image as
the reference and warp the other one towards it. As shown in
Figure 5(c), although the alignment result of [7] is reasonable,
there are still misalignment and distortion artifacts due to the
insufficient Gaussian smoothing weights.

C. Scale Preservation

The alignment and regularization terms actually form a
linear system as AV = 0, where V = 0 always satisfies this
linear system. In order to avoid this degeneration problem,
methods [5], [7] were proposed to select one image as the
reference view. This strategy works if there are only a few
images, as shown in Figure 5. With the increasing field-of-
view, images far from the reference one may be significantly
distorted in order to reduce the alignment error. Figure 7 shows
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Fig. 5. Panorama construction with 2 wide baseline images. (a) Input images. (b) The average of the stitched images by content-preserving warps [15].
(c) The average of the stitched images by APAP [7]. (d) The average of the stitched images by our approach.

Fig. 6. Regularization term. (a) Original vertices. (b) Warped vertices.

Fig. 7. Image stitching result by fixing the first image.

a stitching result with 14 images, where the first one is the
reference. The right-most images are obviously scaled down.

To address this problem, the scale constraint should be
applied to all images equally. The scale of an image can
be measured by its four edges, since the inner area can be
interpolated once the edge scales are decided. We estimate
a scaling factor for each image according to the feature
points. Specifically, for a matched image pair (Ii , I j ), we
build a convex polygon Pi on the feature points from Ii and
find its corresponding polygon Pj on image I j . Then the
relative scaling factor γi j is defined using the ratio of polygon
perimeters

γi j = ePi

ePj

,

where ePi and ePj are the perimeters of Pi and Pj respectively.
We estimate the absolute scaling factor for each image by

solving

arg min
s

∑

(i, j )∈CI

|γi j s j − si |2,

s.t .
∑

i∈I

si = NI ,

where NI denotes the number of images and CI is the set of
matched image pairs. The obtained scaling factors agree with
the relative ratios while the sum of all scales is preserved.

With the scaling factors, we add a constraint for each image.
The scale preserving term is defined as

ES(V ) =
∑

Ii ∈I

||S(I ∗
i ) − si S(Ii )||2,

S(Ii ) =
[‖Bt‖ + ‖Bb‖
‖Bl‖ + ‖Br‖

]
, (5)

where I ∗
i and Ii are the i -th warped and original images

respectively. S is a scale measurement for images defined as a
2D vector. Bt , Bb, Bl and Br are the top, bottom, left and right
edges of image Ii and can be represented with vertices V . For
example, the length of edge Bt is a nonlinear function of V
as

‖Bt‖ =
√

(Wtl V − Wtr V )�(Wtl V − Wtr V ),

where Wtl and Wtr are index matrices for the top-left and
top-right vertices. ‖Bt‖, ‖Bl‖ and ‖Br‖ are similarly defined.

We define S(Ii ) as a 2D vector, because the vertical and
horizontal edges should be considered independently, which
is better than summing vertical and horizontal edges. If we
constrain each image edge as a constant, the freedom degree
would be too small to correct perspective distortion. In con-
trast, preserving vertical and horizontal scales independently
can allow higher freedom to correct perspective distortion and
simultaneously avoid unnatural distortion.

By constraining image sizes, images are favored when
orthogonally projected to a reference plane. In addition, our
feature alignment and regularization terms encourage perspec-
tive alignment. Our scale preserving term ES(V ) not only
constrains image sizes but also allows perspective correction in
local regions. With all these terms, our method can construct
good quality panoramas, as shown in Figure 8(a). Since ES(V )
is nonlinear, we propose an iterative approach to optimize it,
which will be described in Section V.
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Fig. 8. Image stitching with different prior constraints. (a) Averaging result
by solving E(V ) = λA E A(V ) + λR ER(V ) + λS ES(V ). (b) Averaging result
by further incorporating the line preserving term. (c) Averaging result by
further incorporating the orientation term.

