生物医学计算成像及可视分析学术报告会

报告时间:2015年10月28日星期三上午9:00
报告地点:浙江大学紫金港校区蒙民伟楼CAD&CG国家重点实验室402室
报告会主题:生物医学计算成像及可视分析
主持人:陈为 教授

1. 报告人:Prof. Shiaofen Fang  (美国IUPUI分校)
报告题目: Visualization Human Brain Connectome

内容提要:Visualization plays a vital role in the analysis of multi-modal neuroimaging data. A major challenge in neuroimaging visualization is how to integrate structural, functional and connectivity data to form a comprehensive visual context for data exploration, quality control, and hypothesis discovery. In this talk I will present some of our recent work on integrated visualization solution for brain imaging data by combining scientific and information visualization techniques within the context of brain anatomic structures. Several techniques will be discussed including (1) a multi-modal neuroimaging visualization tool, (2) a new surface texture technique for attribute mapping and disease features detection, (3) a new spherical volume rendering technique for generating interactive brain maps, and (4) a multi-graph technique for feature detection. This integrated visualization solution can help neuroscientists identify correlated brain regions, their activity patterns, and disease related brain connection features and imaging phenotype biomarkers.
报告人简历:Dr. Shiaofen Fang is a Professor of Computer Science and the Chairman of the Department of Computer and Information Science at Indiana University Purdue University Indianapolis (IUPUI). Prof. Fang received his Ph.D in Computer Science from the University of Utah and his BS and MS in Mathematics from Zhejiang University. Prof. Fang’s research interest is in Scientific and Information Visualization, Medical Imaging, Volume Graphics, and Geometric Modeling. He has published extensively in these fields. His research has been funded by the National Science Foundation (NSF), Nation Institutes of Health (NIH), National Institute of Justice (NIJ) and US Department of Defense (DoD). He is a regular panelists and reviewers for NSF and NIH, and has chaired or served in program committees in many international conferences and workshops.

2. 报告人:赵经纬教授( 浙江大学医学院)
报告题目:神经再生研究中的图像半定量分析现状及若干问题

内容提要:神经髓鞘的变性或损伤在神经系统比较常见,若方法得当,髓鞘可以有效修复,从而避免更为严重的神经元的变性死亡。在目前常用的体外细胞培养、在体动物髓鞘变性或损伤模型研究中,对相关图像分析的现状至多算半定量。报告将集中讨论在这些半定量分析中目前存在的若干问题,这些问题需要解决但目前尚缺乏得当的方法。期待和与会专家碰撞产生可能合作的火花,积极寻求合作研究的机会。
报告人简历:1997-2000年在第四军医大学攻读并获得医学博士学位,2004 -2014年在英国剑桥大学脑修复中心、MRC-Wellcome Trust 剑桥干细胞研究所、MRC 再生医学中心先后任Research Associate、Senior Research Fellow。2014年4月至今任浙江大学医学院解剖、组胚与细胞生物学系教授,博导,神经科学研究所PI。

3. 报告人:候廷军教授  (浙江大学药学院)
报告题目:基于结构的药物分子设计方法研究
内容提要:
随着计算机技术的方法,基于分子对接的虚拟高通量计算受到了越来越多的关注,已经成为了创新药物研发的核心技术之一。但分子对接方法存在的一些固有缺陷会影响虚拟筛选预测结果的精确度,如简化的打分函数和对靶点蛋白质柔性的忽略等。我们对如何提高虚拟筛选的效率和精度进行了系统的探讨和研究,主要包括:(1)对基于连续介质模型的MM/PBSA和MM/GBSA自由能计算方法进行了系统的评估,指出了这两种方法的优势和缺陷,证明了这两种方法在虚拟筛选后处理中的有效性;(2)发展了基于残基-配体能量分解和机器学习技术的MIEC-SVM方法,通过多个体系的研究表明了其在多肽类药物设计和虚拟筛选中具有广阔的应用前景;(3)对靶点蛋白柔性对虚拟筛选的影响进行了系统的探讨,指出了基于多构象虚拟筛选的重要性,并提出了多构象虚拟筛选结果整合的有效策略。
报告人简历:浙江大学药学院求是特聘教授,药物代谢和药物分析研究所副所长。长期围绕计算机辅助药物分子设计方法和应用展开研究,在SCI索引期刊上发表学术论文240余篇,他引超过3500次,H因子为34;现任中国化学会计算机化学专业委员会副主任,《Journal of Chemical Information and Modeling》、《Journal of Cheminformatics》、《Current Pharmaceutical Design》、《Mini-Reviews in Medicinal Chemistry》、《Theoretical Biology & Medical Modelling‏》等9个国际SCI期刊编委。