D. Extra Constraints

Our mesh-based model allows for incorporating extra con-
straints conveniently. For special cases of urban scenes and
closed-loop camera motion, we incorporate one or multiple of
the following priors to achieve even better results.

a) Line preserving constraint: To further reduce distor-
tion, we introduce a line preserving term, which prevents the
line segments from bending. We use the method of [30] to
automatically extract line segments, and denote the set of lines
as L. For a line segment l in L, we evenly sample a few points
{p1, p2, ..., pn} so that each grid contains at least one point.
To make l straight, all segments on the line are with the same
direction, leading to the energy function

Eline(V ) = λline

∑

l∈L

n−1∑

i=1

([al, bl]⊥ · (Wpi V − Wpi+1 V )), (6)

where [al, bl ]⊥ is the orthogonal direction of l and the coor-
dinates of pi are formed by linear interpolation of enclosing
vertices, as in Eq. (3). λline is a weight, usually set to 1
in our experiments. We update al and bl iteratively during
optimization. Figure 9 shows the detected line segments.
Incorporating the line preserving term, the stitching result is
improved as shown in Figure 8(b).

b) Orientation constraint: Urban scenes generally
contain a few vanishing lines, which are either vertical
or horizontal. While enforcing their straightness, we also
constrain the orientation. After detecting line segments, we
divide them into vertical and horizontal categories LV and L H

(colored in green and yellow respectively in Figure 9).

Fig. 9. Detected line segments.

We use RANSAC [28] to estimate vanishing points and
eliminate outliers. The lines joining at the same vanishing
point correspond to either horizontal or vertical lines.
By assuming images are taken horizontally, we recognize
lines with small angles as horizontal lines. Denoting p and q
as two end points of such a line segment, they should have the
same x or y coordinates. The orientation term is defined as

EO(V ) = λO(
∑

l∈LV

|(Wpx − Wqx )V |2

+
∑

l∈L H

|(Wpy − Wqy )V |2), (7)

where Wpx and Wpy are the interpolation weight vectors
of p in x and y coordinates respectively. λO is a weight
with value 1 in our experiments. Mesh V warps p to
position (Wpx V , Wpy V ). Figure 8(c) shows the result with
the orientation term.

c) Loop closure constraint: For capturing a full
panoramic view, the camera needs to rotate 360° so that the
first image has overlapping content with the last one. However,
the alignment term cannot be applied directly to the tail images
because the feature points of the first and last images are
aligned with an unknown offset.

In practice we align edges instead of points, so that the
unknown offset can be eliminated. We define the loop closure
term as

Eloop(V ) = λL

∑

(ei ,e j )∈Ce

‖ei − e j‖2, (8)

where Ce is a set of corresponding edges matched between
the first and last images. ei = pi − qi = (Wpi − Wqi )V and
e j = p j − q j = (Wp j − Wq j )V . pi and qi are the two ends
of edge ei . Wpi and Wqi are the weight matrices of pi and qi

respectively. λL is a weight, set to 1000 to enforce the hard
constraint if there is a loop closure.

If we connect each point pair in the n-point set, there are
n2 edges. For reducing the complexity, we randomly shuffle
feature points and connect the neighboring ones. Figure 14
shows an example for generating a 360° panoramic image.
With the loop closure constraint, the left and right most images
become consistent, so that they can be aligned well if we
project them onto a cylinder.

V. OPTIMIZATION

Since the energy function defined in (1) is not quadratic,
we propose an iterative approach to optimize it. Specifically,
only the scale and line preservation terms (i.e. ES and Eline)
are non-quadratic. We replace these terms by their linear
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approximation in each step, and then update the result
iteratively.

A. Linear Approximation

As defined in Eq. (5), ES is non-linear because the scale
function S needs to compute the length of edges. In each
iteration, we denote the direction of Bt as a normalized
vector B∗

t , and assume that B∗
t does not change much in

the next iteration. The length then can be approximated as
‖Bt‖ = B∗

t
�Bt , leading to

ES1(V ) =
∑

Ii ∈I

(|B∗
t
� Bt + B∗

b
� Bb − 2si W |2

+ |B∗
l

� Bl + B∗
r

�Br − 2si H |2),
where W and H are the original width and height of the image,
corresponding to the two components from S(Ii ) in Eq. (5).

Since we assume that the edge direction does not change
much, we regularize it by introducing

ES2(V ) =
∑

i∈I

(
∣
∣
∣B ′

t
�Bt

∣
∣
∣
2 +

∣
∣
∣B ′

b
� Bb

∣
∣
∣
2 +

∣
∣
∣B ′

l
� Bl

∣
∣
∣
2

+
∣∣
∣B ′

r
�Br

∣∣
∣
2
),

where B ′
t , B ′

b, B ′
l , and B ′

r are orthogonally normalized vectors
of B∗

t , B∗
b , B∗

l , and B∗
r respectively. ES2 penalizes rotation of

edges and enforces smooth update.
During each iteration, (5) is replaced by

E ′
S(V ) = ES1(V ) + λES2(V ),

where λ is a weight trading off the robustness and convergence
speed. We found that setting λ to 0.1 ∼ 0.5 worked well in
our experiments and the function converged quickly and stably
(generally fewer than 10 iterations).

Similarly, the line preserving term Eline is not quadratic
because the direction vector [al, bl] is unknown. We linearly
approximate it by assuming that the lines change smoothly.
In each iteration, we estimate the direction based on the current
solution. By fixing al and bl in Eq. (6), Eline becomes a
quadratic function for us to optimize and update iteratively.

B. Efficient Optimization

With the above linear approximation, we optimize Eq. (1)
efficiently. In each iteration, we solve a linear system of

⎡

⎢⎢
⎣

AA

AR

AS

AX

⎤

⎥⎥
⎦ V =

⎡

⎢⎢
⎣

0
0

bS

bX

⎤

⎥⎥
⎦,

where AA, AR , AS , AX and 0, 0, bS , bX are Jacobian matrices
and residual errors of the alignment, regularization, scale
preserving, and extra terms respectively.

The left side of the equation is a n×2m matrix with n much
larger than 2m, since we have much more constraints than the
number of vertices (m). We convert the stacked matrices into
the summation format

(AT
A AA + ... + AT

X AX )V = AT
S bS + AT

X bX , (9)

reducing the matrix size to 2m ×2m. Since these matrices are
rather sparse, we utilize the sparsity to significantly reduce the
computational complexity.

Except for the scale and line preserving terms, other terms
are all quadratic, thus their Jacobian matrices and residual
errors are constant. We update AS , bS , Aline , and bline in each
iteration. For the “Urban1” example with 14 images, it takes
2.30 seconds to initialize the matrix and 0.21 second to update
the matrix in each iteration. The whole optimization takes
15.4 seconds in total with three iterations. We use Cholesky
decomposition to analytically solve the linear system. If we use
conjugate gradient algorithm to iteratively update the solution
in each iteration, the optimization speed could be even quicker.

C. Rapid Interactive Refinement

Since our term update and optimization are rather efficient,
our system provides a line-drawing tool to allow the user to
correct residual image distortion and improve alignment inter-
actively. With line preserving constraints, solution is updated
quickly by solving Eq. (9). The updating time is generally
1 ∼ 5 seconds. Please see our supplementary video2 for real-
time interactions and fast refinement.

VI. SEAMLESS COMPOSITION

After solving Eq. (1), we warp input images to a common
coordinate system. For overlapping regions, a simple average
may cause blurring. Graph cuts has been used in [8] to find
seams between images so that pixels on the two sides of the
seam are consistent.

In previous approaches, color difference is commonly used
as reference. In our wide-baseline cases, alignment errors
can be large and the misaligned pixels might have similar
colors. We propose combining the alignment error and color
difference to generate a better condition.

A. Alignment Score

Given a pair of overlapping images Ii and I j , we measure
alignment errors for all matched feature points and map them
to [0, 1] through Gaussian of

sp,q = exp(−‖�i (p) − � j (q)‖2

σ 2
1

),

where (p, q) is a pair of corresponding feature points from
Ii and I j respectively. �i and � j are the warping functions
corresponding to Ii and I j , respectively. σ1 is set to 0.003D
where D denotes image diagonal length. For features with the
alignment error larger than 0.01D, we assume they are not
reliable and ignore them in following process.

With the feature alignment scores, we produce a dense score
map on Ii . The contribution of feature p to pixel x depends
on distance from p to x as

wp,x = exp(−‖p − x‖2

σ 2
2

).

2http://www.cad.zju.edu.cn/home/gfzhang/projects/panorama/pano-video.
wmv
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σ2 should be related to the alignment score, since a well
aligned feature point propagates better than those with larger
alignment errors. For rotational camera motion or a locally
planar scene, pixels surrounding the feature points are very
likely to be also good. In our experiments, we generally
set σ2 to 0.4D · sp,q .

We define the alignment score map for image Ii as

SIi (x) =
∑

p w2
p,xsp,q

∑
p wp,x

.

Finally we repeat the same process on I j to generate SI j , warp
the score maps according to the optimized mesh, and average
them as the final map as

Salign = 1

2
(�i (SIi ) + � j (SI j )). (10)

B. Color Score

We also use the color difference as the measure of consis-
tency. A Gaussian function is adopted to smooth the energy.
The color distance is normalized as

Scolor (x) = exp(−|�(Ii )(x) − �(I j )(x) − μ|2
σ 2 ), (11)

where �(Ii ) and �(I j ) are the warped images. μ and σ are
the mean and standard deviation of the L2 distance, which are
estimated with the overlapping region.

With the Gaussian function, misaligned pixels with large
color difference do not provide absurdly large costs. With
increasing color distances, the color score moves close to 0.
Misaligned pixels are thus assigned with small scores, no
matter how different the colors are.

Conditions such as lighting and exposure affect the global
luminance of images. With normalization factors μ and σ , they
can be corrected to an extend. The global color difference can
be finally resolved by gradient domain fusion [23].

C. Graph-Cuts Optimization

We combine the alignment score (10) and color score (11),
and convert them to a function

E(i, j )(x) = max(0, min(1.5 − Salign − Scolor , 1)). (12)

Since Salign ∈ [0, 1] and Scolor ∈ [0, 1], the value of
−Salign − Scolor is in the range of [-2, 0]. We adopt the
formula in (12) to truncate the value and only choose the
medium range [0, 1.0], which can avoid the influence of
extreme cases. Now E(i, j )(x) describes the consistency of
image pair (Ii , I j ) at pixel x . Given a seam connecting Ii

and I j , the total consistency is defined as the accumulated
E(i, j )(x) over the seam pixels. For the special case i = j , we
define E(i, j )(x) = 0.

Similar to previous methods, we optimize the function via
graph cuts [31] as

Ecut (p, L) =
∑

p

Ed(p, L p) + λs

∑

(p,q)∈N

Es(p, q, L p, Lq ),

(13)

Fig. 10. Seamless Composition. (a) Graph cuts result with the traditional
smoothness term only incorporating color difference. (b) Our result. (c) Our
final result with gradient domain fusion.

where Ed is the data term defined by the availability of pixels,
Es is the smoothness term preferring well aligned regions, and
N is the set of neighboring pixels. λs is a smoothness weight
set to 256 in our experiments.

The data term Ed is defined as

Ed(p, L p) =
{

0, x ∈ ÎL p

η, otherwi se

where ÎL p is a warped mask of the image with index L p .
If a pixel is available in the warped L p-th image, its cost is 0,
otherwise it is set to a very large penalty η to avoid being
labeled with L p .

The smoothness term Es is defined as the sum of consis-
tency scores on the neighboring pixels:

Es(p, q, L p, Lq ) = E(L p,Lq )(p) + E(L p,Lq )(q).

The final labeling problem is solved by minimizing the energy.
We use graph cuts [31] to efficiently solve it, and then apply
gradient domain fusion [23].

As shown in Figure 10 (a), the blue pot is misaligned
due to the lack of reliable features. Due to similar color,
traditional seam-cutting method [9] splits this area. With our
new energy function, such a seam causes a large cost and
thus is prohibited. The result shown in (b) demonstrates the
effectiveness of our method.

VII. EXPERIMENTS

To evaluate the performance, we conducted experiments on
several challenging wide-baseline image datasets, including
urban image datasets, indoor image datasets, wide-angle image
datasets. If there is no special mention, our results are gener-
ated automatically without user interactions.

The timing statistics are shown in Table I with imple-
mentation on a desktop PC with an Intel i5 CPU@3.30GHz
and a GeForce GTX 760 display card. We generally use



ZHANG et al.: MULTI-VIEWPOINT PANORAMA CONSTRUCTION WITH WIDE-BASELINE IMAGES 3107

Fig. 11. Image stitching with “Urban2” dataset including 8 wide-baseline images. (a) Input images. (b) Panorama generated by AutoStitch. (c) Panorama
generated by APAP. (d) Panorama generated by our approach.

TABLE I

THE RUNNING TIME ON OUR DATASETS

SiftGPU [32] to perform feature matching with outlier rejec-
tion, which takes 1 ∼ 6 seconds in our datasets. For wide-
baseline urban image datasets, we also use ASIFT [27] to
obtain more matches, which takes several minutes additionally.
Other modules of our system are implemented without GPU
acceleration. For each image, it takes about 0.2 second to
extract line segments if line preserving constraint is used. Our
stitching optimization is also very efficient, which is an order
of magnitude faster than APAP [7]. For seamless composition,
our graph-cuts optimization takes 79.3 seconds, and gradient
domain fusion takes 59.3 seconds for “Urban1” example in
Figure 1. Both APAP and AutoStitch3 [3] use simple blending
techniques without global optimization, where the composition
time is close to that of our average blending operation listed
in Table I.

3http://matthewalunbrown.com/autostitch/autostitch.html

A. Results on Urban Image Datasets

Figure 11 shows an urban scene example with 8 wide-
baseline images, where the building and street form
two dominant planes. AutoStitch does not find many
correspondences under the perspective assumption. APAP
[7] constructs a complete panorama, but suffers from
distortion due to the lack of prior constraints. The same
correspondences are used for APAP and our approaches for
fair comparison. Our mesh-based model generates a dual-
homography panorama, as shown in (d). All methods cannot
handle strong occlusions. Figure 1 shows another example
with the input of 14 images. The results of AutoStitch and
APAP are contained in the supplementary document.

We also test our approach using the long sequences from [4].
Figure 12 gives a comparison, where (a) and (b) show the
average images of the stitched images using the method of
[4] and ours respectively. Compared to [4], our method does
not require 3D information and can work with much sparser
images. We choose only 13 images from the 107 images and
achieve comparable result. Like that of [4], for this example,
we use view selection strokes to guide composition. We do
not apply other manual work, such as inpainting.

B. Results of Wide-Angle and Loop-Closing Images

With adaptive homographies, our method can handle images
with significant radial distortion. For the example shown in
Figure 13, we capture 3 images by GoPro Hero3 camera.
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Fig. 12. Long scene example. (a) Average of 107 stitched images by the method of [4]. (b) Average of 13 stitched images by our approach. (c) Final result
of [4]. (d) Our final result.

Fig. 13. Image stitching with radial distortion. (a) Three images captured with GoPro Hereo3. (b) The stitching result by AutoStitch. (c) The average of the
stitched images by APAP. (d) The average of the stitched images by our method.

Due to radial distortion, AutoStitch and APAP do not work
well as shown in Figures 13 (b) and (c). Our stitching result
contains less ghost artifacts.

Figure 14 shows a 360° panorama example. The input
images are also with significant radial distortion. With the
loop closure term in Eq. (8), the left and right most images
become more consistent with each other. They are aligned
when projecting onto a cylindrical surface. We note the
smoothly-varying transformation assumption makes the right
most highlight not aligned very well.

Besides panoramic mosaics, our approach can also be
applied to texture unfolding for simple objects. The supple-
mentary document shows an example.

C. Application for Selfie

In selfies, panoramic stitching is also useful. Since
the camera is close to the face, the introduced parallax
can be rather large. Figure 15 shows an example, where
AutoStitch causes misalignment. APAP performs better with
the multi-homography model. Our r is with the decent
quality.

D. Quantitative Evaluation

We follow the method of [7] to evaluate results quanti-
tatively. For pairwise stitching, we quantify the alignment
error of the estimated warp f : R2 → R2 by the root
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Fig. 14. 360° panoramic mosaic with radial distorted images. (a) The stitching result by AutoStitch. (b) Highlights. (c) The average of the stitched images
by our method without seamless composition. (d) Our final result with seamless composition.

Fig. 15. Selfie example. (a) Selfies. (b) The stitching result by AutoStitch. (c) The average of the stitiched images by APAP. (d) The average of the stitched
images by our approach. (e) Our final result with seamless composition.

mean squared error (RMSE) of corresponding feature points

{xi , x ′
i }N

i=1, where RM SE( f ) =
√

1
N

∑N
i=1 || f (xi) − x ′

i ||2.

We randomly partition all feature matches into “training” and

“testing” sets with equal sizes. We use the training set to
optimize the warp, and evaluate RMSE on both sets.

We also compare pixel-wise difference quantitatively.
Following [7], [33], we define a pixel x as an outlier if there is
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TABLE II

AVERAGE RMSE (TR: TRAINING SET ERROR, TE: TESTING SET ERROR)

no similar pixel (intensity difference less than 10 gray levels)
within the 4-pixel radius of the warped point. The percentage
of outliers in the overlapped area is calculated similarly. For
each datum, we repeat this process 20 iterations, and use the
average of the results. In each iteration we use the same feature
matches on both methods. For our wide-baseline image pairs
shown in our supplementary document, since the number of
the matched features is already small, we use all matches and
evaluate the whole RMSE and outlier percentage.

For fair comparison, we select the first frame as reference,
same as that in [7]. In this case, most prior constraints
are unnecessary. So we only use feature alignment and
regularization terms to construct the energy function,
i.e. E(V ) = E A(V ) + λR ER(V ).

Table II shows the average RMSE (in pixels) and outlier
percentage on different image pairs. “railtracks”, “conssite”,
and “garden” are from [7]. “apartment”, “carpark” and
“temple” are from [5]. “chess” is from [6]. For APAP, we use
the implementation provided by the authors. In most image
pairs, our method yields lower errors.

VIII. DISCUSSION AND CONCLUSIONS

We have presented a new image stitching approach for
wide-baseline images. With the flexibility of a mesh-based
model, our method can accommodate moderate deviation
from the planar structures. By combining feature alignment,
regularization, scale preservation and other extra constraints, a
reasonable multi-viewpoint panorama is accomplished without
explicit 3D reconstruction.

Our approach still has limitations. If a straight line spans
across multiple images, our method can only preserve the local
straightness in each image. This problem can be addressed
either by performing line matching or manually specifying
feature match along the lines if the corresponding matches
are not automatically found.

In addition, if the input images are with significant
occlusion – one region appears in one image but is occluded
in others – the occluded parts may not be aligned correctly,
such as the highlighted red circle region in Figure 11(d). This
problem can be alleviated with user interaction and seam cut.
Our future work will be using the multi-homography model

to support the discontinuity representation around occlusion
boundaries, which may require accurate segmentation.
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